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Abstract.—The shapes of evolutionary trees are influenced by the nature of the evolutionary process but comparisons of trees
from different processes are hindered by the challenge of completely describing tree shape. We present a full characterization
of the shapes of rooted branching trees in a form that lends itself to natural tree comparisons. We use this characterization
to define a metric, in the sense of a true distance function, on tree shapes. The metric distinguishes trees from random
models known to produce different tree shapes. It separates trees derived from tropical versus USA influenza A sequences,
which reflect the differing epidemiology of tropical and seasonal flu. We describe several metrics based on the same core
characterization, and illustrate how to extend the metric to incorporate trees’ branch lengths or other features such as overall
imbalance. Our approach allows us to construct addition and multiplication on trees, and to create a convex metric on tree
shapes which formally allows computation of average tree shapes. [tree metric; phylodynamics; tree shapes]

The availability and declining cost of DNA sequencing
mean that data on the diversity, variation and evolution
of organisms is more widely available than ever
before. Increasingly, thousands of organisms are being
sequenced at the whole-genome scale (Chewapreecha
et al. 2014; Bedford et al. 2015; Anopheles gambiae 1000
Genomes 2016). This has had particular impact on the
study of pathogens, whose evolution occurs rapidly
enough to be observed over relatively short periods. As
the numbers of sequences gathered annually grow to the
tens of thousands in many organisms, comparing this
year’s evolutionary and diversity patterns to previous
years’, and comparing one location to another, has
become increasingly challenging. Despite the fact that
evolution does not always occur in a tree-like way due to
the horizontal movements of genes, phylogenetic trees
remain a central tool with which we interpret these
data.

The shapes of phylogenetic trees are of long-standing
interest in both mathematics and evolution (Slowinski
1990; Guyer and Slowinski 1993; Kirkpatrick and Slatkin
1993; Mooers and Heard 1997; Stam 2002; Blum and
Francois 2006; Purvis et al. 2011; Wu and Choi 2015). A
tree’s shape refers to the tree’s connectivity structure,
without reference to the lengths of its branches. A key
early observation was that trees reconstructed from
evolutionary data are more asymmetric than simple
models predict (Aldous 1996). This spurred an interest
in ways to measure tree asymmetry (Kirkpatrick and
Slatkin 1993; Fusco and Cronk 1995; Aldous 2001;
Stich and Manrubia 2009; Pompei et al. 2012), in the
power of asymmetry measures to distinguish between
random models (Kirkpatrick and Slatkin 1993; Agapow
and Purvis 2002; Matsen 2006), and in constructing
generative models of evolution that produce imbalanced
trees (Aldous 2001; Blum and Frangois 2006; Manceau
et al. 2015). Tree shapes carry information about the
underlying evolutionary processes, and distributions of
tree shapes under simple null models can be used to

test hypotheses about evolution (Mooers and Heard
1997; Blum and Francois 2006; Blum et al. 2006; Purvis
et al. 2011, Wu and Choi 2015). Recent work also
relates fitness, selection and a variety of ecological
processes to tree shape (Gascuel 2000; Hein et al.
2004; Maia et al. 2004; Wakeley and Wakeley 2009;
Dayarian and Shraiman 2014; Manceau et al. 2015).
An additional motivation for studying the shapes of
phylogenetic trees is that reconstructing branch lengths
is challenging, particularly deep in a tree. There may
be weak support for a molecular clock, and coalescent
inference procedures may produce trees with consistent
shape but differing root heights.

Tree shape is well established as carrying important
information about macroevolutionary processes, but
also carries information about evolution in the short
term. In the context of pathogens, diversity patterns
represent a combination of neutral variation that has
not yet become fixed, variation that is under selection,
complex demographic processes (host behavior and
contact patterns), and an array of ecological interactions.
The extent to which tree shapes are informative of these
processes is not well understood, though there have been
studies on the frequency of cherries and tree imbalance
(Volz et al. 2013; Lambert and Stadler 2013; Plazzotta
et al. 2016) and simulation studies aiming to explore
the question (Leventhal et al. 2012; Robinson et al. 2012;
Colijn and Gardy 2014; Plazzotta and Colijn 2016).

A key limitation in relating tree shapes to evolution
and ecology has been the limited tools with which trees
can be quantified and compared. Comparing tree shapes
from different models of evolution or from different data
sets requires comparing unlabeled trees, whereas most
tree comparison methods (e.g., (Robinson and Foulds
1981), Billera-Holmes-Vogtmann (Billera et al. 2001) and
newer metrics (Kendall and Colijn 2016)) compare trees
with one particular set of organisms at the tips (one
set of taxa, with the labels in each tree). These metrics
can be used as a basis for metrics on unlabeled shapes,
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for example by setting the distance between shapes Tq
and T, to be d(Tl,T2)=min(drf(f"1,f"2)), where f"i has
shape T; and the Robinson Foulds distance is computed

by labeling Tl and YA"Z with the same set of labels.
However, this requires computing the distance using
every distinct arrangement of tip labels on one of the
trees. Similarly defined metrics on trees with multisets
for their labels have been described (Huber et al. 2011),
but their computation is difficult and metrics may not
be applicable if the trees have different numbers of
tips. Consequently, the tools at our disposal to describe
and compare tree shapes from different sets of tips are
limited, and have focused on scalar measures of overall
asymmetry (Sackin 1972; Slowinski 1990; Guyer and
Slowinski 1991; Colless 1995; Fusco and Cronk 1995;
Matsen 2006; Stich and Manrubia 2009; Pompei et al.
2012) and on the frequencies of small subtree shapes
such as cherries (Steel and McKenzie 2000; Volz et al.
2013; Plazzotta and Colijn 2016) and r-pronged nodes
(Rosenberg 2006). Recently, kernel (Poon et al. 2013) and
spectral (Lewitus and Morlon 2015) approaches also have
been used.

Here we give a simple characterization of all possible
shapes for a rooted tree and use this to define metrics
(in the sense of true distance functions) on tree shapes.
The scheme provides an efficient way to count the
frequencies of sub-trees in large trees, and hence can
be used to compare empirical distributions of sub-
tree shapes. It is not limited to binary trees and can
be formulated for any maximum size multifurcation,
as well as for trees with internal nodes with only
one descendant (sampled ancestors). As an illustrative
example, we apply a metric derived from our scheme
to simulated and data-derived trees. Our scheme and
our metric separate trees from random tree models that
are known to produce trees with different shape. We
use the approach to compare trees from tropical versus
USA human influenza A (H3N2). We extend the metric
to incorporate statistics on the lengths of branches or
other tree features, and we use a map from tree shapes
to the rational numbers to define a convex metric on tree
shapes.

MATERIALS AND METHODS
Definitions

A tree shape is a tree (a graph with no cycles), without
the additional information of tip labels and branch
lengths. We consider rooted trees, in which there is one
node specified to be the root. Tips, or leaves, are those
nodes with degree 1. A rooted tree shape is a tree shape
with a vertex designated to be the root. We use "tree
shape," as we assume rootedness throughout. Typically,
edges are implicitly understood to be directed away from
the root. A node’s children are the node’s neighbors along
edges away from the root; each node is the parent of its
children. In a binary tree shape, the root has two children
and is the only node without a parent. A multifurcation,

FIGURE 1.  Example of the labels on a five-tip tree.

or a polytomy, is a node with more than two children,
and its size is its number of children (>2). Naturally,
a rooted phylogeny defines a (rooted) tree shape if the
tip labels and edge weights are discarded. Phylogenies
typically do not contain internal nodes with fewer than
two children (sampled ancestors), but we allow this
possibility.

Labeling Scheme

Our approach is to label any possible tree shape,
traversing the tree from the tips to the root and assigning
labels as we go. The simplest case is to assume a binary
tree, in which all internal nodes have two children. We
start by giving all tips the Label 1 and proceed up the tree
moving from the tips to the root. We use the labels of each
node’s children to define that node’s label. So for every
internalnode, we listits childrens’ labels (k, ), organizing
them with lexicographic sorting (i.e., listing with the
larger of k and j first and then in increasing order, very
like alphabetical sorting). The lexicographically sorted
list of all (k,j) pairs is: (1), (1,1), (2,1), (2,2), (3,1), (3,2),
(3,3), (4,1), (4,2), (4,3), (4,4), (5,1)... We define the label
of a tree shape whose root node has children (K,]) to be
the index at which (K, J) appears in this list. Accordingly,
a “cherry” (a node with two tip children) is labeled 2
because its children are (1,1), which is the second entry
in the list. A node with a cherry child and a tip child (a
(2,1), or a pitchfork) has Label 3. A tree whose root has
children labeled 4 and 2 (4,2) is the 9th item in the list
and so has Label 9. As we traverse the tree from the tips
to the root, we label each internal node using the labels
of its children. While Labels 1, 2, and 3 coincidentally are
trees with 1,2, and 3 tips, this correspondence is soon lost
because there are many trees with n tips in general; there
are two possible trees with 4 tips: a “double cherry” (2,2)
with Label 4, and a (3,1), with Label 5. A small example
is shown in Figure 1. The binary tree shape (k,j) (a tree
whose root has a child with label k and one with label j)
has label

da(k.j)= gk(k—=1)+j+1 )
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because (k,j) is the %k(k—l)—i—j—l—l’th entry in the
lexicographically sorted list. To see this, note that for
some fixed k, there are k pairs of the form (k,j) (because
j ranges from 1 to k). This means that the pair (r,1) has
label (14+2+...4+n-1)+14+1= %n(n—l)—i—l—i—l, because
all labels starting with 1,2,3,...k,..n—1 occur before this
first pair beginning with n. The extra 1 accounts for
starting the scheme with (1,1) whose label is 2. So

(k,7) has labeled %k(k—l)—i—j +1 as above. We continue
until the root of the tree has a label. The subscript 2
in Equation 1 specifies that each node has a maximum
of 2 children; the scheme can be extended but has a
different explicit form (¢py) if there are multifurcations
up to size M or internal nodes with a single child (in
which case we require j > 0 rather than 1). We give details
in the Supplementary Material available on Dryad at
http:/ /dx.doi.org/10.5061/dryad.3r8v1.

Metrics on the Space of Rooted Unlabeled Shapes

This characterization leads to simple metrics on the
space of tree shapes. The simplest is a comparison of the
root labels: given two binary trees T, and T}, whose root
nodes are R; and Ry, and where the label of a node x is
L(x), we can write

do(Ta, Tp) =IL(Ra) —L(Rp)I. @)

In other words, the absolute difference between the root
nodes’ labels is a metric, with tree 1 a distance of 1
from tree 2 and so on. Clearly dy is symmetric and
non-negative. The tree isomorphism algorithm and the
above labeling clearly show that dy =0« T, =T}, and the
absolute value obeys the triangle inequality. However,
dp is not a very useful metric, in the sense that a large
change in root label can result from a relatively “small”
change in the tree shape (such as the addition of a tip).

While each tree is defined by the label of its root,
it is also defined (redundantly) by the labels of all
its nodes. If the tree has n tips, the list of its labels
contains n 1s, typically multiple 2s (cherries) and so
on. Let L; denote the list of labels for a tree T,;: L;=
{1,1,1,...,2,2,...,2(Rz)}. The label lists are multisets
because labels can occur multiple times. Define the
distance di between T, and T}, to be the number of
elements in the symmetric set difference between the
label lists of two trees:

d1(Ta, Tp) =|La ALyl 3)

The symmetric set difference AAB=(AUB)\(ANB)is the
union of A and B without their intersection. Intuitively,
this is the number of labels not included in the
intersection of the trees’ label lists. If A and B are
multisets with A containing k copies of element x and
B containing m copies of x, with k > m, we consider ANB
to contain m copies of x (these are common to both A
and B). AAB has the remaining k —m copies. Each tree’s
label list contains more 1s (tips) than any other label.
Accordingly, this metric is most appropriate for trees of

the same size, because if trees vary in size, the metric
can be dominated by differences in the numbers of tips.
For example, if L, ={1,1,1,1,2,2} (four tips joined in two
cherries)and L, ={1,1,1,2,3} (three tips, i.e., a pitchfork),
then L,AL,={1,2,3}, because there is a 1 and a 2 in
L, in excess of those in Lj, and a 3 in L, that is, not
matched in L,;. Like dp, dq is a metric: positivity and
symmetry are clear from the definition. The cardinality
of the symmetric difference is 0 if and only if the two
sets are the same, in which case the root label is the same
and the tree shapes are the same. That the symmetric
difference obeys the triangle inequality is readily seen
from the property AAC C(AAB)U(BAC).

Perhaps the most natural metric based on the labels,
and the metric that we apply (and extend) through this
work, compares the numbers of occurrences of each label
in each tree. Let v, be a vector whose k’th element v, (k) is
the number of times label k occurs in the tree T;; so v,(1)
will be the number of tips, v,(2) the number of cherries,
and so on. Define the metric d, as the Euclidean norm
(square root of sum of squares) of the difference between
v, and vy

dy(Ta, Tp) =11va —vpll. 4)
Positivity, symmetry and the triangle inequality are
evident, and again dy can only be 0 if T, and Tj have
the same number of copies of all labels (including the
root label), which is true if and only if T, and T}, have
the same shape. This has a similar flavor to the statistic
used to compare trees to Yule trees in (Blum and Francois
2006), where the numbers of clades of a specific size were
compared. We have used and extended metric d, in the
analyses presented in the Results section.

Each of these metrics is computed in linear time. If
Ty, T, have n,, np internal nodes, computing the distance
requires O(n,+ny) operations to define the labels, and
O(max(n,,np)) operations to compare the lists of labels.
Different choices of weights increase computational
time but not computational complexity; the variants we
present are all linear in the (maximum) number of tips
of the two trees.

Simulations

We compared trees from different random processes
and models. One of the most natural random processes
modelling phylogenetic trees is the continuous-time
homogeneous birth-death (BD) branching process, in
which each individual gives rise to a child at a constant
rate in time, and also risks removal (death) at a constant
rate. With birth rate A and death rate p, the ratio
M/ specifies the mean number of offspring of each
individual in this process, and affects the shapes and
branching times of the resulting branching trees. In
the epidemiological setting, the link to branching times
has been used to infer the basic reproduction number
Ry from sequence data (Stadler et al. 2012, 2014). We
computed the distances between trees derived from
constant-rate BD processes simulated in the package
TreeSim in R (Stadler 2017). One challenge is that the
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number of tips in the BD process after fixed time is
highly variable and depends on % /j.. We aimed to detect
shape differences that were not dominated by differences
in the number of tips. Accordingly, we conditioned
the processes to have 1500 taxa and then pruned tips
uniformly at random to leave approximately 1250 tips
remaining.

There are several other random models for trees. The
Yule model is a model of growing trees in which lineages
divide but do not die; in terms of tree shape it is the
same as the Kingman coalescent and the equal rates
Markov models. In the “proportional to distinguishable
arrangements’ (PDA) model, each unlabeled shape is
sampled with probability proportional to the number
of labeled trees on n tips with that unlabeled shape
(Rosen 1978; Mooers and Heard 1997). The “biased”
model is a growing tree model in which a lineage with
speciation rate r has child lineages with speciation rates
pr and (1—p)r. The Aldous’ branching model that we use
here is Aldous’ B-splitting model with f=—1 (Aldous
1996); in this model a p distribution determines the (in
general asymmetric) splitting densities upon branching.
The Yule, PDA, biased and Aldous p=—1 models are
available in the package apTreeshape in R (Bortolussi
et al. 2006). We used p=0.3 for the biased model, and
sampled trees with 500 tips.

Data

We aligned data of HA protein sequences from human
influenza A (H3N2) in different settings reflecting
different epidemiology. Data were downloaded from
NCBI on 22 January 2016. In all cases, we included only
full-length HA sequences for which a collection date
was available. The USA data set (n =2168) included USA
sequences collected between March 2010 and September
2015. The tropical data (n=1388) included sequences
from the tropics collected between January 2000 and
October 2015. Accession numbers are included in the
Supporting Information. Fasta files were aligned with
mafft. Within each data set, we sampled 500 taxa
uniformly atrandom (repeating 200 times) and inferred a
phylogenetic tree with the program FastTree (Price et al.
2009). Where necessary we realigned the 500 sequences
before tree inference. This resulted in 200 trees, each with
500 tips from the tropical and USA isolates.

Note that this approach is distinct from Bayesian
inference of many trees on one set of tips, and from
bootstrap trees on one set of tips. Either a posterior or
bootstrap collection of trees from the same set of tips will
share shape features because of the phylogenetic signal
in the data. In contrast, we resample from the isolate
collection each time and the trees we compare do not
have the same set of labels.

Implementation

We have used R throughout. An R package is available
on github at https://github.com/carolinecolijn/

treetop. The implementation assumes full binary trees
and includes metrics d; and dp with the option of
weighting, as well as a “tree lookup” function that
returns the tree associated with an integer in labeling
scheme ¢».

REsuULTS

Label-Based Description of Tree Shapes

Figure 2 illustrates the labels at the nodes of two binary
trees. The label of the root node uniquely defines the tree
shape. Indeed, tree isomorphism algorithms use similar
labeling (Hopcroft and Tarjan 1972; Lueker and Booth
1979; W 1979; Colbourn and Booth 1981; Sayward 1981).
If R; and Ry, are the root nodes of binary trees T, and
Ty, the tree shapes are the same if and only if ¢pp(R;)=
$2(Rp). The map between trees and labels is bijective:
every positive integer corresponds to a unique tree shape
and vice versa.

Metrics are an appealing way to compare sets of
objects; defining a metric defines a space for the set of
objects—in principle allowing navigation through the
space, study of the space’s dimension and structure, and
the certainty that two objects occupy the same location if
and only if they are identical. The labeling scheme gives
rise to several natural metrics on tree shapes, based on
the intuition that tree shapes are similar when they share
many subtrees with the same labels.

Simulated Random Trees

There are several ways to sample random trees
in ways known to produce trees of different shapes
(in particular, different asymmetry). These include
models capturing equal versus different speciation
rates, continuous time BD processes with different
rates and others (see Methods). We used the metric
arising from our labeling scheme to compare these.
Figure 3 shows a visualization of the tree-tree distances
between trees from different random models. The
metric groups trees from each process together and
distinguishes between them well. Summary statistics
such as tree imbalance also distinguish some of these
groups well (particularly the PDA, Aldous, Yule and
biased speciation model); indeed, we have elsewhere
related the basic reproduction number to the number
of cherries (Plazzotta and Colijn 2016), and because the
cherry is a symmetric configuration, trees with a high
frequency of cherries will be more symmetric than those
with a low frequency of cherries.

Tropical Versus Seasonal Influenza

We also compared trees inferred from sequences
of the HA protein in influenza A H3N2 sequences.
Influenza A is highly seasonal outside the tropics
(Russell et al. 2008), with the majority of cases occurring
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FIGURE 2. Tllustration of the labels of the nodes of binary trees. Tips have the Label 1. Labels of internal nodes are shown in black. The only

difference between the trees in (a) and (b) is that in (b), the bottom-most tip from (a) has been removed. As a consequence, most of the labels are

the same.

in winter. In contrast, there is little seasonal variation
in transmission in the tropics. In addition, over long
periods of time, influenza evolves in response to pressure
from the human immune system, undergoing evolution
particularly in the surface HA protein. This drives the
"ladder-like” shape of long-term influenza phylogenies
(Koelle et al. 2010; Volz et al. 2013; Westgeest et al. 2012;
Luksza and Lassig 2014), but would not typically be
apparent in shorter-term data sets. With this motivation,
we compared tropical samples to USA sample. Figure 4
shows that the tropical and USA flu trees are well
separated by the metric. In addition, we used DAPC
(Jombart et al. 2010) to determine which shapes separate
the two groups. These shapes are those with high
loadings on the first (and only substantial) principal
component. We show them in Figure 4, listing their
labels and coloring them according to Sackin imbalance.
The two groups are different in imbalance, and the
metric allows us to determine which sub-shapes occur
with different frequencies to separate the groups. In
the Supplementary Material available on Dryad, we
compare the imbalance and numbers of cherries across
the various groups of trees.

Incorporating Tree Size, Branch Lengths, and Other
Properties

Perhaps as it should be, the dominant difference
between a tree with ten tips and one with one hundred
tips is the size of the tree (and for this reason we have
focused our application on comparing trees of the same
size). The largest contribution to the distances will result
from comparing the number of instances of the Label 1
(tip) in two trees; this is necessarily larger than any other
label copy number, and furthermore, a tree with more
tips can have more cherries, pitchforks and any other
subtree than a tree with fewer tips.

However, itis straightforward to construct metrics that
compare tree shapes of different sizes with respect to

their proportional frequencies of subtrees. We based the
metric d, on vectors whose ith components were the
number of sub-trees of label i; we can divide these vectors
by the number of tips 1, in the tree: 9, = nlavg, and include

a component of ¢ proportional to the number of tips ie
04(0) =€n,. We then define a new metric, again based on
the Euclidean norm,

dlz(Tm Tb) =] |ZA7a —f’bH

with e>0. With small e, d/2 will be small when the
proportional frequencies of sub-trees are very similar
(even if the trees are different sizes), but will only be
0 if the trees have identical vectors and the same number
of tips. Furthermore, if there are particular labels i that
are of interest - for example those with relatively few
tips, for a “tip-centric” tree comparison, weights w can
be chosen and applied to the vectors, such that the
i'th component of each vector is multiplied by the i'th
weight, v¥ (i) =w;v,(i), to emphasize some entries more
than others :

dw(TaaTb):||UZ]_vzv||~

The same weighting can of course be applied to ¢ in dy.

The labeling scheme induces natural metrics on tree
shapes, but does not capture the lengths of branches.
These are biologically relevant in many examples,
because they reflect the (inferred) amount of time or
genetic distance between evolutionary events, although
particularly for branches deep in the tree structure
they may be difficult to infer accurately. Branch lengths
or other features of trees—including the number
of lineages through time, diversity measures, tip-tip
distance profiles, imbalance measures and bootstrap
values—can be incorporated into metrics based on our
scheme. As our metric satisfies d(T7,T7) =0 <= T1 =T»,
any distance function of the form

d(T1,Tr)=w1d;(Tq, T2) +wrC(T1,T?), %)
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Top: Six sample trees, one from each of six different random processes. Bottom: Multi-dimensional scaling (MDS) plots showing

that trees from each process are grouped together in the metric. Bottom left: trees from a BD model with different values of Ry ="/p. Bottom
right: trees derived from the Yule, PDA, Aldous and biased models, each with 500 tips.

where C(T1,T2) obeys the triangle inequality will be a
metric (though not necessarily Euclidean), even if the
features in the comparison C do not uniquely define a
tree. In Equation (5), d is a metric if C is a pseudo-metric.

We can create Euclidean metrics that combine lengths
and other features with our shape comparisons. To do
this, we describe trees a and b with vectors V, and
Vp. The first F components of V capture F comparable
summaries or length-based statistics, and the remaining
components count the label frequencies (as in v). Weights
can be applied as above, component wise, to define V.

In this way, we can create any number of Euclidean
metrics

d(T1, Ty)=||IV¥ = VY|, )

where w reflects weightings across the label numbers
and summary features. Summary features or
comparisons could include spectral differences, Sackin
or Colless imbalance, Kullback-Leibler divergence
between lineages-through-time plots, maximum
likelihood parameter estimates, mean bootstrap values,
bootstraps corresponding to each shape label, or other

220z ¥snBny 0z uo 1sonb Aq 68888/€/€ L L/1/29/101E/01qSAS/W00 dNo"olWapeoe)/:sdjy Wo) paPEojUMOQ



2018

COLIJN AND PLAZZOTTA—A METRIC ON PHYLOGENETIC TREE SHAPES 119

]
n

2280 &8 12

5 7 & F il 2800342 2281
w0 = e 3
a] = .
= S L__ {
(] 15 38 4280 = - B3 S3E0BaTESEN S
. Eﬁ_,—!: |
by " il 282 4537948280 95268
i MDS axis 1 S L == . L_—c
. _ . e B s
T Flu selling —+ Tropical -+ USA — E': E
FIGURE4. Comparisons between trees from H3N2 flu virus samples. Central panel: multi-dimensional scaling plot showing that the metric

separates trees from the tropics (red) and from the USA (blue). Left and right panels: top-ranked sub-trees that distinguish the two groups, as
determined by discriminant analysis of principal components (DAPC); labels correspond to the labeling scheme. Depth of color corresponds to

Sackin imbalance (see Supplementary Material available on Dryad).

features. Because d can only be equal to 0if T1 and T are
the same shape (because of the components of V that

include the shape label), d is a Euclidean metric. This
extends the shape metric to incorporate branch lengths
and to emphasize features of interest (believed to be
informative of an underlying process), while retaining
the advantages of a true distance metric. Supplementary
Material Figure S4 available on Dryad illustrates this
approach on the tropical and USA trees, showing an

multi-dimensional scaling plot of d, where the first
component of V is the ratio of the mean terminal branch
lengths to the mean internal branch lengths in each tree.
While the main shape separation between tropical and
USA tree shapes is preserved, there is an informative
length dimension illustrating the presence of outliers
with high mean terminal branch length.

The labeling scheme maps tree shapes and natural
numbers in a bijective way: each tree has a unique
label (the label of its root node) and each natural
number (positive integer) specifies a unique tree. In the
Supplementary Material available on Dryad, we show
how this can be used to map tree shapes bijectively to
the integers and then to the rational numbers. Because
addition and multiplication are defined on the integers
we can use these maps to “add” and “multiply” trees,
and to define a convex metric on tree shapes — a metric
such that there is a tree shape directly in between any
two distinct tree shapes. The convex metric allows us to
compute averages of sets of trees by taking the averages
of the corresponding rational numbers. Although this is
the first convex metric defined on the space of tree shapes
to our knowledge, its properties are not intuitive and it
is left in the Supplementary Material available on Dryad
for the interested reader.

DiscussioN

We have developed metrics on unlabeled tree shapes,
and used them to compare simulated and data-derived
trees. The labeling scheme on which the metrics are
based comprises a complete characterization of rooted
tree shapes, and is not limited to bifurcating trees.
Trees from processes known to produce different shapes
are well separated in the metric that arises naturally
from the scheme. This suggests applications in inferring
evolutionary processes and to detecting tree shape bias
(Huelsenbeck and Kirkpatrick 1996; Gascuel 2000; Stam
2002). The structure and simplicity of this comparison
tool carry a number of advantages. Metrics have good
resolution in comparing trees because the distance
is only zero if tree shapes are the same. Empirical
distributions of subtree shapes can easily be found and
compared. And as we have shown, the approach can
be extended to convex metrics on tree shapes, allowing
averaging as well as algebraic operations (addition,
multiplication) in tree space. However, this approach
does not seem likely to give rise to analytically tractable
distributions of tree—tree distances, and in some cases,
may not offer more useful resolution than a well-chosen
collection of summary statistics.

In particular, scalar measures of asymmetry perform
well in distinguishing rooted binary trees. Here,
imbalance measures perform slightly worse on the
continuous-time BD models with R0=2,5 but are
different between the Yule, PDA, biased and Aldous’
random processes. (Matsen 2007) developed a method
to define a broad range of tree statistics. Genetic
algorithms uncovered tree statistics that can distinguish
between the reconstructed trees in TreeBase (Sanderson
et al. 1994) and trees from Aldous’ p-splitting model,
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whereas imbalance measures do not (Blum and Frangois
2006). However, the search-and-optimize approach is
vulnerable to over-fitting, as the space of tree statistics
is large. It is also reasonable to believe that due to
ongoing decreases in the cost of sequencing, studies will
increasingly analyze large numbers of sequences and
reconstructed trees will have many tips. Any single scalar
measure will likely be insufficient to capture enough of
the information in these large trees to perform inference.

Large trees present a problem for many approaches
to inference including phylodynamic methods that
rely on computationally intensive inference methods.
In contrast, our scheme is better able to distinguish
between groups of large trees than small ones (fewer
than 100 tips). The tip-to-root traversal means that
it is very efficient to construct the label set on very
large trees (and the same traversal could, with little
additional computation time, compute other properties
that are naturally computed from tip to root, such
as clade sizes, some imbalance measures and many
of Matsen’s statistics (Matsen 2007)). However, due to
the large number of tree shapes, the labels themselves
become extremely large even for relatively small trees.
Our implementation used MD5 hashing to solve this
problem, but hashing removes the ability to reconstruct
the tree from its label. Also, there are 2128~3.1038
possible hashed strings, which while large is less than
the number of possible tree shapes, even restricting
to 500 tips. Alternative labeling schemes may partially
alleviate this, for example by subtracting from the label
the minimum label for 7 tips, and only comparing trees of
size n or greater. A related approach was used by (Furnas
1984) in developing algorithms to sample trees.

The large size of the labels is also a challenge when
they are mapped to the integers and rational numbers
(see Supplementary Material available on Dryad) to
define a tree algebra or a convex metric. Small changes
in the label value can correspond to visible changes in
the shapes, and small changes in a shape can correspond
to large changes in the label. Because the bijective maps
are sensitive to small perturbations, the implementation
requires the full label, with no hashing compression.
However, for trees with 500 tips, we encountered
labels of about one million digits. Handling such large
numbers with full accuracy required heavy and slow
computation. The search for the average tree, using the
convex map to the rational numbers presented in the
Supplementary Material available on Dryad, was only
possible for small trees, as the map requires the prime
factorization of the label.

Our scheme captures only the shape of the trees; there
does not appear to be a natural way to incorporate branch
lengths other than appending statistics of branch lengths
to the vectors describing the tree (as we have done,
though this could be done for each label rather than in
aggregate, with a cost for the size of the vector). There are
several non-metric approaches to comparing unlabeled
trees that do include lengths. In particular, Poon’s kernel
method (Poon et al. 2013) compares subset trees that

are shared by two input trees, after first “ladderizing”
the trees (arranging internal nodes in a left-right order
with branching events preferentially to one side). Using
a kernel function, this approach can quantify similarity
between trees. One challenge is that differences in overall
scaling or units of the branch lengths can overwhelm
structural differences. Lengths can of course be re-scaled
(e.g., such that the height of both trees becomes 1), but
results may be sensitive to outliers or to the height of
the highest tip in the tree. Lengths could also be set to 1
to compare shapes only. Recently, Lewitus and Morlon
(LM) (Lewitus and Morlon 2015) used the spectrum
of a matrix of all the node-node distances in the tree
to characterize trees; this is naturally invariant to any
node and tip labels. They used the Kullback-Leibler
divergence between smoothed spectra as a measure
of distance. As it uses all node-node distances, this
approach, requiring the spectrum of a non-sparse 2n—
1x2n—1 matrix for a binary tree of n tips, becomes
infeasible for large trees.

One option is to add one or several terms to the
distance function to incorporate more information,
as outlined above. Combinations of our distances
and other tree comparisons may turn out to be the
most powerful approach to comparing unlabeled trees,
allowing the user to choose the relative importance
of scalar summaries, tree shape, spectra and so on
while retaining the discriminating power of a metric.
Ultimately, discriminating and informative tools for
comparing trees will be essential for inferring the driving
processes shaping evolutionary data.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http:/ /dx.doi.org/10.5061 /dryad.3r8v1
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Supplement for: A Metric on Phylogenetic
Tree Shapes

SUPPLEMENTARY RESULTS

Trees Characteristic of Distinct Groups

The Euclidean nature of the dp metric allows
techniques such as principal components analysis to
be used to find low-dimensional representations of a
set of trees. We have used discriminant analysis of
principal components (Jombart et al. 2010) to determine
which components (subtree shapes) best distinguish the
tropical versus USA influenza trees, and the simulated
birth-death trees with different birth-to-death ratios
(Ro)- In both cases, a single axis separates the groups
of trees almost entirely; Fig. S1 illustrates this, showing
the value of the first component.

Since there is only one principal component and it
almost entirely separates the trees into two groups (this
is the case both for the tropical versus USA and for
the birth—death trees), it is straightforward to determine
which subtrees make up this principal component and
therefore best separate the groups. The loadings of the
vector entries v;, corresponding to trees i (1 for a tip,
2 for a cherry and so on), reflect the importance of the
i'th tree in distinguishing the groups. Figure S2 shows
the subtrees that are more frequently present in the two
groups of birth—death trees, in parallel with Fig. 3 in the
main text (for the tropical versus USA trees).

Imbalance, or asymmetry, is the most widely
discussed scalar measure of tree shape. Indeed, for
rooted full binary trees, in the absence of branch length
considerations, the most natural quantity to examine
at each node is the difference between the numbers of
descendants on the two sides (the key quantity in the
Colless imbalance) and/or the path lengths from the
tips to the root. Imbalance does a good job in separating
the groups, but cannot in itself reveal which imbalanced
subtrees are more highly represented in which groups.

We illustrate how the shape metric can be extended to
include branch lengths and other features of the trees,
even if those themselves are not metrics and do not

M@ Tropical
@ USA

0.4

0.3
1

Density
0.2

0.1

0.0

- r 1T "1t " /0’0
-6 -4 -2 0 2 4 6

Discriminant function 1

FIGURE S1.
versus USA trees. Right: simulated birth—death trees.

uniquely define a tree. Let V be a new vector, whose
first k components are various summary features or
other properties. Here, let V(1) be the ratio of the mean
terminal branch length in a tree to the mean internal
branch length. This captures how “star-like” a tree is,
where star-like trees have long-terminal branches and
short-internal ones. Let the remaining components of V
be the counts of the labels, as we have done throughout:

number of 1s, 2s, 3s, and so on. Then the metric d is

d(Ty, T)=|w-V* —w- VY|

L
= | @oVi—w VIR +Y wi(of—v)2, (1)
i=1

where superscripts refer to which tree a,b the entry is
from, and subscripts 1 and i refer to the entry of the

vector. d is Euclidean because it is the standard Euclidean
distance between two vectors. The weights w should be
chosen to reflect the desired weighting and the natural
scaling of different variables; the counts in v are integers
and the natural unit is “number of occurrences”; to
compare these to branch lengths in substitutions per site
requires a scaling choice. In Fig. 54, we use a weight of
wp=1and w; =0.00067 for all i, to compensate for the fact
that the mean branch length is much less than 1. Figure S4

illustrates that metric d retains the shape separation and
additionally identifies similarity between outliers in the
length statistic.

EXTENSION TO MULTIFURCATIONS AND SAMPLED ANCESTORS

A polytomy, or multifurcation, is an internal node with
more than two children. In extending the scheme to
handle polytomies, we also extend it to allow for internal
nodes with only one child.

We first explicitly work out the case where the
maximum size multifurcation is 4. Let 0 be the empty
tree. Nodes may have 0, 1, 2, 3, or 4 children, and we
write a general tree as (k,j,/,m), where k, j, I, and m
are the labels of the four trees descending from the
root. Some of these may be empty (0) as not every

Density

Discriminant function 1

Discriminant analysis of principal components: One principal component separates the groups of trees in both cases. Left: tropical
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Multidimensional scaling plot comparing the trees from the simulated birth—death process. Lower: Tree shapes that distinguish

the two groups as determined by discriminant analysis of principal components. Color represents groups in the lower panel, so the blue subtrees
are more prevalent among the trees with Rg =5 and the red more prevalent in Ry =2. The trees’ integer labels correspond to the labeling scheme.
Depth of color corresponds to Sackin imbalance, with darker shading corresponding to higher imbalance.

node is a 4-fold polytomy. As in the binary case, we
use the convention that k>j>[>m, and sort the length
four strings lexicographically. Every possible tree T with
a maximum size multifurcation of four has a unique
label ¢4(T) in this list. We seek to find an explicit
expression for the label ¢4(T)—the order in the list—for
the tree (k,j,I,m). We begin by fixing k and finding how
many such labels there are, going from (k,0,0,0) up to
(k,k,k,k). Summing these over m < k will give the explicit
expression for the label.

The number of possible labels in the scheme with four
characters, starting with k and sorted lexicographically,
is (1%). To see this, note that each (k,j,1,n) with k>j>
I>m can be thought of as a path on a lattice, starting on
the left at height k and descending to height 0 after three
horizontal steps. The path has a total length of k 4-3 steps,
and of these, three must be steps to the right and k must
be downward. The number of such paths is the number
of ways of placing three rightwards steps amongst k+3

steps, that is (I%). Extending this, we obtain the label
¢4 of the tree (k+1,0,0,0), noting that ¢4(k,k,k, k) is the
sum of the numbers of labels beginning with 1, 2, ... k.

¢a(k+1,0,0,0)=1+da(k,k,k.k) (and we write 1 as (3)):
k

¢4(k+1,0,0,0)=2(x+3).

x=0 3

Rewriting the sum and making use of the identity
Zk—i—c (Z) _ (k+c+1) _we have

y=0 c+1
k k+3
x+3 ]
¢4(k+1,0,0,0)=2< 3 >=Z(3)
x=0 y=3

To obtain ¢4(k,j,I,m), we note that

dalk.j.1,m)=04(k.0,0,0)+¢3(},0,0)+ 2 (1, m)

(where ¢, is not precisely the same form as in the main
textbecause here we allow for nodes with only one child).
Following the same logic, this is

. k+3\  [(i42\ [I1+1
¢4(k,],l,m)=< I )+<]“; >+<J; )+m

As in the binary case, the labels will grow unfeasibly
large, butin principle this is a bijective map between trees
whose maximum size polytomy is 4 and the nonnegative
integers.
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Two standard tree summary statistics, the Sackin imbalance and the number of cherry configurations, in the tropical and USA flu

trees, the simulated birth—death trees with different values of the basic reproduction number Ry and in the trees from different random models.

Naturally, there is nothing special about size four
polytomies. If the maximum size is c, the scheme is

“(xi+i—1
(])C(vaxC—laxC—Zs'~7-x1):Z( ! l )

i=1

MATHEMATICAL EXTENSIONS MAPPING TREES TO THE INTEGER
AND RATIONAL NUMBERS

Addition and Multiplication of Tree Shapes Defined by the
Mapping
Natural metrics associated with the labeling scheme
are all based on the bijective map ¢ between the tree
space T and the natural numbers N. Composing ¢ with
bijective maps between N and other countable sets like
the integers (Z), the positive rational numbers (Q*), or

the rationals (Q) opens up further possibilities because
we can take advantage of the properties (addition,
multiplication, distance, etc) of integer and rational
numbers. If | is a bijective map between N and one of
these sets, then the composition yo¢ is also bijective,
and we can use it to define addition and multiplication
operations on trees:

T1®Tr =0 (W(O(T1)) +W($(T2))).
T1®To =0 (W(O(Th)) - W($(T2))).

where + and - are the usual addition and multiplication.
Now the space of trees together with these definitions
of addition and multiplication, (T,®,®), inherits all
the algebraic properties of the set it is mapped into.
For instance, (T, @D, ®) is a commutative ring if {:N—
Z. These constructions allow algebraic operations in
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FIGURES4. Multidimensional scaling plot derived from distances d,
containing a weighted combination of the shape distance and a length-
based comparison of the ratio between the mean terminal branch
length and the mean internal branch length in each tree.

the tree space T. However the choice of the map
determines whether these operations are “meaningful”
or “helpful” for applications of branching trees in
biology or other fields. It turns out that the selection of
a meaningful map is challenging.

For example, we can use the labeling scheme to map
tree shapes to the (positive and negative) integers. We
first extend ¢ with ¢$(0)=9¢, that is the empty tree no
tips. Consider the following well-known map between
Nand Z:

% if n is even

—”zil ifnisodd -

VYz:n—
Yz is clearly bijective: Each tree shape is mapped to a
unique integer and each integer corresponds to a unique
tree shape. A representation of 10 trees is provided in
Fig. S5. To "add" or "multiply" trees, we can add or
multiply their corresponding integers and then invert, as
in Equation (2). This may seem intuitive for small trees;
for example the sum of tree number 3 and tree number
—1 gives tree number 2 which has one fewer tip than
tree number 3. For larger trees, however, addition and
multiplication operations are less intuitive and do not
follow the numbers of tips. This map has the advantage
of simplicity but results in a large distance between trees
differing by one tip.

Mapping Tree Shapes to the Rational Numbers

We use the map to the integers, and a map to
the rational numbers, to define a convex metric on
tree shapes. Convexity is the property that there is
a point directly in between two other points (so that
equality holds in the triangle inequality). Define the
following map from N to Q: Yg+:n— ]_[?ilp;m(ai) if n>
0, or 0if n=0. Here, p; are all the prime numbers and

201" is the unique prime decomposition of n+1. 7
is as defined above, mapping the positive integers to all

integers. For example ¢@+(11)=2¢Z(2)3W(1) =2-131=
2/3. Y+ is injective, from the uniqueness of the prime
factorization and the injectivity of {r7. Therefore it is also
bijective, because N and Q" have the same cardinality.
Therefore g+ op maps tree shapes bijectively to the
nonnegative rational numbers. In turn, T inherits all of
the properties and structure of Q*. A distance metric D
on T can be defined from the usual distance |-| of Q:

D(T1,T2) =W+ (6(T1)) — W+ (6(T2)) |-

Because the absolute value is a convex metric in Q, this is
a convex metric on unlabeled tree shapes. It can be used
to find averages of a set of trees.

Figure S5 illustrates tree shapes together with their
labels under the map .

A Convex Metric on Tree Shapes

Mapping tree shapes to other sets of numbers can
help us to capture the space of tree shapes in new
ways. A particularly nice property of a metric space
is convexity—if given two trees T; and T, there
exists a tree T3 lying directly between them, that
is d(T1,T3)+d(T3,Tp)=d(T1,T,). Convex metrics are
appealing because in a convex metric on tree shapes we
can find the average tree shape for a set of trees, define
a center of mass shape, and further develop statistics on
the space of tree shapes.

We use the labeling scheme and a pairing of maps
to construct a convex metric on tree shapes. To do this,
we map tree shapes to the rational numbers, where the
usual absolute value function is a convex metric (as there
is always a rational number directly in between any
two others). We use the prime decomposition, that is
the unique product of prime factors of a number (e.g.,
10=2.5). For a tree shape corresponding to integer 7,
we apply {7 to the exponents of all the prime factors of
n+1,and multiply the result (see Methods). For example
Vo+(19)= 2¥z@)502(1) —215-1 =2 /5 We denote this map
g; it takes each integer to a unique rational number,
and vice versa (bijective). Applying Vg+o¢ to tree
shapes maps them bijectively to the nonnegative rational
numbers. We can add or multiply trees’ corresponding
rational numbers to perform operations in the space of
tree shapes. In particular, we can use the usual absolute
value distance function to define a convex metric space
of tree shapes (T, D):

D(T1,T2) =W+ (6(T1)) — W+ (d(T2)) |-
In this space, we can find the average tree of a group
of trees, and a “direct path” between two trees. Given n
trees, the average tree is:
Tu=0"oug! (—Z?ﬂ b °¢(Ti)> |

In other words, the average of a set of trees is the
tree corresponding to the average of the trees’ rational
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FIGURE Sb.
of 0 which corresponds to the “empty tree”.
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Some trees and their associated integers using the map {7 of Example 1. The numbering goes from —5 to 5, with the exception

Tree number 4 Tree number 5

—
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Tree number 7/17 Tree number 8/17

—L=
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Average tree: 6/17

FIGURE S6.

—1=

Trees associated with the rationals 4/17, 5/17,7/17, 8/17, using the map in Example 2. Because the natural distance is convex in

Q™ it is possible to find the “average” tree, which is the one mapped into 6/17. Moreover, trees mapped to 5/17, 6/17 and 7/17 are part of the

direct path between the trees mapped to 4/17 and 8/17.

numbers under the map we have defined. Figure S6
illustrates this operation.

There are infinitely many ways that we could map tree
shapes to rational numbers and we have chosen one that
is relatively easy to write down explicitly. Any of them
would give rise to a convex metric on the set of tree
shapes. It would be most desirable if the resulting metric
had some intuitive features—for example, if the trees
lying directly between trees T1 and T, (with n1 and n;
tips) had an intermediate number of tips between 7 and
ny inclusively. The convex metric we have constructed
does not have this property, and indeed, since the path

between any two rationals traverses a countable infinity
of other rationals, but there is a finite number of trees
with between 71 and ny tips, no such metric can exist.
This convex metric also relies on the prime factorisation
of the tree labels, which is a challenge if large labels are
encountered.
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