Časopis pro pěstování matematiky

Vladimír Baláž; Jaroslav Koča; Vladimír Kvasnička; Milan Sekanina A metric for graphs

Časopis pro pěstování matematiky, Vol. 111 (1986), No. 4, 431--433
Persistent URL: http://dml.cz/dmlcz/118290

Terms of use:

© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

A METRIC FOR GRAPHS*)
Vladimír Baláž, Bratislava, Jaroslay Koča, Brno, Vladimír Kvasníčka, Bratislava, Milan Sekanina, Brno
(Received June 20, 1984)

1. The purpose of this communication is to use the concept of maximal common subgraph for defining a distance (with properties of the metric) between graphs. The approach presented here was initially stimulated by our recent studies on the mathematical model of organic chemistry [1], where we have dealt very often with "measuring similarity" of graphs. A special kind of the distance has been reported in this journal by Zelinka [2]; his approach is entirely based on the number of vertices in both compated graphs and does not reflect in an explicit way their edges.
2. A graph $G=(V, E)$ consists of a non-empty finite vertex set V and an edge set E. The graphs considered in the present paper may be, in general, directed or undirected, multiple edges and loops are permitted. A subgraph G^{\prime} of the graph G is a graph obtained from G by deleting subsets of its vertices and edges, $G^{\prime} \subseteq G$. Two graphs G_{1} and G_{2} are isomorphic, $G_{1} \sim G_{2}$, if there exists a $1-1$ correspondence between the vertices of one and the vertices of the other such that the adjacent pairs of vertices in one graph are mapped only to adjacent pairs in the other. A common subgraph of two graphs G_{1} and G_{2} consists of a subgraph $G_{1}^{\prime} \subseteq G_{1}$ and a subgraph $G_{2}^{\prime} \subseteq G_{2}$ such that $G_{1}^{\prime} \sim G_{2}^{\prime}$. A maximal common subgraph (MCS) of two graphs is the common subgraph which contains the largest possible number of edges. Recently, McGregor [3] has suggested a back-track searching algorithm for the construction of MCS of two graphs.
3. Let us consider two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, and let $G_{1}^{\prime}=$ $=\left(V_{1}^{(1,2)}, E_{1}^{(1,2)}\right) \subseteq G_{1}$ and $G_{2}^{\prime}=\left(V_{2}^{(1,2)}, E_{2}^{(1,2)}\right) \subseteq G_{2}$ be the MCS. Since the subgraphs G_{1}^{\prime} and G_{2}^{\prime} are isomorphic, $G_{1}^{\prime} \sim G_{2}^{\prime}$, the cardinalities of the vertex and the edge subsets, respectively, must be the same, $\left|V_{1}^{(1,2)}\right|=\left|V_{2}^{(1,2)}\right|$ and $\left|E_{1}^{(1,2)}\right|=$ $=\left|E_{2}^{(1,2)}\right|=\max$. The subset $E_{1}^{(1,2)}$ is mapped onto the subset $E_{2}^{(1,2)}$ by a $1-1$ function (induced by the isomorphism) $f_{12}, f_{12}: E_{1}^{(1,2)} \rightarrow E_{2}^{(1,2)}$ or $f_{12}\left(E_{1}^{(1,2)}\right)=$ $=E_{2}^{(1,2)}$. A distance between graphs G_{1} and G_{2} is determined by
*) Part VIII in the series Mathematical Model of Organic Chemistry.

$$
\begin{align*}
d\left(G_{1}, G_{2}\right) & =\left|E_{1}-E_{1}^{(1,2)}\right|+\left|E_{2}-E_{2}^{(1,2)}\right|+\left|\left|V_{1}\right|-\left|V_{2}\right|\right|= \tag{1}\\
& =\left|E_{1}\right|+\left|E_{2}\right|-2\left|E_{1}^{(1,2)}\right|+\left|\left|V_{1}\right|-\left|V_{2}\right|\right| .
\end{align*}
$$

In particular, for graphs with the same number of edges, this distance corresponds to the number of edges that cannot be matched in the construction of MCS of two graphs G_{1} and G_{4}.

Theorem. The distance $d^{\prime}\left(G_{1}, G_{2}\right)$ is a metric, the following three properties are satisfied:
(i) Positive semidefiniteness

$$
d\left(G_{1}, G_{2}\right) \geqq 0 \quad\left(=0 \text { only for } G_{1} \sim G_{2}\right) .
$$

(ii) Symmetry

$$
\left.d^{\prime}\left(G_{1} G_{2}\right)=d_{1}^{\prime} G_{2}, G_{1}\right) .
$$

(iii) Triangular inequality

$$
\left.d\left(G_{1}, G_{2}\right)+d_{1}^{\prime} G_{2}, G_{3}\right) \geqq d\left(G_{1}, G_{3}\right) .
$$

Proof. The first two properties of the distance (1) are obvious. Using (1) and its analogues for the two pairs of graphs G_{2}, G_{3} and G_{1}, G_{3} we get

$$
\begin{align*}
& d\left(G_{1}, G_{2}\right)+d\left(G_{2}, G_{3}\right)-d\left(G_{1}, G_{3}\right)= \tag{2}\\
& =2\left(\left|E_{2}\right|+\left|E_{1}^{(1,3)}\right|-\left|E_{2}^{(1,2)}\right|-\left|E_{2}^{(2,3)}\right|\right)+ \\
& \quad+\left|\left|V_{1}\right|-\left|V_{2}\right|\right|+\left|\left|V_{2}\right|-\left|V_{2}\right|\right|-\left|\left|V_{1}\right|-\left|V_{3}\right|\right|= \\
& =2\left(\left|E_{2}-E_{2}^{(1,2)} \cup E_{2}^{(2,3)}\right|+\left|E_{1}^{(1,3)}\right|-\left|E_{2}^{(1,2)} \cap E_{2}^{(2,3)}\right|\right)+ \\
& \quad+\left|\left|V_{1}\right|-\left|V_{2}\right|\right|+\left|\left|V_{2}\right|-\left|V_{3}\right|\right|-\left|\left|V_{1}\right|-\left|V_{3}\right|\right|,
\end{align*}
$$

where we have used $|A|-\left|B_{1}\right|-\left|B_{2}\right|=\left|A-B_{1} \cup B_{2}\right|-\left|B_{1} \cap B_{2}\right|$ for $B_{1}, B_{2} \subseteq$ $\subseteq A$. The term $\left|\left|V_{1}\right|-\left|V_{2}\right|\right|+\left|\left|V_{2}\right|-\left|V_{3}\right|\right|-\left|\left|V_{1}\right|-\left|V_{3}\right|\right|$ is automatically positive semidefinite, which follows immediately from the well-known inequality $|a-b|+|b-c| \geqq|a-c|$. Hence, in order to prove the triangular inequality it is sufficient to verify only the positive semidefiniteness of the term $\mid E_{2}-E_{2}^{(1,2)} \cup$ $\cup E_{2}^{(2,3)}\left|+\left|E_{1}^{(1,3)}\right|-\left|E_{2}^{(1,2)} \cap E_{2}^{(2,3)}\right|\right.$. If the subsets $E_{2}^{(1,2)}$ and $E_{2}^{(2,3)}$ are disjoint, then the triangular inequality is fulfilled. Let us assume that the intersection $E_{2}^{(1,2)} \cap$ $\cap E_{2}^{(2,3)}$ is a non-empty subset of E_{2}. Using the mappings f_{12}^{-1} and f_{23} we can form two subsets $f_{12}^{-1}\left(E_{2}^{(1,2)} \cap E_{2}^{(2,3)}\right)=\tilde{E}_{2} \subseteq E_{2}$ and $f_{23}\left(E_{2}^{(1,2)} \cap E_{2}^{(2,3)}\right)=\tilde{E}_{3} \subseteq E_{3}$ with the same cardinality, $\left|\tilde{E}_{2}\right|=\left|\tilde{E}_{3}\right|$. The subset \tilde{E}_{1} can be mapped onto the subset \tilde{E}_{3} by a 1-1 function $f_{13}=f_{12} \circ f_{23}, \tilde{E}_{3}=f_{13}\left(\tilde{E}_{1}\right)=f_{23}\left[f_{12}\left(\tilde{E}_{1}\right)\right]$. This means that we have formed a common subgraph of the graphs G_{1} and G_{3}, composed of the edge subsets \tilde{E}_{1} and \tilde{E}_{3}, respectively. Since the MCS of the graphs G_{1} and G_{3} contains $\left|E_{1}^{(1,3)}\right|=\left|E_{3}^{(1,3)}\right|=$ max edges, we have

$$
\begin{equation*}
\left|E_{1}^{(1,3)}\right| \geqq\left|\tilde{E}_{1}\right|=\left|\tilde{E}_{3}\right|=\left|E_{2}^{(1,2)} \cap E_{2}^{(2,3)}\right| \tag{3}
\end{equation*}
$$

Inserting this relation into (2) we arrive at the triangular inequality, which was to be demonstrated.
4. Let us consider a pair of graphs G_{1} and G_{2} composed of the same number of vertices, $\left|V_{1}\right|=\left|V_{2}\right|=n$. Following McGregor [3], the construction of MCS is carried out in such a way that (using a back-track searching algorithm) we look for a 1-1 mapping of V_{1} onto V_{2} such that the induced common subgraph is composed of the largest possible number of edges. Let \boldsymbol{A}_{1} and \boldsymbol{A}_{2} be the adjacency matrices of G_{1} and G_{2}, respectively. The above mentioned $1-1$ mapping may be simply realized by a permutation P of n objects $(1,2, \ldots, n)$. This directly implies that the second alternative definition of distance for a pair of graphs (with the same number of vertices) is

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\min _{\mathbf{P}}\left|A_{1}-P^{\mathrm{T}} \boldsymbol{A}_{2} P\right| \tag{4}
\end{equation*}
$$

where $|\mathbf{A}|=\sum_{i \leq j}\left|a_{i j}\right|$ is the Hamming (linear) norm of a symmetric matrix \boldsymbol{A}. The relation (4) is nothing elese than our determination of the so-called chemical distance [1] between two graphs representing molecular structure formulas.

Acknowledgment. We wish to express our thanks to Dr. Michal Sabo for his critical reading the manuscript and pointing-out some inconsistencies.

References

[1] V. Kvasnička, M. Kratochvil, J. Kǒ̌a: Reaction Graphs. Collect. Czech. Chem. Commun. 48 (1983) 2284.
[2] B. Zelinka: On a Certain Distance Between Isomorphism Classes of Graphs, Čas. pěst. mat. 100 (1975) 371.
[3] J. J. McGregor: Backtrack Search Algorithm and the Maximal Common Subgraph Problem. Software Pract. Exper. 12 (1982) 23.

Authors' addresses: V. Kvasnička, V. Baláž, 81237 Bratislava, Jánská 1 (Katedra matematiky, Chemickotechnologická fakulta SVŠT), M. Sekanina, J. Koča, 60237 Brno, Janáčkovo nám. 5 (Katedra matematiky, Přírodovědecká fakulta UJEP).

