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A Metric for Comparing the Anthropomorphic
Motion Capability of Artificial Hands

Thomas Feix, Javier Romero, Carl Henrik Ek, Heinz-Bodo Schmiedmayer, and Danica Kragic

Abstract—We propose a metric for comparing the anthropomor-
phic motion capability of robotic and prosthetic hands. The metric
is based on the evaluation of how many different postures or con-
figurations a hand can perform by studying the reachable set of
fingertip poses. To define a benchmark for comparison, we first
generate data with human subjects based on an extensive grasp
taxonomy. We then develop a methodology for comparison using
generative, nonlinear dimensionality reduction techniques. We as-
sess the performance of different hands with respect to the human
hand and with respect to each other. The method can be used to
compare other types of kinematic structures.

Index Terms—Biologically inspired robots, grasping, kinemat-
ics, multifingered hands, rehabilitation robotics.

I. INTRODUCTION

W E use our hands for daily interaction with the
environment—objects with which we interact have been

made to suit our dexterity. We expect robots to interact with and
manipulate objects made for our dexterity. The same is de-
sired for prosthetic hands. Consequently, we have the following
question: How sophisticated should the hands we build be, and
how should these be designed to fully exploit their capabilities?
Historically, the road of building artificial hands has stretched
between building simple industrial grippers and designing more
complex hands that mimic human hand anthropomorphism and
dexterity [1].

In order to achieve the latter, adding more actuators results in
a higher number of independently controlled joints. However,
the effective dexterity of such a hand may not be increased due
to the complexity in control [2]. Thus, there is an interest in
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creating hands that are relatively simple in their design but still
versatile in terms of the actions they can accomplish. Several
studies in robotic hand design have been inspired by the hu-
man hand [3]–[5]. The relation between human and prosthetic
hands is clear, given their similarity in the kinematic structure.
The problem of which joints should be actuated in order to
maximize the functionality of the hand, however, remains open.
Thus, the natural question is how to define a metric suitable for
performing the analysis of the hands’ capabilities. Here, many
parameters can be taken into account—ranging from kinematic
and dynamic properties to the choice of material (rigid versus
soft) and interaction with objects. At this time, no generally ac-
cepted metric for performing such an analysis exists. Similarly
to our work, most of the approaches addressing the problem are
data driven.

The approach presented in this paper is based on the def-
inition of an anthropomorphism index (AI) that measures the
similarity or overlap between the spaces of reachable finger-
tip poses for hands with different kinematic structures. At first,
data with human subjects are generated, using the human hand
as a reference. The generated human data are based on an ex-
tensive grasp taxonomy, including most static grasp types. The
kinematics of hand movements are analyzed by determining
the extent of the space of fingertip poses, spanned by different
human grasp types, can be covered by different kinematic struc-
tures. It is, therefore, straightforward to change parameters of
the hand models and determine their impact on the AI. Parame-
ters that can be changed are, for example, the number of joints,
their orientation, etc. This provides a fast way of generating and
assessing changes in the hand design, providing the basis for
incremental improvement.

An important contribution of the work is the employment of
the nonlinear dimensionality reduction techniques for encod-
ing the sparse high-dimensional data in a compact manner. We
also contribute with the public release of the benchmark proce-
dure through an open-source toolbox,1 allowing researchers to
test, modify, and redistribute it. We survey the related work in
Section II, and introduce the overall approach in Section III.
In Section IV, we present the dimensionality reduction methods
and in Section V, we define the metrics used for the comparison.
In Sections VI and VII, we present the evaluation results and
conclude the work in Section VIII.

II. RELATED WORK

A human hand model consists of approximately 20 indepen-
dent joints [6]–[8]. This is an overrepresentation in terms of

1http://grasp.xief.net
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degrees of freedom (DoFs) as there are strong correlations be-
tween the joints [9]–[11]. The correlations are not obvious and
cannot be modeled explicitly; therefore, data-driven approaches
are commonly used to determine the coupling between them.
Thus, only a few parameters suffice to define a hand posture [9]
or hand movement [10]–[12]. The minimum number of param-
eters required to specify the posture of the hand is called the
intrinsic dimension of the hand or the number of DoF of a
hand.

In robotics, a significant effort has been put on creating so-
phisticated hands with the goal of mimicking the versatility of
the human hand: the UB Hand 3 [13] with 16 DoF, the Robo-
naut Hand [4] with 12 DoF, and the DLR-HIT Hand II with 15
DoF [5]. These hands have a high-potential dexterity by design,
but the true dexterity is much lower due to the control complex-
ity [2]. The recent focus has shifted from complex to simpler
hands that still can accomplish all assigned tasks [14].

The mechanical complexity of a hand and the complex hand-
object interactions make it difficult to assess the quality of a hand
design without its realization. Furthermore, there is no common
benchmark for grasp performance measures. The classic way
of determining the quality of a grasp is to assess its stability
based on form or force closure [15]. It is not practical to use
such a measure as a guideline for the hand design, since a
hand should be built so that it has a good “stability score” on
many different objects. An elaborate comparison of different
grasp similarity measures is presented in [16]. However, only a
few hand prototypes are based on a structured analysis of their
capabilities.

There are other relevant approaches to hand design optimiza-
tion. The approach presented in [17] and [18] has been special-
ized toward underactuated kinematic hand setups. The actuation
parameters of a hand are optimized to maximize the number
of stable grasps achieved within a manually defined pool of
grasping postures. In [18], a prototype of a simple two-fingered
gripper was built, and for this special case, it was possible to
calculate the global optimal solution. For more complex em-
bodiments, the objective function becomes more difficult to
handle, having multiple local minima. An approach considering
postural synergies is presented in [19]. The number of in-hand
rigid-body object motions depends on the number of synergies
(defined as basis vectors of a linear subspace) driving the hand.
It was shown that an increased number of synergies results in
more movements and forces being controllable. The proposed
analysis is a good tool for estimating how complex a hand has to
be in order to achieve a desired degree of dexterity. Nevertheless,
this tool is limited to linear subspace analysis and, therefore, to
linear joint couplings.

A framework for testing of underactuated hands is presented
in [20] and [16], where the ability of different kinematic se-
tups to perform pinch or power grasp is assessed. The system
determines the hand’s ability to stably grasp moving cylindri-
cal objects, as well as the grasp resistance to external forces.
However, the system is used to evaluate a symmetrical gripper,
where all axes are parallel. It is not clear how the system could
be applied to more anthropomorphic hands, where the joint axes
are not parallel, which is particularly important for the thumb.

Using the tendon-driven Anatomically Correct Testbed
(ACT) hand, [21] investigates how tendon coordination pat-
terns influence the positional precision of the hand. The de-
crease in precision is measured after tying various tendons to
the same actuator. A small reduction in actuators is possible
without large penalties on the fingertip precision. The metamor-
phic hand [22]–[24] also relies on the kinematic analysis of the
hand movements in order to improve the overall design. The
main objective is to assess the effects of a reconfigurable palm
to the overall hand functionality. The methodology is mainly
focused on hands rather different to the human, but it provides
some basic principles that can be considered in the anthropo-
morphic hand design. Finally, the authors in [1] assess how
different types of robotic hand components affect the tradeoff
between robustness to clutter and grasp stability.

In the prosthetic hand design, being able to control dexter-
ous hands with only a few signals is crucial due to the lim-
ited bandwidth of human-hand interfaces. The design of those
interfaces is the major bottleneck in prosthetic hands nowa-
days [25], and none of the proposed methods have been proved
to be sufficiently reliable for commercial applications [26]. In
addition, hand weight and reliability are key factors of user
acceptance [27].

In summary, determining the quality of a hand design and as-
sessing the effect of different parameters on the resulting func-
tionality is difficult and remains an open problem. The work
presented in this paper provides a methodology for comparison
as well as a publicly available benchmark data. In the following
section, we provide the details of the proposed methodology.

III. SYSTEM DESCRIPTION AND METHODOLOGY

We first define the term action manifold A that represents
all the postures (or a chosen subset) that a hand can reach.
For example, we may generate an action manifold that repre-
sents all three-fingered grasps for a hand. To compare different
hand kinematic designs, we generate different actions mani-
folds, both for human and artificial hands. We define a hand
configuration via the specification of its fingertip poses in the
corresponding fingertip space. Although the dimensionality of
the representation space is rather high, the actual dimensional-
ity of the fingertip data is lower since it occupies only a small
portion of the representation space. The objective is then to use
the action manifold, represented in fingertip space, for defining
a metric for evaluation of similarity between different hands.

We present the basic idea of the approach in Fig. 1. The figure
shows a hypothetical visualization of the fingertip space, and the
idea of its use for assessing the similarity between three hands.

Let us assume that “Hand 2” represents the space populated
by typical human hand motions, while “Hand 1” and “Hand
3” represent the motions generated by two other five-fingered
kinematic hand structures. The aim of our approach is to estimate
the intersection between the volumes spanned by two hands, i.e.,
to estimate which postures both hands are capable of achieving.
In the case of comparing a human and an artificial hand, the
degree of overlap can reveal the level of anthropomorphism
of the artificial hand. This overlap is expressed via the AI. In
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Fig. 1. Hypothetical visualization of the fingertip space and the embedded
action manifolds. Depending on the kinematic structure of the hand, the shape
of the action manifold differs.

summary, the comparison is addressing primarily the kinematic
behavior of the hands.

Comparing the occupancy space associated with different
hands is difficult as we do not know the actual density of the
data, but only have access to point estimates. Thus, we need to
model the associated density of the data corresponding to each
hand. Comparing such high-dimensional data is computation-
ally expensive, but we can exploit the lower dimensionality of
the action manifold when modeling the density. To that end, we
use a probabilistic dimensionality reduction approach, which
finds a parameterization of the density approximation using a
single low-dimensional latent variable.

A. System Overview

The first step is to generate an action manifold for a human
hand. To make the comparison and visualization feasible, the
manifold spanned by the human hand motion is projected onto
a lower dimensional space. This projection is performed us-
ing a nonlinear dimensionality reduction. All possible fingertip
configurations of an artificial hand are then projected onto that
low-dimensional space. One example of this mapping is shown
in Fig. 2 as step 4. Overall, the system consists of the following
steps shown in Fig. 2.

1) Human data generation: First, a dataset of human grasp-
ing movements is generated. These movements define the
benchmark action manifold for further comparison. De-
tails are presented in Section V-A.

2) Dimensionality reduction: Nonlinear dimensionality re-
duction is used to project the high-dimensional manifold
to a lower dimensional space suitable for visualization and
comparison. Details are given in Section IV-A.

3) Artificial hand dataset: Similar to the human dataset, a
dataset of the artificial hand movements is generated based
on its forward kinematics.

4) Projection: This dataset is projected onto the low-
dimensional space spanned by the human data. The pro-
jection of artificial hands is presented in Section VII.

5) Comparison: The overlap between the manifolds is eval-
uated in the lower dimensional space. In order to quantify
the overlap, we created an overlap measure, i.e., the AI,
as explained in Section V-D.

Fig. 2. System overview: The recorded human hand movements (1) are pro-
jected onto a 2-D space using nonlinear dimensionality reduction (2). The
movements of an artificial hand (3) are then projected to that space (4), and the
overlap is used as the basis for comparison (5).

IV. NONLINEAR DIMENSIONALITY REDUCTION

To obtain the lower dimensional representation for compar-
ison, we make use of state-of-the-art nonlinear dimensionality
reduction techniques. The first reason for the choice of these
techniques stems from the fact that the hand data are highly
nonlinear. The second reason is that these techniques, as it will
be discussed in the next section, provide the possibility of not
only encoding the data in a lower dimension but to provide
a likelihood measure as well. Finally, the employed technique
gives us the possibility of encoding the high-dimensional data in
a compact low-dimensional manner suitable for the comparison.

A. Gaussian Process Latent Variable Models (GP-LVM)

The technique we employ is Gaussian process latent variable
model (GP-LVM), which is a generative dimensionality reduc-
tion model. Let D denote the dimension of the data space and
q the dimension of the low-dimensional latent space. Given N
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observations in the fingertip space T, the matrix containing
the data points is denoted Y ∈ RN ×D , and the matrix of the
corresponding points in the latent space is X ∈ RN ×q . The ith
observation in the fingertip space is denoted as yi ∈ R1×D and
in the latent space xi ∈ R1×q , respectively. Assuming that the
observed data have been generated through a functional map-
ping with additive Gaussian noise

yi = f(xi) + ε (1)

where ε ∼ N (0, σ−2I), the likelihood P (Y|f) of the data can
be formulated. The underlying idea of the model is to place
a Gaussian process (GP ) prior over the generative mapping
f . Combining this with the likelihood and integrating out the
mapping leads to the marginal likelihood of the data

P (Y|X, θ) =
D∏

j=1

1

(2π)
N
2 |K| 1

2
e−

1
2 ȳT

j K−1 ȳj (2)

where ȳj ∈ RN ×1 is the jth column of the data matrix Y. The
probability is calculated as the product of D independent Gaus-
sian processes, each responsible for one dimension of the data
space. The covariance matrix K defines the notion of similarity
between points xi and xj , and is constructed using a kernel
function with the hyperparameters θ. Here, K takes the form of
an RBF (radial basis functions) kernel combined with bias and
white noise terms

k(xi ,xj ) = e−
γ
2 (x i −xj )T (x i −xj ) + σb + σnδij . (3)

The solution to the latent locations and the hyperparameters of
K can be found by iteratively maximizing (2).

Back Constraints: In its basic form, the GP-LVM does not
guarantee the existence of a smooth inverse to the generative
mapping [28]. However, this can be incorporated into the model
by representing the latent locations xi in terms of a smooth
parametric mapping gj from the observed data yi :

xij = gj (yi , a) =
N∑

n=1

ajnkbc(yi ,yn ) (4)

where kbc is the back constraint kernel. This implies that the
maximum likelihood solution of the parameters a rather than
the latent locations are sought. This is referred to as a back-
constrained GP-LVM [28]. In addition to constraining the latent
location to preserve the local smoothness of the observed data,
previously unseen data can be projected onto the latent space in
an efficient manner by pushing them through this back mapping.
We use an RBF kernel of the following form:

k(yi ,yj ) = e−
γ
2 (y i −yj )T (y i −yj ) (5)

where the inverse kernel width γ controls the smoothness of
the function. When projecting previously unseen points to the
latent space, a sum over all contributions of the points from the
training data is calculated.

B. Representation of Rotation

The data involve 3-D position and orientation of the finger-
tips. This data will be interpreted as high-dimensional vectors

Fig. 3. Euclidean distance between rotation matrices R and R′ interpreted as
9-D vectors. The vectors correspond to the directions defined by the columns of
the rotation matrices. An orientation R is rotated 30◦ around its z-axis to obtain
R′. The corresponding distance between the orientations is the Euclidean norm
of a vector composed by the distances dx , dy , and dz between each of the axis
normal vectors.

and compared in an Euclidean way by GP-LVM. While the rep-
resentation of position data is straightforward, a representation
of rotation in which the Euclidean norm reflects similarity is less
obvious. We shortly review the different ways of representing
the rotation.

Euler angles employ only three parameters. The main draw-
back is the nonsmoothness of the representation and the exis-
tence of the singularities (gimbal lock) [29]. Thus, comparing
directly the Euler angles as 3-D vectors is not appropriate.

Quaternions use four parameters, and the representation is
compact, smooth and has no singularities [29]. The main draw-
back is that the Euclidean distance does not always reflect the
similarity. Namely, the signs of the components of the quater-
nion can be inverted without affecting the transformation matrix
[30, p. 162]. Therefore, the quaternion q = (e0 , e1 , e2 , e3) rep-
resents the same rotation as q′ = −q = (−e0 ,−e1 ,−e2 ,−e3).
The Euclidean distance between such a pair of quaternions is
‖q − q′‖ = ‖2q‖ = 2, as quaternions are normalized ‖q‖ = 1.

Rotation matrices use a 3 × 3 matrix, which uniquely defines
the orientation of an object at the cost of introducing additional
dimensions. The columns of the rotation matrix can be seen
as points whose position vectors correspond to an axis of the
rotated system (see Fig. 3). This means that the Euclidean dis-
tance of their displacement varies smoothly with that of the
orientation, implying that the representation encodes the simi-
larity we seek. By concatenating the rotation matrix R as a point
r ∈ R9×1 , the Euclidean norm of the corresponding vector will
encode how similar two rotations are

R =

⎛

⎝
x0 y0 z0
x1 y1 z1
x2 y2 z2

⎞

⎠

r = (x0 , x1 , x2 , y0 , y1 , y2 , z0 , z1 , z2)T (6)

‖r − r′‖=

(
2∑

i=0

(xi − x′
i)

2 +
2∑

i=0

(yi − y′
i)

2 +
2∑

i=0

(zi − z′i)
2

) 1
2

= (d2
x + d2

y + d2
z )

1
2 . (7)

Thus, only the rotation matrix suits our need.
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Fig. 4. Sensor placement and coordinate system definition for the recording
of the human grasping data: (a) Sensors on the fingertips and the dorsum of the
hand. (b) Example posture for grasp number 2. (c) and (d) Coordinate system
definition for the reference and fingertip sensors. Both are aligned with the
anatomical directions.

C. Pose Representation

As shown in the previous section, the Euclidean distance
between the components of the rotation matrix effectively re-
flects similarity in orientation. However, in order to apply the
GP-LVM approach, we need to compare, in a Euclidean man-
ner, the different poses (position and orientation). To compare
poses using an Euclidean norm, we need to make sure that the
relative scale of each dimension corresponds to similar “distor-
tions” in terms of pose. To that end, we independently transform
the dimensions of the parameter space such that each possible
configuration is contained within a hypercube. This has the im-
plication that we consider a translation of the length of a hand
to correspond to a rotation of π radians. Smaller rotations and
translations are scaled accordingly. By bounding the parameter
space to a hypercube, we effectively encode an invariance to
different hand sizes.

V. DATA GENERATION AND ENCODING

A. Human Action Manifold

To obtain a representative human action manifold, human
grasping data were recorded. The focus was put on one-handed
static grasps, based on measurements of five subjects (three
males and two females). All subjects were right handed and did
not report any hand disabilities. The average hand length and
width were 185.2 mm × 81.1 mm, with standard deviations of
13.3 and 7.4 mm. The hand measurements were in accordance
with the protocol provided in [31]. A Polhemus Liberty system
with six magnetic sensors was used to record the data. The
spatial and angular resolution of each sensor is 0.8 mm and
0.15◦, respectively. A sensor was applied to the nail of each
fingertip. An additional sensor was placed on the dorsum of the
hand as a reference. See Fig. 4(a) for how the markers were
applied to the hand. The subjects were asked to perform 31
different grasp types described in [32] on an object typical of

each action. Initially, the hand was placed flat on the table next
to the object to be grasped. Upon a start signal, the subject had
to grasp the object with the desired grasp type, lift the object
[this moment is shown in Fig. 4(b)], replace it, and return the
hand to the starting position.

The data recording started when the hand began to move and
ended when the hand has returned to the initial position. Each
grasp type was performed twice. The second trial is used for
training and the first for testing (see Section VI-B). The finger-
tip sensors were transformed into the coordinate system of the
reference sensor in order to remove global hand movement. The
resulting dataset consists of 4650 data points (30 samples of
each grasp trajectory × 31 grasp types × 5 subjects). Each fin-
gertip is described by a 12-D vector (three encoding positions,
nine rotations). Focusing on five-fingered hands, the vector rep-
resenting one hand configuration has 5 × 12 = 60 elements. By
selecting a different reference dataset, we can prioritize certain
capabilities of the robot hand by deciding which actions/grasps
are important. For example, if only very small objects are to be
manipulated, then there may be no need to include big objects
since it would promote hands with power grasp capabilities.

B. Robotic Action Manifolds

The action manifolds of the robotic hands are obtained via
kinematic hand models implemented in MATLAB. The joint
space of the hands is sampled and the corresponding fingertip
configurations are determined. The scaling and dimensionality
of the dataset is done in analogy to the human hand dataset—the
positions are normalized by the hand length, and the orientations
are transformed into rotation matrices. There is no strict rule on
how dense the sampling of the joint space has to be, but there is a
guideline. The inter-point distance of the latent space projection
should be smaller than the discretization of the latent space (i.e.,
the box length). A further increase of the density of the sampling
will not increase the AI as the boxes are already populated by
at least one point.

C. Low-Dimensional Space

To create the low-dimensional space, we use the MATLAB
FGPLVM toolbox [33]. We have previously shown that using
the GP-LVM model, a 2-D space is sufficient to encode the
variations in this data. To this end, we use a 2-D latent repre-
sentation [12]. In addition this is beneficial as it provides simple
means of generating intuitive visualizations. The appearance of
the latent space can be quite diverse, depending on the scal-
ing of the data and parameters of the GP-LVM. By systematic
variation of the GP-LVM parameters, 50 models were created,
and evaluated. As it will be presented in detail later, the models
are compared in terms of their ability to distinguish between
random hand models and the test set.

Regarding the human dataset, the subjects generate a similar
trajectory when they perform the same grasp type, allowing for
a calculation of the mean grasp trajectory. To gain an insight into
the structure of the space, Fig. 5 presents five such trajectories.
Depending on the grasp type, the final posture corresponds to a
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Fig. 5. Latent space representation of the grasping data. The trajectories cor-
respond to the average trajectory of five subjects performing selected grasps.
Each grasp type is located at a distinct area in latent space.

different location in the latent space. From the starting position
(in the center on the right side of the latent space), the subjects
proceed to the final grasping point (indicated by circles) and
then return back to the start position. There is a relationship
between the location in the latent space and the finger flexure.
A grasp on the left size of the latent space tends to be a grasp
where the fingers are flexed more. This trend is natural since
the starting posture is a flat hand, and as the fingers flex, the
difference to that posture increases, thus moving farther away
from the starting position.

D. Anthropomorphism Index

Once the movements of the artificial hand are projected onto
the latent space spanned by the human, the overlap between
those trajectories and the human-spanned manifold has to be
measured. Our approach is to discretize the latent space into a
regular grid and count how many cells are populated by a given
hand design.

An important parameter for the calculation is the width of
the cells, as we regard all points within one cell as being equal.
With equal we mean that if we vary the position within that
margin, then the resulting hand posture will only change to a
nonsignificant degree. As presented, each subject performed the
grasp types twice. The difference in the final grasp posture of
the hand of trial one and trial two can be regarded as being
irrelevant since both configurations resulted in a stable grasp.
Points belonging to the actual grasping poses of trial one and
two are projected onto the latent space, and the distance between
two corresponding points is averaged over all trials and subjects.
This gives a maximum distance dx and dy in x- and y-direction,
respectively, that can be regarded as being the same grasp. Those
lengths will define the resolution of the grid in latent space.

The GP-LVM models the mapping from the latent to high-
dimensional space using a Gaussian process. This mapping pro-
vides us a mean (prediction of the high-dimensional location
of the point) and a variance. The inverse of the variance, or

confidence, is related to how certain the model is when recon-
structing that point. The confidence c is scaled into the interval
[0, 1], where the white area in the latent space plots corresponds
to maximal confidence. In regions, where there are many data
points, the variance of the projection will be very low. Conse-
quently, the confidence will be close to 1. In sparse regions,
the confidence will fall off as the projection gets more un-
certain. A measure of the area of the human spanned latent
space ah can be calculated by summing the area of each cell
ab = dx · dy weighted by their corresponding confidence ci as
ah =

∑
i ci · ab . The projection of the artificial hand movements

discretized into m steps will result in a set of points p ∈ RM ×2

whose overlap ar will be calculated. This is done by summing
over all cells bi , which are populated by at least one point pk

ar =
∑

i

ab ·
{

ci, ∃pk ∈ bi

0, otherwise.
(8)

Finally ar can be set into a relation to the area of human spanned
space ah and the relative latent overlap can be calculated. The
ratio ar /ah

is multiplied by 100 to obtain a percentage value. We
refer to this value as AI. It shows what percentage of the human
dataset is covered by the robotic hand:

AI =
ar

ah
· 100. (9)

VI. EVALUATION OF THE LATENT SPACE

We seek a latent space, where the overlap between a human
and a nonanthropomorphic hand is minimal. In GP-LVM, we
can use different parameters to influence the structure of the
latent space. One of these parameters is the inverse width of
the back constraints kernel γ. As described in Section IV-A, the
projection from high to low-dimensional space is governed by
back constraints. In (5), we can observe that the ratio between
the distance between points ‖yi − yn‖ and the inverse width
1
γ determines the influence of different high-dimensional points
yn on the low-dimensional point xi .

Fig. 6(a) represents a situation in which the kernel width
is small compared with the interpoint distances. In this case,
the contribution of any external point becomes negligible. New
anthropomorphic data (white circles) will not be supported by
our latent representation in this case; thus:

1
γ
� ‖yi − yn‖ ⇒ ajne−

γ
2 (y i −yn )T (y i −yn ) ≈ 0, n �= i.

(10)
A large kernel width makes all points in the original space to
equally support any point in the latent space [see Fig. 6(c)],
no matter if they are anthropomorphic (white circles) or not
(crosses); thus:

1
γ
� ‖yi − yn‖ ⇒ ajne−

γ
2 (y i −yn )T (y i −yn ) ≈ 1,∀n. (11)

Our goal is to use a value of γ such that only those points that
correspond to anthropomorphic postures are taken into account
[see Fig. 6(b)]. As we cannot directly determine how well the
kernel width represents the manifold, we ensure that the chosen
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Fig. 6. Influence of kernel width on the discrimination between the test set
(empty dots) and the random hand set (crosses). The manifold (indicated by the
line) is sampled using data points from the training set (filled circles) and their
corresponding kernel width (circles). (a) Manifold is not represented properly
as the kernel width is too small to incorporate the training data. (b) Kernel width
supports the inclusion of the training data and exclusion of the random data.
(c) Kernel width is large and includes noninformative data.

width results in random models obtaining a very low AI, while
human grasping data obtain a very high AI.

A. Random Models

We want the resulting space to have the ability to discriminate
between human-like and nonhuman-like hands. Thus, when the
movements of a nonanthropomorphic hand are projected onto
the latent space, spanned by the human hand movements, the
AI should be minimal. This should occur even in the case of
high-dimensional nonanthropomorphic hand data, which might
have a large action manifold.

To test the behavior when projecting nonanthropomorphic
hand data, we create multiple random hand models. The random
models are created using random Denavit–Hartenberg parame-
ters with 3 DoF for each finger. Additionally, the positions and
orientations of the bases of the fingers are random; the relative
orientation of the fingertip coordinate frame to the kinematic
chain is random as well. Joint angles are selected randomly
from a 15-dimensional uniform distribution between 0 and 2π.
Overall, we take 20 000 random samples from the joint space
and calculate the corresponding fingertip poses. To model the

Fig. 7. If a random hand (a) is projected onto the latent space, then it covers
only a very small area of the human manifold (b). (a) A random hand model: Five
kinematic chains represent the fingers of the hand. (b) Projection of four random
hand models to the latent space, indicated by different colors. Magnified in the
top left corner.

hands, we use a MATLAB robotic toolbox [34], which allows
us to calculate the fingertip poses through forward kinematics.

Fig. 7(a) shows a typical representative of the set of random
hand models. By inspection, it becomes clear that this hand
setup is not anthropomorphic. If we project the movements of
four such random hands to the latent space [see Fig. 7(b)], then
we see that all the movements collapse into a very limited region
in the middle of the latent space. Hence, it is shown that the AI
of hands, which are nonanthropomorphic, is close to zero. The
model has the first desired property—artificial hands that are
different from the human do not have a large AI score.

B. Test Set

The aim of this section is to show that, given the correct
hand postures, all of the latent space can be covered with data
points. In order to verify this, we project the test set to the
latent space. The test set is similar to the training set as in both
cases the subjects succeeded in grasping the object with the
demanded grasp type. The only difference between the sets is
the variation introduced by the executions of the users. In Fig. 8,
the projection of the test set is shown. We observe that the test
points are scattered accordingly with the training set. Yet, due to
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Fig. 8. Projection of the test set data to the latent space; the points cover most
of the human spanned manifold (i.e., white area).

Fig. 9. The Otto Bock SensorHand R© Speed. (Left) The hand without the
covering glove, and (right) the glove that is put over the hand for protection of
the hand and for cosmetic reasons.

the width of the kernel, there is a “halo” around the points, which
increases the area Ah , and thus, the AI score of the training set
is 67%. This sets an upper bound for the maximal AI score that
artificial hands can achieve.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed methodology on two
prosthetic and one robotic hand. A short discussion is provided
for each hand, both regarding the data generation and compari-
son with the human hand.

A. Sensor Hand

The Otto Bock SensorHand R© Speed (SHS) [35] is a prosthetic
hand (see Fig. 9) with three actuated fingers, which are all driven
by the same motor. The mechanical structure is covered by a
glove, which is responsible for protecting the mechanics of the
hand and creating a more human-like appearance. The glove
also emulates the ring and the little finger, resulting in a five-
digit design. There is a metal bar within the glove which couples
fingers four and five to the movements of the middle finger. As
they are solely connected via the glove, the movement amplitude
decreases from middle to little finger. The forward kinematics
of the hand takes that into account by reducing the maximal
finger flexion of the ring and little finger. The finger angles αi ,
where i = 1 is the thumb, and i = 5 is the little finger, depend

Fig. 10. Projection of the fingertip movements of the Otto Bock SensorHand
to the latent space. The red points represent the trajectory of one open–close
cycle. The hand has an AI of 0.25%.

on the driving variable c, where c = 43◦ is hand closed, and
c = 0◦ is hand opened. Overall 100 equally spaced samples of
a were taken from that range. The corresponding finger flexion
angles αi are as follows: α1,2,3 = c, α4 =0.9·c, and α5 =0.8·c.
Fingertip poses are computed based on these flexion angles.
Their projection during one opening–closing cycle, which is all
the hand is capable of, is shown in Fig. 10. The hands’ AI is
0.25%. The trajectory is different to the projection of a random
hand [see Fig. 7(b)].

Overall, the SHS has some major differences from a human
hand. The position of the thumb is not anatomically correct;
it is basically rotated 180◦ so that it perfectly opposes the in-
dex and middle finger. Even though the positions of the thumb
fingertip are potentially correct, the orientations are not. The
human cannot orient the fingertip in such a way as the Sensor-
Hand does. Additionally, all finger MCP2 joints share the same
rotation axis. A more natural way would be to orient the axes
in such a way that the fingers are slightly abducted when the
MCP joint is extended. All those non-anthropomorphic features
combined are the reason why the latent space trajectory of the
hand is relatively short.

As we use hand models, the properties of the hand setup can
be changed easily, and the effect on the latent space overlap can
be analyzed. As an example, we actuate the five joints indepen-
dently, which are originally coupled in the SHS (the CMC 3 of
the thumb and the MCP joints of the fingers), conferring five
DoFs to the hand. The range of motion is the same as before,
and we take nine equally spaced flexion values for each joint.
Overall this creates 95 = 59 049 different hand postures, which
are projected to the latent space. The projection (see Fig. 11)
shows that increasing the dimensionality of the hand does not
change the latent space overlap much. The much more complex
hand has an AI of only 0.4%, which is a slight increase to the

2The metacarpophalangeal joint connects the metacarpus to the first pha-
langes (fingers) in the human hand.

3The carpometacarpal joint is the most proximal joint of the human thumb.
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Fig. 11. Projection of the fingertip movements of the 5 DoF “Otto Bock
SensorHand” onto the latent space. The hand has an AI of 0.4%.

Fig. 12. Otto Bock Michelangelo R© hand [36].

original SHS. Adding independent actuators proved to be a bad
choice for increasing the hand’s anthropomorphism.

B. Michelangelo Hand

The next generation of prosthetic hands by Otto Bock is the
Michelangelo R© hand [36] (see Fig. 12), with 2 DoF. The axes
of the finger MCP joints are oriented in a more natural way.
The fingers are slightly abducted when the MCP joints of the
fingers are extended, whereas when flexed, the fingertips adduct
and touch each other. The first DoF is the main drive, which
is responsible for a coordinated flexion and extension of the
five digits. The second DoF changes the thumb position—it can
be abducted or adducted. As the hand is still in development,
the exact control scheme of the hand has yet to be finalized.
Therefore, we used a current hand implementation that had the
following hand postures: 1) hand open for tripod pinch (OT); 2)
hand open for lateral pinch (OL); 3) neutral position (NP); 4)
tripod pinch (TP); 5) lateral pinch (LP).

The following movement trajectories between positions are
incorporated into the hand model: OT → TP, OL → LP, NP
→ OT, NP → OL, NP → TP. Each trajectory is sampled with
100 points, and the corresponding fingertip poses are projected
onto the latent space. Fig. 13 shows the projection of these
movements, where the colors indicate different trajectories.
Compared with the SensorHand, it can be observed that the
trajectories are much longer. Therefore, the hand achieves a

Fig. 13. Projection of the fingertip movements of the Otto Bock Michelangelo
Hand to the latent space. The AI of the hand is 2.8%.

larger AI of 2.8%. Even though the hand has very few DoFs,
its score is significantly larger compared with the SensorHand
speed.

The TP and LP are located on the left-hand side of Fig. 13,
whereas the hand is opened on the right side of the latent space.
In between is the NP with trajectories connecting it to OT,
OL, and TP. If the movements of the Michelangelo hand are
compared with the human grasp trajectories of Fig. 5, then it
can be observed that they also show a left–right dominance and
that the starting position is on the right side, whereas the grasp
positions are on the left. That can be regarded as a sign that not
only the hand is capable of covering larger areas in the human
manifold but that the movements themselves are human like as
well. The positions of the tripod pinch and the lateral pinch are
relatively close in latent space. That is due to the system roughly
weighting every finger the same. As the poses of four of the five
digits are nearly identical (in the lateral pinch the fingers flex a
little bit more), it is plausible that the projections in the latent
space are similar.

As already demonstrated with the SensorHand, we theoreti-
cally increased the complexity of the hand by assigning the hand
5 DoF—the flexion of each digit is actuated independently. As
the thumb has an additional DoF (abduction/adduction), this
value had to be specified as well. It was set into the intermediate
rest position. Changing the value of this joint does not affect the
results to a large degree.

The range of motion from each digit is sampled with nine
angles, resulting in the same number of points as in the SHS
case. The resulting AI is 7.9%, which is considerably more than
the 2.8% the original hand has. Thus, introducing additional
DoFs is a suitable way to equip the hand with more kinematic
capabilities that resemble the human hand. If we observe the
projection of the 5 DoF Michelangelo in Fig. 13, then we see
that the extreme position in the right–left direction corresponds
to the open and the grasp position, respectively. All movements
of the original Michelangelo lie beneath the line connecting
those two positions and have very roughly a triangle shape. The
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Fig. 14. Projection of the virtual 5-DoF Michelangelo hand to the latent space.
The red points represent the area the hand can reach, and it results in an AI of
7.9%.

Fig. 15. FRH-4 hand [37].

movements of the 5-DoF hand overlap an additional space above
that triangle. The top point in the projection in Fig. 14 corre-
sponds to a hand position, where the index finger is extended,
but the other fingers are flexed, and the thumb is in moderate
flexion. The ability to individually flex fingers is important to
reach new areas in the latent space. That is a difference with the
SensorHand, where the introduction of finger individualization
does not influence substantially the latent space overlap.

C. FRH-4 Hand

As an example of a hand with many independent DoFs, we
use the FRH-4 hand [37] built for the mobile-assisting robot
ARMAR. With eight independent fluidic actuators, it has a much
more complex actuation system than the two prosthetic hands
described in the previous sections. Its general appearance (see
Fig. 15) is supposed to be human like; it has a size that is
comparable with the human hand, and the kinematic setup has
some similarities. One design goal of the hand was to be an-
thropomorphic, but another goal was to develop a hand which
is suitable for robotic grasping. To meet the second design ob-
jective, a tradeoff on the anthropomorphism had to be accepted.
One major difference is in the palm setup—the FRH-4 hand has
one DoF in the metacarpus, which allows the palm to flex in
the middle. The human hand does not share this as the palm is
rigid in the longitudinal direction. Fig. 15 shows the palm joint
in a flexed position, whereas in the extended position the fingers

Fig. 16. Projection of the FRH-4 hand. It has an AI of 5.2%.

would point to the upper right corner of the picture. The index
and the middle finger both have 2 DoF, one joint represents the
MCP joint of the human, and the other one is in between the
proximal interphalangeal (PIP) and distal interphalangeal (DIP)
joints. The ring and little fingers have one combined DoF, that
is, a common flexion in the MCP joint. All joint axes of the
fingers are parallel and the finger segment lengths are 40 mm.
The thumb has two actuators, which actuate the CMC joint and
the joint between the MCP and IP (interphalangeal) joint of the
thumb. The base of the thumb is exactly opposing the index and
the middle fingers. This setup is very similar to the SensorHand
and substantially different from the human hand, where the axes
of the thumb are not aligned with the axes of the fingers.

Each of the eight DoFs has a range of 90◦, and to calculate
all hand configurations, we took four samples from each of the
joint workspaces. Each joint can be flexed by {0◦, 30◦, 60◦,
90◦}, and due to the high dimensionality of the hand, this leads
to a total number of 48 = 65 536 hand configurations. Further
increasing the number of samples would require prohibitively
large computational times.

As the kinematic structure makes it difficult to define where
the hand length could be measured (which is used for scaling the
positions prior to projecting to the latent space), we performed
a parameter sweep through all possible hand lengths and then
determined the hand length with the maximal overlap. This
length was assumed to be the correct hand length, and the results
corresponding to that length are given. The resulting hand length
of the FRH-4 hand is 25 cm, which is larger than the maximal
human hand length of about 21.15 cm [31]. The width of the
FRH-4 hand is 9.3 cm [37], which is comparable with the hand
width of a large human hand [31]. The calculated hand length is
slightly too large given the hand width, but due to the different
kinematic setup to the human hand, that difference is acceptable.
For the prosthetic hands presented in the paper, the hand length
did not have to be calculated, as there is information on the size
available.

The projection of the hand with the determined hand length of
25 cm is shown in Fig. 16. The AI is 5.2%. Compared with the
large number of actuators, this is a relatively low value, given
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that the Michelangelo hand with only 2 DoF already has an AI
of 2.8%. As described above, the hand has some features which
are not anthropomorphic, which explains the reduced score. In
Fig. 16, we observe that the outermost points are slightly isolated
from the rest. In order for the method to work correctly, the in-
terpoint distance between neighboring points should be smaller
than the box size. That is not the case here. Consequently, the
sampling is not dense enough; thus, potentially only a few points
are located at the intersection with the human action manifold.
If we had increased the number of hand configurations, then we
would have been able to further increase the overlap as those
points would no longer be isolated. To test how much larger the
overlap could be, we exchanged how to obtain the joint values.
Instead of a systematic variation of the joint angles, we sampled
the joint space with 60 000 random points and calculated the
corresponding overlap for five such sets. The result was an AI
of 9.2 ± 0.25%. The different sampling method increased the
overlap but is still small when compared with the human hand.
For the SensorHand and the Michelangelo Hand, this resam-
pling was not necessary as their joint space could be sampled
densely enough.

VIII. DISCUSSION AND CONCLUSIONS

An important goal in the design of new robotics and prosthetic
hands is to achieve high dexterity with minimum actuation. In
this paper, we have presented a methodology for measuring the
similarity between human and artificial hand motion capabili-
ties. The similarity is determined by the definition of the AI.
We concentrated on evaluating the capability of the artificial
hands to produce human-like grasping motions. The evaluation
is made based on human hand motion data generated with five
test subjects. Similarly, artificial hands data are generated by
sampling the joint space and calculating the corresponding fin-
gertip poses via forward kinematics. The main contribution of
our study is the development of a metric for performing the
comparison based on state-of-the-art methods for nonlinear di-
mensionality reduction.

One advantage of our approach is that it offers flexibility
with respect to the hands that can be tested. The hands can have
an arbitrary kinematic structure and the joint couplings can
be complex. The method can easily be used for other similar
purposes: It only requires to generate a new underlying dataset.
For example, if one wants to emphasize precision grasps, then
one could record humans grasping a variety of small objects. The
AI evaluates an important aspect of the hand capabilities—its
kinematics. There are also other parameters that are of relevance
such as speed, precision, and force. Further inclusion of the hand
dynamic capabilities may provide a more complete analysis.

There are lessons learned in terms of the employed method-
ology. As the interpoint distances on the human manifold have
a certain average value, the kernel width has to compensate for
this. If this is not taken into account, then the manifold cannot be
represented properly as there may be holes where the projection
is not supported by data. This defines a minimal kernel length
which can represent the manifold properly, as well as introduces
a minimal selectivity perpendicular to the manifold. The sam-

pling rate of the human dataset can be increased in order to
improve the selectivity but at the cost of higher computational
complexity. As there are no objects involved in assessing the
anthropomorphic hand structures, passive compliance and un-
deractuated hands cannot be implemented directly. Interaction
with an object is needed to determine how the fingers wrap
around it. In order to analyze hands with passive compliance, a
workaround can be used by sampling the passive joints as well.

The experimental evaluation shows that hands with as lit-
tle as two actuators (like the Michelangelo hand) are able to
populate significant proportions of the latent space of the low-
dimensional human hand movements. Several studies [9], [38]
have shown that human hand movements can be described in a
linear subspace of fewer than eight dimensions. According to
those studies, having a hand with eight DoFs or less should be
sufficient to cover most of the human hand movement.

In general, the tested hands covered an area with an overlap of
less than 10%; thus, the hands had significant limitations com-
pared with the human hand. Some of the hands are not able to
fully extend and flex the fingers due to rigid fingers (SensorHand
and Michelangelo), having joint axes that are not well aligned
with the movement axis of the human hand (SensorHand and
FRH-4 Hand) or having a range of motion in the joints that is
lower than the humans (SensorHand and Michelangelo). Those
are the reasons for the reduced overlap, and the goal for the
future is to overcome these limitations with as little effort (ac-
tuators, joints, etc.) as possible.

In the future, we will perform parameter studies to determine
the influence of design parameters on the AI. This will pro-
vide insights into the relationship between kinematic elements
and their influence on motion capabilities. The final goal is not
only to change the parameters but to find the optimal kinematic
structure with respect to the proposed AI.
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