
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2008, Article ID 862015, 12 pages
doi:10.1155/2008/862015

Research Article

A Metric Multidimensional Scaling-Based Nonlinear Manifold
Learning Approach for Unsupervised Data Reduction

M. Brucher,1, 2 Ch. Heinrich,1 F. Heitz,1 and J.-P. Armspach2

1 Laboratoire des Sciences de l’Image, de l’Informatique et de la Télédétection, LSIIT, UMR 7005, CNRS-Université Louis Pasteur,
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Manifold learning may be seen as a procedure aiming at capturing the degrees of freedom and structure characterizing a set of
high-dimensional data, such as images or patterns. The usual goals are data understanding, visualization, classification, and the
computation of means. In a linear framework, this problem is typically addressed by principal component analysis (PCA). We
propose here a nonlinear extension to PCA. Firstly, the reduced variables are determined in the metric multidimensional scaling
framework. Secondly, regression of the original variables with respect to the reduced variables is achieved considering a piecewise
linear model. Both steps parameterize the (noisy) manifold holding the original data. Finally, we address the projection of data
onto the manifold. The problem is cast in a Bayesian framework. Application of the proposed approach to standard data sets such
as the COIL-20 database is presented.
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1. INTRODUCTION

Data reduction consists in parameterizing a set of high-
dimensional data with a set of reduced coordinates and
mapping the original space to the reduced one and vice versa.
The (noisy) data are assumed to lie close to a nonlinear
manifold whose intrinsic dimension is the dimension of the
reduced space. Usual goals of data reduction are visualization
(as a scatter plot of the reduced data with labels from the
original data, in order to get insight into the structure of
the data), data understanding (the degrees of freedom are
given a physical interpretation, such as pose angle or lighting
intensity), classification (classification is more robust when
considering the reduced space, especially in a nonlinear
reduction framework), denoising, and the computation of
means. Applications are face-recognition, character recogni-
tion, and shape analysis, to mention a few examples.

Manifold learning may be addressed in a more formal
way. The goal is to determine, for each yi on the manifold,
a reduced variable x̂i, an approximation error ε̂i, and a map-
ping f such that yi = f(x̂i)+ ε̂i. To tackle the undetermination
of this problem (f and the x̂i’s are both unknown), the
hypothesis that f preserves distances is introduced. Hence,

the data structure in the original space is preserved in the
reduced space. Consequently, the mapping f is determined
up to an isometry, which has no practical influence on the
goals of manifold learning. Although higher-order models
could be considered, we will consider here piecewise linear
mappings. The x̂i’s and f will be determined sequentially.

Manifold learning is typically addressed by principal
component analysis (PCA) with severe limitations, the main
one being that only linear manifolds can be comprehended.
The main consequence is that the dimension of the reduced
space may be significantly overestimated when tackling non-
linear manifolds, thus hampering for example classification,
visualization, or the computation of means. The main advan-
tage of PCA over other techniques is that the reduced coor-
dinates and the mapping f are computed simultaneously and
easily.

A straightforward nonlinear extension of PCA is local
PCA [1], allowing to fit the manifold locally. The main prob-
lem with this approach is that the different sets of reduced
variables are unrelated, thus also hampering the final goals of
the procedure. Several approaches, such as isometric feature
mapping (Isomap, see [2]) and locally linear embedding
(LLE, see [3]), address the compression problem globally



2 EURASIP Journal on Advances in Signal Processing

instead of blockwise, such as local PCA. The former tries to
preserve the approximate geodesic distances on the manifold,
considering classical multidimensional scaling (MDS) [4]
while the latter aims at preserving the local structure of
the manifold considering local barycentric coordinates. Both
approaches suffer from noise and errors on the estimated
distances in the original space [5]. We propose here a
metric MDS approach [6, 7], with a view to reducing this
effect: contrary to standard MDS, we consider a robust cost
function to estimate the xi’s. We also propose a piecewise
linear regression framework to map the reduced space to
the original one and a Bayesian framework to determine the
mapping from the original space to the reduced one.

Besides, a class of dimension reduction methods known
as eigenmap techniques has recently gained interest. Those
methods aim at preserving local (Laplacian eigenmaps [8],
Hessian eigenmaps [9]) or global (diffusion maps [10])
structure by minimizing a cost function. In practice, the min-
imizations are carried out using eigenvector computations.
Comparison of the proposed approach with such techniques
is provided in this article. Well-identified shortcomings of
eigenmap techniques are exhibited by the examples we
consider.

Several other attempts have been reported in the litera-
ture to reduce the data groupwise [11–13], with an alignment
correction in the reduced space, and using a piecewise linear
function for the mapping between the original and the
reduced spaces. To our opinion, the main drawback of these
approaches is the patching of local reduced variables which
may introduce distortion in the reduced space considered
globally. Nevertheless, these approaches certainly deserve
further attention and work.

Finally, a class of dimension reduction methods known
as principal curves and principal surfaces [14, 15] attempt to
reduce the data nonlinearly. These methods fundamentally
only handle reduced spaces of dimension 1 or 2 which is
too restrictive for the present case where we want to be
able to consider reduced variables of higher dimension.
LeBlanc and Tibshirani [16] have proposed an extension
of such approaches in higher dimensions. In their setting,
the reduced variables are re-estimated during the procedure,
which does not correspond to our goal, since we want the
reduced variables to reflect the structure of the original data.
The model is constructed by adding (and pruning) linear
pieces, which is what we also consider in our approach.

This article is organized as follows. Our approach is
described in Section 2. Application examples are given
in Section 3. Conclusion and prospects are presented in
Section 4.

2. THE NONLINEAR MANIFOLD
LEARNING PROCEDURE

In this section, we detail the proposed two-stage learning
algorithm, consisting in compression (i.e., determination of
the x̂i’s) and in regression (i.e., estimation of the mapping
f). The compression step is in fact a feature extraction step,
where the features are determined as an implicit nonlinear
function of the original data. Feature extraction is opposed

to feature selection, where a meaningful subset of the original
coordinates has to be selected. From a differential geometry
point of view, compression and regression correspond to
devising an atlas on a manifold (or to charting a mani-
fold). The presentation of a Bayesian projection procedure,
mapping new (i.e., incoming) data of original space to the
reduced space, concludes this section. An approach close to
the present one was proposed by Elgammal and Lee [17] to
infer body posefrom silhouettes.

2.1. Learning stage I: compression

Determination of the set X̂
∆
= {x̂i, i = 1 · · · I} of reduced

coordinates is based on the hypothesis that the mapping f

preserves distances, such that for all (i, j) d1(i, j) ≃ d2(î, ĵ)
where d1 is the (geodesic) distance in the original space
and d2 the (Euclidean) distance in the reduced space. This
hypothesis allows to import the structure of the original data
in the reduced space, hence bringing clarity in visualization
and robustness in classification. The mapping is determined
up to an isometry which, as already stated, has no influence
on the final goals of the global procedure. The computation
of approximate geodesic distances is detailed in [2]. In
practice, xi ∈ R

Nx , with typically Nx ≤ 4, whereas yi ∈ R
Ny ,

where Ny may take values in the tens of thousands. The last
coordinate of each xi will be 1, so that affine regression is
handled with simplicity and clarity. This coordinate will not
be considered when accounting for the dimension of the
reduced space.

The x̂i’s may be obtained as the solution of the following
optimization problem:

X̂ = arg min
X

S(Y, X), (1)

where Y
∆
= {yi, i = 1 · · · I} and S is acost (or stress)

function. We will consider several stress functions in this
work.

(i) SSAM, proposed by Sammon [6] and advocated by
Duda, et al. [18, chapter 10, (109)]:

SSAM(Y, X)

=
1∑

i, j; i< jd1

(
yi, y j

)
∑

i, j; i< j

[
d1

(
yi, y j

)
− d2

(
xi, x j

)]2

d1

(
yi, y j

) ,
(2)

where d1 is geodesic (in [6], d1 is supposed to be
Euclidean though it is mentioned that any distance
could be used) and d2 Euclidean.

(ii) SISO, corresponding to the Isomap [2] algorithm

SISO(Y, X) =
∥∥J
(

D2
Y −D2

X

)
J
∥∥2

F , (3)

where ‖·‖F is the Frobenius norm, J = Id − (1/I)IIt

is the centering matrix, with I = [1 · · · 1]
t
. Matrix

D2
X (resp., D2

Y) encompasses the squared d2 (resp., d1)
distances between the xi, x j (resp., yi, y j). Distances
d1 and d2 are, respectively, geodesic and Euclidean.
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In the standard MDS approach, d1(yi, y j) is replaced
by a monotonic transformation of pi j , where pi j is the
proximity (to be user-defined according to the type of
data considered) between yi and y j (see [4]),

(iii) SCCA, corresponding to the Curvilinear Component
Analysis approach proposed by Demartines et al.
[19]:

SCCA(Y, X)

=
∑

i, j; i< j

[
d1

(
yi, y j

)
− d2

(
xi, x j

)]2
F
(
d2

(
xi, x j

))
, (4)

where F(x) = I(|x|≤λ), I(·) being the indicator
function taking value 1 (resp., 0) if the condition
between parentheses is true (resp., false).

(iv) SP, which is the stress function we propose:

SP(Y, X)

=
∑

i, j; i< j

√
γ +

[
d1

(
yi, y j

)
− d2

(
xi, x j

)]2

×

√√√√τ2 +
[
d1

(
yi, y j

)
− d2

(
xi, x j

)]2

τ2

d1

(
yi, y j

)

σ + d1

(
yi, y j

) ,

(5)

where d1 is geodesic and d2 Euclidean.

PCA can be interpretedas a particular case of this
approach (Isomap with Euclidean distances in both spaces,
see [20]). Standard MDS, which uses squared differences
between distances, is sensitive to outliers, which can be
present in real data. This advocates the metric MDS approach
proposed here (involving a robust, nonquadratic cost func-
tion, see the first factor in the definition of SP). Besides,
small distances can be dominated by noise. Small distances
thus should have reduced influence on the stress. This is
achieved by the third factor in the definition of SP. Finally,
we would like to enhance the convexity of the cost function,
which is the role of the second factor in the definition of SP

(in the transient phase of the optimization, when d1 − d2 is
large, the corresponding term in the sum is quadratic). This
eliminates many local minima. More precisely, γ is a small
real number so that the square root is always differentiable,
τ2 is a threshold indicating whether the cost function is
linear or quadratic; and σ is a threshold indicating whether
d1(yi − y j) − d2(xi − x j) should be considered or not (if
d1(yi − y j) ≪ σ , d1/(σ + d1) vanishes and d1 − d2 has no
influence on the stress). We set γ = 10−7, we chose σ as the
first percentile of the distances d1 and τ as the 80th percentile
of the distances d1.

This cost function is highly multimodal and must
therefore be handled with care. Two different stochastic
approaches are proposed to solve the optimization problem.

The first approach (Algorithm 1) considers all points xi

simultaneously. We use gradient descent with an exact line
search. The algorithm proceeds iteratively and adds a small
amount of noise to the points xi after each descent step to
try to avoid local minima. The xi’s are centered after each
descent step to avoid drifting and to maximize precision. The

Input: original coordinates (yi, i ∈ 1, · · · I)

Output: reduced coordinates (x̂i, i ∈ 1, · · · I)
begin

Initialize randomly the reduced coordinates;
repeat

Add a small amount of noise to each xi;
Optimize wrt all xi simultaneously (gradient descent);
Center the xi;

until convergence;
end

Algorithm 1: Standard compression algorithm.

second approach (Algorithm 2) proceeds by incorporating
successively the xi’s. The rationale is that a cost function
encompassing few points will be less multimodal, thus
enabling to reach the global optimum without particular care
and computational effort. Incorporating additional points
will have negligible effect on the points already optimized
and will (hopefully, at least if only one point is incorporated
at a time) correspond to a monomodal problem. As for the
first algorithm, gradient descent and centering are used.

The solution of the Isomap problem may be obtained
analytically and thus does not involve any iterative optimiza-
tion [20]. Sammon [6] proposed gradient descent with a
fixed step size for the stress function SSAM. Other approaches
include optimizations on local distances [21], as opposed to
approximated geodesic distances, but this can create folding
in the reduced space as may also be observed for LLE [3].

Let us mention that the optimization algorithms
approaches mentioned in the literature proved to be ineffi-
cient for the data sets we considered. Handling the intricate
optimization problem related to compression may thus be
considered as a contribution of the present work. In addition
to those approaches based on the optimization of a stress
function, another class of approaches, known as eigenmap
methods, has recently gained interest. Generally speaking,
eigenmap methods rely on the computation of eigenvectors
and amount indirectly to the optimization of a cost. Some
of the eigenvectors are used as a compact representation of
the data. This general class encompasses Belkin and Niyogi’s
Laplacian eigenmaps [8], Donoho and Grime’s Hessian
eigenmaps [9], and Coifman and Lafon’s diffusion maps
[10]. Those methods, which attempt to preserve either local
or global structure, will not be detailed here, the reader being
referred to the cited references.

Let us finally mention that unifying interpretations of
several methods have been proposed: Ham et al. propose an
interpretation from a kernel point of view [22], Coifman and
Lafon propose an interpretation from a diffusion map point
of view [10].

2.2. Learning stage II: regression

The mapping f can be estimated, now that the reduced
set of coordinates is known. We choose for f a piecewise
affine function, because affine functions are highly adaptable



4 EURASIP Journal on Advances in Signal Processing

and relatively easy to handle. PCA would correspond to a
piecewise affine function of only one piece.

The general goal is to estimate a set W
∆
=

{Wk, k = 1 · · · K}of Ny × Nx regression matrices,
where K is the unknown number of pieces of the model
approximating the manifold optimally and where Nx

(resp., Ny) is the dimension of the compressed (resp.,
response) variable. The guideline will be the minimization
of
∑

i‖yi −Wlxi‖
2. The index l involved is unknown and

depends on i. Such an optimization problem is intricate and
we will propose a suboptimal solution, but holding satisfying
approximation properties. Let us mention that we enforce
a connectivity constraint: no vector xi can have a label not
represented in its neighborhood and two or more patches
with the same label are not authorized. The proposed
formulation of the regression problem has a stochastic
interpretation as maximum likelihood estimation with
Gaussian iid noise, subject to the connectivity constraint.

Let us also mention that nonlinear regression is usually
addressed in the literature in the scalar case (yi ∈ R, xi ∈

R
Nx ) or in the case of the juxtaposition of independent

scalar regressions (e.g., see the projection pursuit regression
method of Friedman and Stuetzle [23] and the multivariate
adaptive regression splines method of Friedman [24]). The
reader is also referred to themonograph [25]. More generally,
all monographs we are aware of are dealing with regression
and smoothing methods in the scalar response case. In the
multidimensional response case, our approach is close to the
one proposed by Haralick and Harpaz [26], where search
for features linear cluster by linear cluster is carried out. In
Haralick and Harpaz’s approach, no dimension reduction
is considered, thus leaving the clusters unconnected, which
is a drawback for future classification, visualization, data
understanding, and the computation of means. To our best
knowledge, no other work has addressed the general case yi ∈
R

Ny , Ny > 1, set aside principal surfaces approaches which
we already mentioned.

Two approaches, both stochastic and iterative, are pro-
posed to estimate the Wk’s and the l’s. The first one
(Algorithm 3) creates a plane in an unlabeled neighborhood
of a randomly chosen point. It must be noticed that some
points may remain unlabeled at the end of this procedure.
We choose not to process them since there are few such
points and since their influence is negligible. The second one
(Algorithm 4) creates planes considering one point among
those which are the most unlikely to belong to an already
existing plane (this is done by considering the likelihoods
of the point and of its neighborhood). One advantage
of the latter algorithm is the control over the quality of
the regression allowed by the information criterion. This
criterion may also be used to impose the number of pieces
of the model or the accuracy of the regression.

2.3. Projection

Projecting a new (i.e., incoming) point y onto the manifold

amounts to estimating the variables (x̂, ε̂, l̂) parameterizing
this point. We will thus have y = Wl̂ x̂ + ε̂. The general goal
is to assess the belonging of point y to the manifold.

This problem will be cast in a Bayesian framework. The

unknowns x̂ and l̂ (ε̂ is implicitly known, when x̂ and l̂
are given) will be chosen as the maximizers of p(x, l |
y). All probabilities involved are conditioned on the model
previously determined. This conditioning is dropped for the
sake of clarity. Maximizing p(x, l|y) amounts to maximizing
p(y|x, l)·p(x|l)·p(l), which amounts to minimizing

1

2σ2
ε

∥∥y −Wlx
∥∥2
− log p(x | l)− log p(l), (6)

where σ2
ε is the variance of the noise as estimated from

the initial (i.e., learning) data set. Probability p(x | l)
is determined from the learning data set using Gaussian
kernels. Probability p(l) is also estimated from the learning
data set.

For l ∈ [1,K], x̂l is computed using a local optimization
algorithm with a multistart process, since the cost function
may be multimodal. The estimate x̂ is retained as the
minimizer of the cost function among all x̂l’s, whose indices
l satisfy the connectivity constraint.

It must benoted that the original data yi are not needed
for the projection, since only the reduced coordinates xi

and the matrices Wk are used in the process. This saves
a lot of memory, which is an advantage of the proposed
methodology.

2.4. Comment: iterating compression and regression

As an extension to the previous approach, one might also
consider iterating compression and regression steps. The
rationale is to use the result of the regression step to initialize
the neighborhood graph: in addition to its use for the nearest
neighbors, Euclidean distance is then used for all pair of
points belonging to the same linear piece, thus reducing the
errors that might occur in the estimation of those distances.

We implemented this approach on the SCurve. The
estimation of the reduced coordinates was not improved.
This is due to the fact that the regression step is an
approximation to the true function if few planes are used.
Thus, errors are introduced in the regression step, which are
further propagated in the compression step. If many planes
are used, the new initialization of the graph is not different
from the one considering the nearest neighbors. Hence, there
is no global advantage in iterating between both steps, at
least for the SCurve, and it is highly probable that this would
also be the case for other data sets. This approach—iterating
compression and regression—will not be considered in the
sequel.

3. EXPERIMENTAL RESULTS

This section is separatedin two parts. The first part presents
results of the compression procedure; the second one
addresses the projection procedure. The manifolds used here
are standard data sets known as the SwissRoll (Figure 1(a)),
the SCurve (Figure 1(c)) (e.g., see [2, 3, 13]) and the COIL-
20 database (e.g., see Figure 6, [27]). We mention that both
the SwissRoll and the SCurve have two degrees of freedom
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Input: original coordinates (yi, i ∈ 1, · · · I)

Output: reduced coordinates (x̂i, i ∈ 1, · · · I)
begin

Consider a random subset of (typically 10) points and optimize using algorithm 1;
repeat

Incorporate a given number of points (default is one, initial reduced coordinates are random);
Optimize wrt the points just incorporated (gradient descent);
Optimize wrt all points simultaneously (gradient descent);
Center the xi;

until all points incorporated;
end

Algorithm 2: Successive incorporation compression algorithm.

Input: original and reduced coordinates (yi, i ∈ 1, . . . I and x̂i, i ∈ 1, . . . I)

Output: labels (l), regression matrices (Wk) and noise variance (variance of the ε̂i)

begin

while exists a point whose neighbors are not labeled do

Pick randomly a point whose neighbors are not labeled;

Compute matrix Wk regressing this neighborhood (1);

Update labels, matrices and noise variance (2);

Discard any piece of the model (label and matrix) having not enough points
(3);

end

Update noise variance.

end

Comments:

(1) Let Yi be the matrix encompassing yi and all neighbors y j of yi and let Xi be
its counterpart. Matrix Wk is estimated from equation Yi ≃ WkXi by least
squares.

(2) A point is assigned to a linear model if the norm of the reconstruction
error is less than a given factor times the standard deviation associated to
the overall model (the noise is supposed to be iid). Moreover, connectivity
must be preserved (i.e., a point can be assigned a label only if this label is
represented in the point’s neighborhood). Once all updates are completed,
the variance of the overall model is re-estimated.

(3) If a linear piece has not enough points, the matrix that describes it cannot
be computed. In this case, this piece is discarded.

Algorithm 3: Piecewise linear mapping 1 (PLM 1).

and that neither of them can be described by a 2-dimensional
reduced space in a linear framework in a manner that
preserves their intrinsic structure. This precludes PCA for a
compact representation of these data.

3.1. Compression

First of all, it should be mentioned that comparing com-
pression methods is an intricate problem because of the
choice of the evaluation criterion which should not favor

one method over the others. As benchmarks, we consider
the SwissRoll and the SCurve which were compressed using
different paradigms and stress functions (PCA, Isomap, SP,
SSAM, SCCA, Laplacian eigenmaps, diffusion maps, Hessian
eigenmaps, and locally linear embedding). We consider a
reduced space of dimension 2, which is the true intrinsic
dimensionality of the data (we will return on the determi-
nation of the intrinsic dimensionality in the sequel).

From a qualitative point of view, we observe that PCA
does not behave well, since the neighborhood structure is not
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Input: original and reduced coordinates (yi, i ∈ 1, . . . I and x̂i, i ∈ 1, . . . I)
Output: labels (l), regression matrices (Wk) and noise variance (variance of the ε̂i)
begin

Create a single matrix encompassing the entire data set;
repeat

Determine the points which are the most unlikely to belong to the pieces
(matrices) already created;
Pick one point among the previously determined set;
Compute matrix Wk regressing the neighborhood of the point
considered;
Label the points of the neighborhood as belonging to this new piece;
repeat

Discard any piece of the model (label and matrix) having not enough
points;
Update matrices and labels;
Label every unassigned point with the most likely piece;

until convergence;
until the information criterion is minimized;

end

Algorithm 4: Piecewise linear mapping 2 (PLM 2).
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Figure 1: (a) Original SwissRoll, (b) regressed SwissRoll (108 planes), (c) original SCurve, (d) regressed SCurve (28 planes).

preserved in the reduced space (see Figure 2 and compare
the colors of the reduced data to the colors of the original
data displayed Figure 1(a)) (see also Figure 4). Locally linear
embedding, Laplacian eigenmaps, and diffusion maps do
not behave satisfyingly either. All other approaches behave
quite well in the nonnoisy SCurve case. In the noisy case,

as expected, all methods are affected by noise, though to a
different extent (see Figure 3). Besides all not very satisfying
behaviors mentioned above, we notice that the Hessian
eigenmap compression degrades in the presence of noise,
as mentioned in the literature [9]. The Laplacian eigenmap
compression tends to introduce holes, which correspond to
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Figure 2: Reduced space computed by (a) PCA, (b) Isomap, (c) SP, (d) SSAM, (e) SCCA, (f) locally linear embedding, (g) Laplacian eigenmap,
(h) Hessian eigenmap, and (i) diffusion maps for the nonnoisy SCurve.

Table 1: Distances between the original reduced coordinates and the estimated ones for a 2000-point SCurve. For SCCA, the threshold was

set so that 5% of the lowest distances d2 were considered. LEM, DM, HEM, and LLE stand for Laplacian eigenmap, diffusion map, Hessian
eigenmap, and locally linear embedding, respectively. In the cases of rows 3 and 4 (Gaussian and Laplacian noise), noise is affecting the
coordinates of the yi’s. The noise variances (2% and 5%) are quantified with respect to the variance of the noise-free data. In case of row 5,
the distances d1 are perturbated with a Laplacian noise affecting 12.5% of the d1’s. The noise variance (200%) is quantified with respect to
the variance of the noise-free d1 − d2’s.

Noise PCA Isomap SP SSAM SCCA LEM DM HEM LLE

none 43.6 3.01 2.29 2.61 3.01 21.13 67.50 3.05 40.1

Gaussian noise 5% 43.6 8.55 2.94 2.60 6.22 23.51 67.76 18.57 90.2

Laplacian noise 2% 44.4 7.01 6.46 6.10 4.70 23.47 67.54 20.51 69.2

Impulsive perturbation na 3.80 2.93 3.22 3.09 na na na na

its known property of emphasizing clusters [8]. Sammon’s
cost function and the proposed cost function exhibit the
most satisfying behaviors. Similar conclusions may be drawn
with the SwissRoll test case. These differences should be
quantified, which we did using two different tests.

The rationale of the first test is to try to recover the
true (initial) xi’s (which will be denoted x⋆i ’s) from the data
yi’s. For this first test to make sense, we have to consider a

manifold whose local magnification factor is 1 (the distances
between the yi’s must be the same as the ones between the
x⋆i ’s since the distances between the yi’s are reproduced in the
distances between the x̂i’s). The SCurve was retained for this
reason. Since the x̂i’s are determined up to an isometry, the
isometry putting the x⋆i ’s and the x̂i’s into correspondence
is first computed and applied on the x̂i’s. The sum of the
squared distances between both sets of coordinates is then
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Figure 3: Reduced space computed by (a) PCA, (b) Isomap, (c) SP, (d) SSAM, (e) SCCA, (f) locally linear embedding, (g) Laplacian eigenmap,
(h) Hessian eigenmap, and (i) diffusion maps for the noisy SCurve (Gaussian noise, 5% variance).

computed (notice that many other choices for the criterion
quantifying the discrepancy between both sets may have
been done. We chose this particular one because it is the
most used). Examining Table 1, we may assert that SSAM

and SP behave better, which is coherent with the qualitative
observations. Besides, it should be mentioned that the cost
function of Demartines and Hérault (SCCA) behaves quite
well and exhibits good robustness to noise. As expected, SP

yields better results in the presence of outliers (see the last
line of Table 1).

In the second test, we computed the linear correlation
between the true geodesic distances and the Euclidean
distances computed from the estimated reduced coordinates.
This was achieved on the SwissRoll. We will not further
comment this benchmark since it was not able to clearly
discriminate between Isomap, SSAM, SCCA, and SP. Let us
notice that other choices might have been made for the
comparison criterion (linear correlation is in essence a
quadratic criterion).

The determination of the optimal dimension of the
reduced space is tackled by the scree test [28], as is classically

done in the literature. Optimizations are achieved for several
dimensions of the reduced space and the stress values at the
optima are compared. The dimension retained is the value
after which the stress level does not decrease significantly any
more. This can be seen on Figure 5 for several data sets (the
SwissRoll and two sets from the COIL-20 database). Different
noise levels for the SwissRoll indicate that low noise level has
no influence on the number of dimensions. In each case, the
optimal dimension is 2.

To conclude this section, we comment on both proposed
algorithms. Algorithm 1 is less demanding from a CPU-time
point of view, but requires several runs since it may get stuck
at local minima. The computational burden of Algorithm 2
is larger, but the correct solutions were obtained from sin-
gle runs on the data we processed. A 500-point SwissRoll
requires 10-minute CPU time with Algorithm 1 (one run),
20 minutes with Algorithm 2, 11 seconds with Isomap. A
2000-point SwissRoll requires 75 minutes with Algorithm 1
(one run), 30 hours with Algorithm 2, between 30 seconds
and 5 minutes with eigenmaps methods, 12 minutes with
Isomap, 25 minutes with Sammon’s cost function, and
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Figure 4: Reduced space computed by (a) PCA and (b) SP for the duck of the COIL-20 database.
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Figure 5: (a) Scree plots for SP on the SwissRoll, (b) the duck and the piece of wood from the COIL-20 database. The abscissa axis is the
dimension of the reduced space; and the ordinate axis is the value of the cost function at the solution.
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Figure 6: The 72 images of the duck set of the COIL-20 database with (a) 0% and (b) 40% occlusion; (c) reconstruction from PCA-15
compression, (d) reconstruction from SP-2 compression. The occlusion percentage is measured with respect to the entire image and would
be larger if measured with respect to the foreground.
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Figure 7: Projection of the sets of the COIL-20 database (abscissa represents the index of the data set, ranging from 1 to 20). The curves
represent (a) hits with 0% occlusion, (b) near hits with 0% occlusion, (c) hits with 40% occlusion, (d) near hits with 40% occlusion for
different paradigms (PCA and 2-dimensional SP).
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Figure 8: Histograms of the pose estimation error in degrees of one representative example from the COIL-20 database (40% occlusion):
(a) PCA 2, (b) PCA 15, (c) 2-dimensional SP.
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48 hours with SCCA. Nevertheless, though quite demanding,
a compression has to be achieved only once for a given data
set. For data sets with a very large number of points, other
approaches known as landmark approaches, where compres-
sion is done with a subset of the initial data set, might be
more adapted. The remaining data are then compressed with
respect to the fixed landmarks. The regression phase requires
from about 3- to 4-hour CPU time.

3.2. Projection

Two test casesare considered to evaluate the projection
method (and in fact the whole procedure, since the projec-
tion method cannot be isolated).

The first test case is the computation of the projection
error for the nonnoisy SwissRoll and SCurve. Points yi are
projected onto the regressed manifold. The average error is
less than 1%, when measured with respect to the standard
deviation of the y j ’s.

The second test case is conducted by projecting occluded
COIL-20 images (see Figure 6) onto each underlying mani-
fold (i.e., a model is learnt for each data set). In the learning
phase, all images (nonoccluded) of a given set are considered.
Regression is achieved using both algorithms (PLM1 and
PLM2), the best solution being retained.

The goal is to recover, for each occluded image, the
original image. A hit is obtained when the image closest
to the projection is the nonoccluded image. A near hit is
obtained when the image closest to the projection is one
of the five images closest to the original one. This assesses
the robustness of the procedure. Because of the occlusion,
the Gaussian noise assumption in the projection (see (6)) is
replaced by a generalized Gaussian noise, with exponential
rate of decay of 1.2. The results are displayed in Figure 7. It
may be observed that the proposed approach yields better
results than PCA-2. PCA-15 yields better results than the
proposed approach, particularly in the case displayed in
Figure 7(a), but at the cost of a significant increase of the
dimension of the underlying reduced space. Even if PCA-15
behaves well from a hit or miss point of view, the distance
in the reduced space is very large (see the reconstructed
ducks, Figure 6(c)), much larger than the distance yielded
by the proposed approach (Figure 6(d)). As a complement
to this hit and miss point of view, we compute the pose
estimation errors (see Figure 8). The analyses of those errors
are consistent with the analysis corresponding to the hit and
miss framework.

Moreover,we emphasize once more that the true degrees
of freedom are not captured by PCA-15, thus hampering
visualization and data understanding. We remind the reader
that the computation of means is an important goal of
the present work, with applications to brain imaging. The
Fréchet means [29, chapter 9], [30] will be computed in
the reduced space and then lifted into the original space.
It is thus important to capture the true degrees of freedom
of the data in order to avoid spurious effects induced
by extra coordinates. We will thus retain the proposed
SP compression approach, along with the regression and
Bayesian projection methods detailed in this article. Finally,

let us mention that the computational cost of the projection
phase is negligible (from 1 to 10 seconds).

4. CONCLUSION

In this article, we have introduced an original metric
multidimensional scaling-based nonlinear manifold learning
framework, allowing efficient and robust reduction of high-
dimensional data. The approach is composed of compres-
sion, regression, and projection. The original data do not
need to be stored hence saving significant memory space
once the model is learnt.

Data understanding, visualization, classification, and the
computation of means are possible even in the case of
highly nonlinear manifolds. The classical solution to the
general problem addressed here is PCA, which is clearly
outperformed by the proposed method. Application of this
method to analysis and classification of shapes in brain
imaging is currently investigated.
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