
G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 41–52, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Metrics Suite for Evaluating Flexibility and
Complexity in Service Oriented Architectures

Mamoun Hirzalla1, Jane Cleland-Huang2, and Ali Arsanjani3

1 DePaul University and IBM
mhirzall@cs.depaul.edu

2 DePaul University
jhuang@cs.depaul.edu

3 IBM
arsanjan@us.ibm.com

Abstract. Service Oriented Architecture (SOA) is emerging to be the predomi-
nant architectural style of choice for many organizations due to the promised
agility, flexibility and resilience benefits. However, there are currently few
SOA metrics designed to evaluate complexity, effort estimates and health status
of SOA solutions. This paper therefore proposes a SOA metrics framework
which includes both service level and SOA-wide metrics to measure design and
runtime qualities of a SOA solution. The SOA-wide metrics predict the overall
complexity, agility and health status of SOA solutions, while service level
metrics focus on the fundamental building blocks of SOA, i.e. services. The
combined views deliver a compelling suite of SOA metrics that would benefit
organizations as they consider adopting SOA. These metrics, which are based
on observations of many SOA engagements, are illustrated through a case study
that describes a recent ongoing project at IBM where SOA was utilized to build
the solution assets.

Keywords: SOA metrics, SOA complexity, agility, flexibility, SOA health.

1 Introduction

Service Oriented Architecture (SOA) is becoming an increasingly popular architec-
tural style that focuses on providing the right tools and methods for building distrib-
uted applications. The fundamental building blocks of SOA are repeatable business
tasks realized as services and implemented in a variety of distributed components
such as CORBA, EJBs and web services [9].

From a business perspective, one of the primary objectives of SOA-based systems
is the alignment between business and IT and the flexibility and business agility that
SOA injects into an organization [9]. This is achieved through systematically design-
ing and building a SOA-based solution using a method such as SOMA, invented and
initially developed in IBM [7]. SOMA defines key techniques and provides prescrip-
tive tasks and detailed normative guidance for analysis, design, implementation, test-
ing, and deployment of services, components, flows, information, and policies needed

42 M. Hirzalla, J. Cleland-Huang, and A. Arsanjani

to successfully design and build a robust and reusable SOA solution in an enterprise
[7]. However SOMA, like other SOA-based methodologies, does not provide tech-
niques or metrics for measuring underlying complexity and flexibility qualities of a
SOA-solution.

This paper therefore proposes a new suite of metrics, designed specifically to
evaluate flexibility and agility versus complexity of a SOA solution. The set of met-
rics can be used to provide a diagnosis for the health of a SOA solution by providing
information about services used within a SOA solution, their composition interfaces
or provided operations, architectural decisions, flexibility, agility and complexity. The
term “health” of SOA solutions is not limited to the metrics or characteristics identi-
fied in this paper. Obviously, there are other elements that must be considered to
determine the overall health of a SOA solution. SOA Governance with its emphasis
on security, management and testing is a major factor to consider when evaluating
such a question. This paper will focus on the architectural considerations as they per-
tain to the “health” factor.

The proposed SOA metrics are grouped into two major categories: design-time
SOA metrics and run-time SOA metrics. Table 1 summarizes the metrics categories
and their applicability.

Table 1. Individual Design-time and Run-time SOA Metrics

Classification Metric Name Metric Applicability
Design-time Weighted Service Interface Count (WSIC) Service
Design-time Stateless Services (SS) Service
Design-time Service Support for Transactions (SST) Service
Design-time Number of Human Tasks (NHT) Service
Run-time Number of Services (NOS) SOA Solution
Run-time Service Composition Pattern (SCP) SOA Solution
Run-time Service Access Method (SAM) SOA Solution
Run-time Dynamic vs. Static Service Selection (DSSS) SOA Solution
Run-time Service Realization Pattern (SRP) Service
Run-time Number of Versions Per Service (NOVS) Service

These metrics were identified as a result of experiences gained from engaging in

building numerous SOA solutions. More traditional object-oriented (OO) metrics can
also be used to evaluate the internal complexities of individual services [6]. Although,
each metric is individually reported, results are also aggregated in terms of three indi-
ces, a general SOA Complexity Index (SCI), a Services Complexity Index (SVCI),
and a Flexibility and Agility Index (FAI). Table 2 provides a list of the proposed SOA
indices and their descriptions.

These metrics can be captured as part of the SOMA lifecycle. Design-time metrics are
gathered during the identification, specification, and realization phases, while runtime
metrics are gathered during implementation and deployment. Furthermore, metrics collec-
tion is not difficult, because metrics can be automatically collected through inspecting
SOA artifacts such as a service’s Web Service Description Language (WSDL) file,
Choreography Description File (CDL), related policies documents, or through in-
specting SOAP messages and source code.

The remainder of this paper is laid out as follows. Section 2 provides a survey of
SOA metrics, and explains why OO metrics are useful yet insufficient for measuring

 A Metrics Suite for Evaluating Flexibility and Complexity in SOA 43

SOA solutions. Section 3 introduces and describes SOA design-time metrics. Section 4
introduces and describes SOA runtime metrics. Section 5 demonstrates the usefulness of
the metrics through a case study taken from a recent ongoing project that utilized SOA
to build the solution assets. While this case study does not empirically validate the pro-
posed metrics, it illustrates how they could be reasonably used to evaluate the complex-
ity and agility of a SOA solution and provide some indications regarding the health of a
SOA solution. Finally, section 6 concludes with a discussion for future work.

Table 2. Aggregate SOA Indices

SOA Index Description

SOA
Complexity
Index (SCI)

Measures the inherent complexity of the SOA solution including its security,
management and SOA governance measures, all of which offer significant benefits but
also increase the complexity of the overall SOA

Services
Complexity
Index
(SVCI)

Measures complexity, but looks at the individual complexities of each of the composed
services

Flexibility
and Agility
Index (FAI)

Tracks the flexibility and agility of the SOA solution, which represent SOA’s primary
objective to bring business agility and flexibility to an organization [4]

2 Background Information

Measurement is an important component of any process improvement initiative.
Software metrics enable qualities of interest to be measured and evaluated, in order to
identify potential problems, and to provide insight into the costs and benefits of a
potential solution. Unfortunately current SOA metrics are relatively immature and
tend to suffer from many of the problems previously identified by Chidamber and
Kemerer in respect to early OO metrics. These problems include lack of desirable
measurable properties, over generalization, focus on specific technologies, and collec-
tion difficulty [6].

Although OO metrics [6] can be used to measure the internal complexity of a ser-
vice built on the OO paradigm; they are not sufficient for measuring more global
SOA qualities. A few researchers have proposed various SOA metrics. For example,
Liu et al. [2] developed complexity and attackability metrics and showed that com-
plexity has a negative impact on security. Their Average Service Depth metric com-
putes the average number of dependency relationships per atomic service node, as
representatives of various software capabilities within a system. Rud et al. [1] focused
on the infrastructure and performance aspects of SOA solutions and identified many
SOA metrics that are granular in nature. These metrics were classified into the three
major areas of complexity, criticality and reliability, and performance metrics. They
identified a relationship between complexity of a service and amount of time required
to build such a service. Qian et al. [3] developed decoupling metrics for SOA soft-
ware composition such as Average Service State Decomposition (ASSD), Average
Service Persistent Dependency (ASPD) and Average Required Service Dependency
(ARSD), and used it to evaluate decoupling between service-oriented components in

44 M. Hirzalla, J. Cleland-Huang, and A. Arsanjani

the service composition such as Business Process Execution Language (BPEL); a
useful set of metrics that should be considered for loose coupling considerations as
part of the health status of SOA solutions.

Unfortunately, none of these metrics provide a comprehensive approach for meas-
uring flexibility and agility which represent significant factors in the short and long-
term success of a SOA solution. In contrast, the metrics proposed in this paper are
specifically designed to evaluate the impact of SOA architectural decisions upon the
flexibility, agility and complexity of a SOA solution.

3 SOA Design-Time Metrics

The four metrics defined in this section measure the flexibility, agility, and complex-
ity of the solution in respect to design time decisions. The metrics are independent of
the underlying code, and could be applied to either JEE web services or .Net services.
Metrics are first computed for individual services and then compiled into a more
global metric and applied to the FAI, SVCI, and SCI indices.

Metric 1: Weighted Service Interface Count (WSIC)

Definition: WSIC = The weighted number of exposed interfaces or operations per
service as defined in the WSDL documents. The default weight is set to 1. Alternate
weighting methods, which need to be validated empirically, can take into considera-
tion the number and the complexity of data types of parameters in each interface. In
the default case, WSIC simply returns a count of the number of exposed interfaces or
methods defined in the WSDL documents.

Hypothesis: The higher the number of service interfaces the more complex a service
becomes and by association the more complex a SOA solution becomes. In addition,
there is a direct relationship between the complexity of the exposed interfaces and the
complexity of the data structures required per interface.

Observations: The greater the number of defined interfaces per service within a SOA
solution the more complex a service becomes due to the following factors. (i) The
amount of work required to specify, construct and test every interface on the service
increases. (ii) The amount of monitoring required to ensure that service level agree-
ments (SLAs) are met increases with every invocation of an interface. (iii) With the
increase in complexity of individual interfaces of the data structures for a given ser-
vice, performance and problem determination concerns may become a primary issue.
Performance and root cause issues are hard to predict and diagnose.

Impact on defined indices: Both SVCI and SCI increase as WSIC increases. There
is no impact on the FAI index.

Metric 2: Stateless Services (SS)

Definition: SS = The fraction of services which are stateless (SLS) as opposed to
stateful (SFS) as defined in the Web Services Resource Framework (WS-RF) [8] or
WS-Context [12]. SS = SLS / (SLS + SFS).

 A Metrics Suite for Evaluating Flexibility and Complexity in SOA 45

Hypothesis: Developing stateful web services is much harder than developing state-
less web services and therefore increases the complexity of a given service.

Observations: Both WS-RF and WS-Context define how to support stateful interac-
tions while using the web services programming model. WS-RF follows a resource-
based approach to support state, while WS-Context uses a context that resembles
shared state management across different interacting web services. Regardless of
which approach is used, supporting transactions in web services will add an additional
layer of complexity to programming web services. Complexity also increases with an
increase in the number of web services that are participating in a stateful interaction.

Impact on defined indices: SVCI increases as the raw count of SFS services in-
crease. Both SCI and FAI increase with decreased SLS values, i.e. when the fraction
of stateless services increases. SCI would increase by a higher value if SLS fraction of
stateless services decrease compared to stateful services.

Metric 3: Service Support for Transactions (SST)

Definition: SST = The fraction of transaction-aware services (TAS) in relation to the
overall number of transaction-aware and non-transaction aware (NTAS) services
within the SOA solution. SST = NTAS/(NTAS+TAS)

Hypothesis: Web services supporting transactions are more complex to build and as a
result increase the overall complexity of SOA solutions.

Observations: Traditional transaction systems use a two-phase commit protocol to
achieve atomicity between transaction participants. Support of transactions in web
services is accomplished through support of the WS-TX specification which includes
the WS-Coordination, WS-Atomic Transaction and WS-Business Activity specifica-
tions [10]. The WS-TX specification requires additional code that needs to be included
in the body of a web service and its invoking client. In order to maintain consistency of
transactions, compensating transactions are required to provide correct compensation
actions. Furthermore, the coordination between transaction-aware services requires
additional effort that injects additional complexity into building transaction-aware
services and SOA solutions.

Impact on defined indices: SVCI increases as the raw count of transaction-aware
services increase. SCI increases as SST values increase, i.e. when the fraction of
transaction-aware services increases. FAI is relatively unaffected by support for trans-
actions in web services. However, extensive use of transactions is likely to constrict
how flexible and agile a SOA solution becomes.

Metric 4: Service Realization Pattern (SRP)

Definition: SRP = The fraction of services that are realized through Indirect Exposure
(IE) in respect to the total number of services that are realized using both IE and Di-
rect Exposure (DE). SRM = IE /(IE+DE)

Hypothesis: The more indirect exposure service realizations in SOA solution, the
more complex a service becomes and by association the more complex a SOA solu-
tion becomes.

46 M. Hirzalla, J. Cleland-Huang, and A. Arsanjani

Observations: There are many service realization patterns that can be used for expos-
ing and using services including the two primary patterns of Direct Exposure (DE)
and Indirect Exposure (IE). DE refers to exposing current IT systems or modules as a
service without having to go through an intermediary component. For example, a
stored SQL procedure could be turned into an information service directly by wrap-
ping it through a web service and exposing the web service to consuming clients.
Indirect Exposure, on the other hand, refers to exposing current IT systems or a mod-
ule as a service by going through an intermediary component such as an EJB. Direct
Exposure services provide a much faster method for creating and invoking services.
They also require less time to decide on appropriate interfaces since they tend to
match the interfaces that can be exposed from the legacy asset. Direct Exposure ser-
vices also require less time to develop and test due to the direct connectivity with the
backend system. In comparison, Indirect Exposure realization of services entails addi-
tional IT components to mediate between a service and an IT asset. While this pro-
vides additional flexibility to the overall SOA solution, it also increases the time to
build and test such services, and requires additional management and monitoring
steps to ensure services and their associated components are functioning properly.

Impact on defined indices: SVCI increases with the use of IE realization of services
and decreases with the use of DE realization. SCI will increase with the increase in
the value of the SRP. The higher the ratio of DE to IE realizations, the less complex-
ity. This is inversely related to the ratio of IE services to the overall number of both
DE and IE services. In other words, the lower the ratio, the less complexity. FAI de-
pends on the ratio of DE services to the overall number of both DE and IE services.
The lower the ratio, the more flexible and agile a SOA solution will be. This is in-
versely related to the ratio of IE services to the overall number of both DE and IE
services. In other words, the lower the ratio, the less complexity.

Metric 5: Number of Human Tasks (NHT)

Definition: NHT = The fraction of tasks as part of a business flow that are manual.

Human Tasks (HT) in a process flow are important due to their need in real life sce-
narios. For example, a business process flow can invoke many services to automate a
banking process that requires the final verification of an auditor through a human
interaction. The judicious use of human tasks within a process is accepted as a fact of
life. However, with the increased use of human tasks, we end up with less flexible
processes within a SOA solution. NHT is computed as NHT = HT/(HT+AT) where
AT refers to an automated task.

Hypothesis: The use of too many Human Tasks in a SOA solution increases com-
plexity and decreases flexibility of a SOA solution.

Observations: BPEL defines business processes as collections of activities that
invoke services. BPEL doesn't distinguish between services that are provided by ap-
plications and other interactions, such as human interactions. From our metrics per-
spective, any human task that is being executed as part of a BPEL flow within a SOA
solution will have an impact on both complexity and flexibility.

 A Metrics Suite for Evaluating Flexibility and Complexity in SOA 47

Impact on defined indices: There is no direct impact on the service complexity due
to the use of human tasks. However, the maintenance issues associated with manual
tasks will increase the overall complexity of such tasks and therefore increasing the
overall value of the SCI. In addition, too many human tasks will negatively impact the
flexibility and agility of the overall SOA solution and decreases the value of the FAI.

4 SOA Run-Time Metrics

SOA run-time metrics measure the overall complexity and agility of a SOA solution.
As a result, SOA metrics help in achieving the overall objective of exposing overly
complex SOA architectures and provide insights into the flexibility factor of a SOA
solution. In order to calculate the SOA run-time metrics, multiple SOA components
are considered such as ESB, registry, and SOA governance.

Metric 6: Number of Services (NOS)

Definition: NoS =Total number of services that comprise a SOA solution

Observations: Greater numbers of services increase the complexity of a SOA solu-
tion due to the following factors. (i) An increase in the amount of work required to
identify, specify, create, test, deploy and maintain such services. (ii) The need to pro-
vide better SOA Governance and service lifecycle management for the services within
a SOA solution becomes more critical as the number of services used within a SOA
solution increase. (iii) The increased number of services within a SOA solution usu-
ally places additional demand on the SOA infrastructure where services are deployed
to meet service level agreements (SLAs) and scalability requirements.

Hypothesis: The higher number of services within a SOA solution, the more complex
a SOA solution becomes.

Impact on defined indices: SVCI is not impacted. SCI increases as the number of
services increase.

Metric 7: Service Composition Pattern (SCP)

Definition: SCP = The fraction of web services which are composite.
An Atomic Service (AS) is a web service that can stand on its own and does not re-
quire the use of other web services to complete its functionality. In contrast Composite
Services (CS) are composed of other web services through aggregation, also referred to
as structural composition [12] (CSs), or at runtime through invocation and orchestra-
tion of services through use of a workflow (CSwf). SCP is computed as SCP = CS /
(AS + CSs + CSwf) and can be further refined according to the composition method.
SCPs measures the fraction of composite services constructed using aggregation, while
SCPwf measures the fraction composed at runtime. These two metrics are defined as
follows: SCPs = CSs / (AS + CSs) and SCPwf = CSwf / (AS + Cswf).

Hypothesis: The use of composite services in a SOA solution increases both com-
plexity and flexibility of a SOA solution.

Observations: Service orchestration refers to the collaboration among services that is
driven by a central component or workflow engine, while service choreography refers

48 M. Hirzalla, J. Cleland-Huang, and A. Arsanjani

to the collaboration among different parties that are each responsible for one or more
steps of service interaction. The complexity of choreography stems from the fact that
no central entity controls the process as a whole and therefore gleaning insight into
the overall picture of the process status requires additional effort. Managing the state
of service choreography often leads to complications due to the many events that need
to be triggered and correlated to ensure proper execution of business functionality.

Impact on defined indices: There is no impact on the SVCI for an atomic service.
However, structural composition will increase the value of the SVCI. An increase in
SCP leads to an increase in both FAI and SCI.

Metric 8: Service Access Method (SAM)

Definition: SAM = The fraction of services accessed using a virtualization layer,
referred to as Virtualized Access Services (VAS), in respect to the total number of
services that are VAS or accessed point to point(PPS). SAM = VAS / (VAS + PPS)

Hypothesis: Virtualized access to services within a SOA solution increases the flexi-
bility and agility of a SOA solution but also increases its complexity.

Observations: Services can be accessed directly by an invoking client or through a
broker component, referred to as an Enterprise Service Bus (ESB) which looks up the
address of required services through a registry component, retrieves the Web Service
Definition Language (WSDL) file, and then binds to that service during the invocation
process. The ESB in essence provides a virtualization layer so that invoking clients do
not need to know individual physical addresses of services. The ESB is responsible for
routing and translating requests and responses among service requestors and service
providers. The method of invocation will be referred to as Virtualized Access Services
(VAS). The invocation of services also plays a role in the level of complexity associ-
ated with this metric. Services that are invoked directly are considered point to point
(PPS) connections and are harder to maintain. On the other hand, services invoked
through an ESB are easier to maintain but more complex to setup, because adding an
ESB component to the overall SOA solution is not a simple task. It requires proper
planning and design of the ESB and interacting services. The inclusion of a service
registry is not considered a factor for this metric since it is dependent on the level of
SOA governance and management required as part of the overall SOA solution, and is
likely to be introduced when the number of services exceeds a threshold level.

Impact on defined indices:

There is no impact on SVCI. Over the long-term SCI decreases as SAM increases, i.e.
use of point to point connections increase. FAI also decreases as SAM increases.

Metric 9: Dynamic vs. Static Service Selection (DSSS)

Definition: DSSS = The number of services that are selected dynamically (DS) over
the total number of services that are selected dynamically or statically (SS).
DSSE = DS/(DS+SS).

Hypothesis: The more dynamic selection of services for execution within a SOA
solution the more complex, flexible and agile a SOA solution becomes.

 A Metrics Suite for Evaluating Flexibility and Complexity in SOA 49

Observations: Service consumers can invoke services through the typical stub and tie
classes that are generated by the available tools in the market place. However, there are
instances where the business logic requires a truly dynamic method for invoking the
proper service based on a business rule that mandates a better service for a platinum-level
customer to maintain their loyalty. In such scenarios, having a broker in the middle and
the proper advertising of available services becomes mandatory. For this kind of sce-
nario, the ESB and registry along with service monitoring software will play a significant
role. However, it increases the overall complexity of maintaining a SOA solution. As
Dynamic service invocation provides better flexibility and agility since a process can
adapt much quicker than a process those hard codes static locations of services.

Impact on defined indices: There is no impact on SVCI. The higher the ratio of SSE,
the higher the complexity of a SOA solution; SCI therefore increases as SSE in-
creases. Moreover, the higher the ratio of SSE, the more flexible a SOA solution.

Metric 10: Number of Versions per Service (NOVS)

Definition: NOVS = The total number of versions over the total number of services
within the SOA solution. NOVS = VERSIONS / SERVICES

Hypothesis: The higher the number of service versions the more complex a service
becomes and by association the more complex a SOA solution becomes.

Observations: The number of versions available in production per service is depend-
ent on the level of change that services undergo while they are in production. It may
signal an unstable service interface in the first place and a situation where services
were rushed into production. The greater the number of available versions per service
within a SOA solution the more complex a service becomes due to the following
factors. (i)The amount of work required to keep track of service versions and their
associated clients. Multiple service versions may also provide different SLAs for
different consumers. The SOA Governance and management aspects of tracking ser-
vice versions will become harder with every new service version that is maintained.
(ii) The amount of regression testing required per service version increases if a com-
mon defect is discovered in one of the service versions. Therefore, additional time is
required in order to ensure that all service versions are operating uniformly for similar
business logic. The proliferation of many versions for the same service may point to
lack of proper design that considers the level of reuse required. Reusable services tend
to be more carefully planned, designed and implemented.

Impact on defined indices: Both SVCI and SCI increase as NVS increases. There is
no impact on FAI.

5 Case Study

The metrics described in this paper still need to be empirically evaluated across multi-
ple SOA applications to determine if they are complete and relatively non-redundant.
In this section we briefly describe their use in a case study which is representative of
multiple internal projects developed at IBM. The customer in the case study is a bank
that is considering a SOA solution to address some of the primary pain points related to
its Account Open business process. The current process was riddled with manual tasks

50 M. Hirzalla, J. Cleland-Huang, and A. Arsanjani

that were causing the Account Open process to extend to 14 days instead of 10 minutes
as offered by the bank’s primary competitors.

One of the primary business objectives of the bank’s SOA Solution was to inject agil-
ity and flexibility into the Account Open business process while trying to minimize com-
plexity of the overall SOA solution. At a high level, the Account Open business process
consisted of two primary sub-processes: Account Verification and Account Activation.

SOMA was used to model the optimized business process and identify and specify
the services needed to realize the new business process vision. Candidate services
were identified using SOMA’s top down and bottom up approaches and SOMA’s
service litmus test (SLT) was applied to rationalize and verify candidate services.
These services were developed from existing assets or else programmed from scratch.
The SOA solution was built in three iterations. The first iteration of service creation
focused on creating new services that were used to automate previous manual tasks
such as credit check and address validation. The second service connectivity iteration
focused on integrating disparate systems within the bank through the incorporation of
an ESB to virtualize access to services and enhance the overall flexibility of the solu-
tion. Finally the Interaction and Collaboration iteration provided an enhanced user
interface to the web channel by incorporating the automated steps of the newly opti-
mized Account Open business process with the created services.

Fig. 1. Account Open SOA Solution Stack

Figure 1 provides a quick overview of the solution stack for the SOA solution.
Identified services were utilized through the business process layer. Some services
used the indirect exposure realization pattern while other services connected directly
to backend systems. The solution stack does not reflect the physical architecture of
the solution. The physical architecture of the solution included a layer for the ESB to
virtualize access to services.

Table 3 provides an overview of the services used for the Account Open SOA solu-
tion. The Interaction and Collaboration (I&C) iteration was the most complex due to the
total number of services used within the iteration and the utilized service realization

 A Metrics Suite for Evaluating Flexibility and Complexity in SOA 51

patterns. The (I&C) iteration’s SRP metric value is equal to 1 which is the highest value
for the metric. This indicates higher complexity levels for service development since
services are using an additional indirection layer to complete their capabilities. On the
other hand, flexibility and agility index is higher for the same indirection reasons men-
tioned earlier due to the loose coupling that indirect exposure injects into a SOA solution.

Table 3. Services and metrics from the Open Account case study

Notes:
- All services were stateless, provided no support for transactions, had only a single version, and utilized

virtualized access. These columns are therefore not shown in the table.
- The NOS metric column contains two values since the metric distinguishes between the ratios of external

services vs. internal services relative to the overall number of services.

The I&C iteration produced less flexibility due to the existence of a manual human

task, however this was seen as a necessary tradeoff because a human needed to verify
the final steps of the account for a certain percentage of applicants. This is compen-
sated for by the SRP metric since all I&C iteration service realization patterns are done
through indirect exposure which provides looser coupling for the overall SOA solution.

The determination of health of the SOA application based on the short analysis that
was completed is a more complex question given the limited amount of data. As indi-
cated earlier in this paper, additional SOA governance parameters need to be evalu-
ated. However, from the limited information that we collected for this case study,
there are no red flags that can be raised to indicate an unhealthy behavior or any ma-
jor issues with the health of the given SOA solution.

6 Future Work

The primary contribution of this paper is the proposed set of metrics that should be
tracked and measured for every SOA engagement so that better insight can be gleaned
into the complexity, agility and flexibility of the SOA application. However, one of the
common problems with new metrics suite is the difficulty of empirically validating and
calibrating them across a number of projects. For example, the case study demonstrates

52 M. Hirzalla, J. Cleland-Huang, and A. Arsanjani

the need to weight each metric to provide more accurate complexity, flexibility, and
agility measurements. For example, table 3 shows a slightly higher value of SCP for the
Service Connectivity iteration. It also shows a positive value for DSSS metrics which
tends to increase complexity. By definition, this should have resulted in more complex-
ity for the Service Connectivity which is true. However, from real life experience the
Service Connectivity iteration took longer to accomplish due to increased complexity as
a result of other metrics in the table such as SRP and WSIC. Despite these problems,
this paper has proposed a reasonable set of metrics, identified as a result of observing
numerous SOA deployments. Future work will include empirical assessment of these
metrics and the identification of additional ones in order to build a demonstrably useful
set of SOA metrics for predicting complexity, flexibility, and agility across a broad
spectrum of SOA applications. Additional work is also required to provide clear meth-
ods for calculating the values of the proposed aggregate SOA indices and interpret their
implications in terms of SOA flexibility, agility and complexity.

Acknowledgments. We would like to thank our colleague Russell Hartmann from
IBM for his help in providing the data for the case study.

References

1. Rud, D., Schmietendorf, A., Dumke, R.R.: Product Metrics for Service-Oriented Infra-
structure. In: International Workshop on Software Measurement/Metrikon 2006 (2006)

2. Liu, Y.M., Traore, I.: Complexity Measures for Secure Service-Oriented Software Archi-
tectures. In: The International Workshop on Predictor Models in Software Engineering
(PROMISE 2007) (2007)

3. Qian, K., Liu, J., Tsui, F.: Decoupling Metrics for Services Composition. In: Proceedings
of the 5th IEEE/ACIS International Conference and Information Sciences and 1st
IEEE/ACIS International Workshop on Component-Based Software Engineering, Software
Architecture and Reuse (ICIS-COMSAR 2006) (2006)

4. Arsanjani, A., Allam, A.: Service-Orineted Modeling and Architecture for Realization of
an SOA. In: IEEE International Conference on Services Computing (SCC 2006) (2006)

5. Arsanjani, A., Zhang, L., Ellis, M., Allam, A., Channabasavaiah, K.: S3: A Service-
Oriented Reference Architecture. IT Pro., 10–17 (June 2007)

6. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE Trans-
actions on Software Engineering 20(6), 476–493 (1994)

7. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA: A
method for developing service-oriented solutions. IBM Systems Journal 47(3), 377–396
(2008)

8. Web Services Resource Framework (WSRF), http://docs.oasis-open.org/wsrf/
wsrf-primer-1.2-primer-cd-02.pdf

9. Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison Wesley, San
Francisco (2005)

10. OASIS Web Services Transaction (WS-TX) landing page, http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=ws-tx

11. Ferguson, D.F., Stockton, M.L.: Service Oriented Architecture: Programming Model and
Product Architecture. IBM Systems Journal 44(4), 753–780 (2005)

12. Web Services Context Specification (WS-Context),
 http://xml.coverpages.org/WS-ContextCD-9904.pdf

	A Metrics Suite for Evaluating Flexibility and Complexity in Service Oriented Architectures
	Introduction
	Background Information
	SOA Design-Time Metrics
	SOA Run-Time Metrics
	Case Study
	Future Work
	References

