
476 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 6, JUNE 1994 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A Metrics Suite for Object Oriented Design

Shyam R. Chidamber and Chris F. Kemerer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstruct- Given the central role that software development

plays in the delivery and application of information technology,
managers are increasingly focusing on process improvement in
the software development area. This demand has spurred the
provision of a number of new and/or improved approaches to
software development, with perhaps the most prominent being
object-orientation (00). In addition, the focus on process im-
provement has increased the demand for software measures, or
metrics with which to manage the process. The need for such
metrics is particularly acute when an organization is adopting
a new technology for which established practices have yet to
be developed. This research addresses these needs through the
development and implementation of a new suite of metrics for
00 design. Metrics developed in previous research, while con-
tributing to the field’s understanding of software development
processes, have generally been subject to serious criticisms, in-
cluding the lack of a theoretical base. Following Wand and Weber,
the theoretical base chosen for the metrics was the ontology of
Bunge. Six design metrics are developed, and then analytically
evaluated against Weyuker’s proposed set of measurement prin-
ciples. An automated data collection tool was then developed
and implemented to collect an empirical sample of these metrics
at two field sites in order to demonstrate their feasibility and
suggest ways in which managers may use these metrics for process
improvement.

Index Terms- CR categories and subject descriptors: D.2.8
[software engineering]: metrics; D.2.9 [software engineering]:
management; F.2.3 [analysis of algorithms and problem complex-
ity]: tradeoffs among complexity measures; K.6.3 [management
of computing and information systems]: software management.
General terms: Class, complexity, design, management, measure-
ment, metrics, object orientation, performance.

I. INTRODUCTION

T has been widely recognized that an important component I of process improvement is the ability to measure the
process. Given the central role that software development plays
in the delivery and application of information technology,
managers are increasingly focusing on process improvement
in the software development area. This emphasis has had two
effects. The first is that this demand has spurred the provision
of a number of new andlor improved approaches to software
development, with perhaps the most prominent being object-
orientation (00). Second, the focus on process improvement
has increased the demand for software measures, or metrics
with which to manage the process. The need for such metrics

Manuscript received February zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17, 1993; revised January, 1994. recom-
mended by S . Zweben. This research was supported in part by the M.I.T.
Center for Information Systems Research (CISR), and the cooperation of two
industrial organizations who supplied the data.

The authors are with the Massachusetts Institute of Technology,
E53-315, 30 Wadswonh Street, Cambridge, MA 02139 USA; e-mail:
shyam@athena.mit.edu or ckemerer@sloan.mit.edu.

IEEE Log Number 940 1707.

is particularly acute when an organization is adopting a new
technology for which established practices have yet to be
developed.

This research addresses these needs through the devel-
opment and implementation of a new suite of metrics for
00 design. Previous research on software metrics, while
contributing to the field’s understanding of software devel-
opment processes, have generally been subject to one or more
types of criticisms. These include: lacking a theoretical basis
[4 11, lacking in desirable measurement properties [47], being
insufficiently generalized or too implementation technology
dependent [45], and being too labor-intensive to collect [22].

Following Wand and Weber, the theoretical base chosen for
the 00 design metrics was the ontology of Bunge [51,[61,[431.
Six design metrics were developed, and analytically evaluated
against a previously proposed set of measurement principles.
An automated data collection tool was then developed and
implemented to collect an empirical sample of these metrics
at two field sites in order to demonstrate their feasibility and
to suggest ways in which managers may use these metrics for
process improvement.

The key contributions of this paper are the development
and empirical validation of a set of theoretically-grounded
metrics of 00 design. The rest of this paper is organized
as follows. The next section presents a brief summary of
the research problem, followed by a section describing the
theory underlying the approach taken. Then Weyuker’s list
of software metric evaluation criteria is presented, along with
a brief description of the empirical data collection sites. The
Results section presents the metrics, their analytical evaluation,
the empirical data and a managerial interpretation of the data
for each metric. Some concluding remarks are presented in
the final section.

11. RESEARCH PROBLEM

There are two general types of criticisms that can be
applied to current software metrics. The first category are
those theoretical criticisms that are leveled at conventional
software metrics as they are applied to traditional, non-00
software design and development. Kearney, et al. criticized
software complexity metrics as being without solid theoretical
bases and lacking appropriate properties [21]. Vessey and
Weber also commented on the general lack of theoretical rigor
in the structured programming literature [41]. Both Prather
and Weyuker proposed that traditional software complexity
metrics do not possess appropriate mathematical properties,
and consequently fail to display what might be termed normal
predictable behavior [34], [47]. This suggests that software

0098-5589/94$04.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1994 IEEE

mailto:shyam@athena.mit.edu
mailto:ckemerer@sloan.mit.edu

CHIDAMBER AND KEMERER: A METRICS SUITE FOR OBJECT ORIENTED DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA471

metrics need to be constructed with a stronger degree of
theoretical and mathematical rigor.

The second category of criticisms is more specific to 00
design and development. The 00 approach centers around
modeling the real world in terms of its objects, which is in
contrast to older, more traditional approaches that emphasize
a function-oriented view that separates data and procedures.
Several theoretical discussions have speculated that 00 ap-
proaches may even induce different problem-solving behavior
and cognitive processing in the design process, e.g. [4], [23].
Given the fundamentally different notions inherent in these
two views, it is not surprising to find that software metrics
developed with traditional methods in mind do not readily
lend themselves to 00 notions such as classes, inheritance,
encapsulation and message passing [49]. Therefore, given that
current software metrics are subject to some general criticism
and are easily seen as not supporting key 00 concepts, it
seems appropriate to develop a set, or suite of new metrics
especially designed to measure unique aspects of the 00
approach.

The shortcomings of existing metrics and the need for new
metrics especially designed for 00 have been suggested by
a number of authors. Tegarden et al. and Bilow have called
for theoretical rigor in the design of 00 metrics [40] [3].
The challenge is therefore to propose metrics that are firmly
rooted in theory and relevant to practitioners in organizations.
Some initial proposals for such metrics are set out by Morris,
although they are not tested [31]. Lieberherr and his colleagues
present a more formal attempt at defining the rules of correct
object oriented programming style, building on concepts of
coupling and cohesion that are used in traditional programming
[28]. Likewise Coplien suggests a number of rules of thumb
for 00 programming in C++ [12]. Moreau and Dominick
suggest three metrics for 00 graphical information systems,
but do not provide formal, testable definitions [30]. Pfleeger
also suggests the need for new measures, and uses simple
counts of objects and methods to develop and test a cost
estimation model for 00 development [33]. Lake and Cook
prescribe metrics for measurement of inheritance in C++
environments, and have gathered data from an experimental
system using an automated tool [25]. Other authors, such as
Chidamber and Kemerer, Sheetz, et al., and Whitmire propose
metrics, but do not offer any empirical data [lo], [38], [48].
More recently, Rajaraman and Lyu [35] and Li and Henry
[27] test the metrics proposed in [lo] and measured them
for applications developed by university students. However,
despite the active interest in this area, no empirical metrics
data from commercial object oriented applications have been
published in the archival literature.

Given the extant software metrics literature, this paper has
a three fold agenda: 1) to propose metrics that are constructed
with a firm basis in theoretical concepts in measurement and
the ontology of objects, and which incorporate the experiences
of professional software developers; 2) evaluate the proposed
metrics against established criteria for validity, and 3) present
empirical data from commercial projects to illustrate the char-
acteristics of these metrics on real applications, and suggest
ways in which these metrics may be used. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

111. THEORY BASE FOR OOD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMETRICS

While there are many object oriented design (OOD) method-
ologies, one that reflects the essential features of OOD is
presented by Booch [4].’ He outlines four major steps involved
in the object-oriented design process. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Identification of Classes (and Objects): In this step, key
abstractions in the problem space are identified and
labeled as potential classes and objects.
Identif) the Semantics of Classes (and Objects): In this
step, the meaning of the classes and objects identified
in the previous step is established, this includes defini-
tion of the life-cycles of each object from creation to
destruction.
Identif) Relationships Between Classes (and Objects): In
this step, class and object interactions, such as patterns
of inheritance among classes and pattems of visibility
among objects and classes (what classes and objects
should be able to “see” each other) are identified.
Implementation of Classes (and Objects): In this step,
detailed intemal views are constructed, including defini-
tions of methods and their various behaviors.

Whether the design methodology chosen is Booch’s OOD or
any of the several other methodologies, design of classes is
consistently declared to be central to the 00 paradigm. As
dechampeaux et al. suggest, class design is the highest priority
in OOD, and since it deals with the functional requirements
of the system, it must occur before systems design (mapping
objects to processors, processes) and program design (reconcil-
ing of functionality using the target languages, tools, etc.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[131.
Given the importance of class design, the metrics outlined in
this paper specifically are designed to measure the complexity
in the design of classes.2 The limitation of this approach is that
possible dynamic behavior of a system is not captured. Since
the proposed metrics are aimed at assessing the design of an
object oriented system rather than its specific implementation,
the potential benefits of this information can be substantially
greater than metrics aimed at later phases in the life-cycle of an
application. In addition, implementation-independent metrics
will be applicable to a larger set of users, especially in the
early stages of industry’s adoption of 00 before dominant
design standards emerge. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A . Measurement Theory Base

An object oriented design can be conceptualized as a
relational system, which is defined by Roberts as an ordered
tuple consisting of a set of elements, a set of relations
and a set of binary operations. [36]. More specifically, an
object oriented design, D, is conceptualized as a relational
system consisting of object-elements (classes and objects),
empirical relations and binary operations that can be performed
on the object-elements. By starting with these definitions, the
mathematical role of metrics as a mapping (or transformation)

‘For a comparison and critique of six different 00 analysis and design

’These are therefore static metrics, and they can be gathered prior to

methodologies see [15].

program execution.

478 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 6, JUNE 1994

Empirical Relational System

can be formally outlined. Notationally:

Formal Relational System

where
A is a set of object-elements
RI . . . R, are empirical relations on object-elements of A
(e.g., bigger than, smaller than, etc.)
01 . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Om are binary operations on elements of A (e.g.,
combination) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A useful way to understand empirical relations on a set of
object-elements is to consider the measurement of complexity.
A designer generally has some intuitive ideas about the com-
plexity of different object-elements, as to which element is
more complex than another or which ones are equally complex.
For example, a designer intuitively understands that a class that
has many methods is generally more complex, ceteris paribus,
than one that has few methods. This intuitive idea is defined
as a viewpoint. The notion of a viewpoint was originally
introduced to describe evaluation measures for information
retrieval systems and is applied here to capture designer views
[9 1. More recently, Fenton states that viewpoints characterize
intuitive understanding and that viewpoints must be the logical
starting point for the definition of metrics [14]. An empirical
relation is identical to a viewpoint, and the two terms are
distinguished here only for the sake of consistency with the
measurement theory literature.

A viewpoint is a binary relation . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 defined on a set P (the
set of all possible designs). For P, P’, P” E P, the following
two axioms must hold:

Heights of school children

Relations: Equal or taller than

Child P is taller than Child P’

Binary Operations: Combination:

two children standing atop one

another

P. 2 PI or PI. 2 P(comp1eteness: P is more complex

than P’ or PI is more complex than P)

Real Numbers

Relations: = or >
36 inch child > 30 inch child

Binary Operations: +:
add the real numbers associated with

the two children

This required transformation is accomplished by a metric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp
which maps an empirical system D to a formal system F. For
every element a E D,p(a) E F. It must be noted here that
p preserves and does not alter the implicit notion underlying
the empirical relations. The example below involving a set of
school children illustrates the mapping between an empirical
relational system and a formal relational system [20]:

The empirical relation “Child P is taller than Child PI” in
the above example is transformed to the formal relation “36
inch child > 30 inch child”, enabling the explicit understand-
ing of the heights of school children. The assumption in the
argument for transformation of empirical relational systems to
a formal empirical systems is that the “intelligence barrier”
to understanding of the former is circumvented due to the
transformation [24]. In the example of the school children the
intelligence barrier is small, but the principle is that numeri-
cal representations produced by the transformation to formal
systems help in better understanding the empirical system.
While the exercise of transformation may seem laborious for
the simple example above, it can prove to be valuable in
understanding complexity of software where the complexity
relationships are not visible or not well understood [20].
Design of object oriented systems is a difficult undertaking in

* P. 2 P”(transitivity: if P is more complex part due to the newness of the technology, and the consequent
lack of formal metrics to aid designers and managers in
managing complexity in OOD.

than P’ and P’ is more complex

than PI’, then P is more complex than P”)

i.e., a viewpoint must be of weak order [36].
To be able to measure something about an object design,

the empirical relational system as defined above needs to be
transformed to a formal relational system. Therefore, let a
formal relational system F be defined as follows:

C is a set of elements (e.g., real numbers)

S1 . . . S, are formal relations on elements of C

(e.g., >, <, =) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B1 . . . B,, are binary operations on elements of C

(e.g., +. -, *) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B. Definitions

The ontological principles proposed by Bunge in his “Trea-
tise on Basic Philosophy” forms the basis of the concept
of objects. While Bunge did not provide specific ontolog-
ical definitions for object oriented concepts, several recent
researchers have employed his generalized concepts to the
object oriented domain [42], [44], [46]. Bunge’s ontology has
considerable appeal for 00 researchers since it deals with the
meaning and definition of representations of the world, which
are precisely the goals of the object oriented approach [32].
Consistent with this ontology, objects are defined independent
of implementation considerations and encompass the notions
of encapsulation, independence and inheritance. According to
this ontology, the world is viewed as composed of things,
referred to as substantial individuals, and concepts. The key
notion is that substantial individuals possess properties. A
property is a feature that a substantial individual possesses

CHIDAMBER AND KEMERER: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA METRICS SUITE FOR OBJECT ORIENTED DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA419

inherently. An observer can assign features to an individual,
but these are attributes and not properties. All substantial
individuals possess a finite set of properties; as Bunge notes,
“there are no bare individuals except in our imagination” [5].

Some of the attributes of an individual will reflect its
properties. Indeed, properties are recognized only through
attributes. A known property must have at least one attribute
representing it. Properties do not exist on their own, but are
“attached” to individuals. On the other hand, individuals are
not simply bundles of properties. A substantial individual
and its properties collectively constitute an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAobject [42], [43].
Therefore, an object is not simply a bundle of methods,
but a representation of the application domain that includes
the methods and instance variables that a designer assigns
to that object. Another benefit of this stream of research is
that it provides a formal mathematical approach to dealing
specifically with the key ideas of object orientation.
An object can be represented in the following manner:

X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (~ , p (z)) where z is the substantial iniividual and

p (z) is the finite collection of its properties. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
:I: can be considered to be the token or name by which
the object is represented in a system. In object oriented
terminology, the instance variables’ together with its methods4
are the properties of the object [l].

Using these representations of objects, previous research has
defined concepts like scope and similarity that are relevant to
object oriented systems [5], [42]. Following this tradition, this
paper defines in the paragraphs below two important software
design concepts for object classes, coupling and cohesion.
Intuitively, coupling refers to the degree of interdependence
between parts of a design, while cohesion refers to the internal
consistency within parts of the design. All other things being
equal, good software design practice calls for minimizing
coupling and maximizing cohesiveness. It should be noted that
these definitions are derived from the ontology of objects as
opposed to other sources that have been graph-theory (e.g.,
McCabe [29]), information content (e.g., Halstead [171) or
structural attributes (e.g., Card and Agresti [7]). For further
details on the appropriateness of the ontological approach the
reader is referred to the comprehensive treatment of the subject
in [42], [321 and [391.
Coupling In ontological terms, “two objects are coupled if
and only if at least one of them acts upon the other, X is said
to act upon Y if the history of Y is affected by X , where
history is defined as the chronologically ordered states that a
thing traverses in time” [41, p. 5471.

Let X = (z ,p (z)) and E’ = (y ,p(y)) be two objects.

‘An instance variable stores a unique value in each instance of a class

4 A method is an operation on an object that is defined as part of the
declaration of the class.

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{M,} is the set of methods and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ I t } is the set of instance
variables of object i.

Using the above definition of coupling, any action by {M-y}
on { M y } or { l y } constitutes coupling, as does any action by
{ M y } on {M*y} or {I-y}. When A4-y calls My, Mdy alters
the history of the usage of My; similarly when May uses I,,
it alters the access and usage history of 11,. Therefore, any
evidence of a method of one object using methods or instance
variables of another object constitutes coupling. Since objects
of the same class have the same properties, two classes are
coupled when methods declared in one class use methods or
instance variables of the other class.5
Cohesion Bunge defines similarity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI T () of two things to be the
intersection of the sets of properties of the two things [5, p 871:

Following this general principle of defining similarity in terms
of sets, the degree of similarity of the methods within the
object can be defined to be the intersection of the sets of
instance variables that are used by the methods. This is an
extension of Bunge’s definition of similarity to similarity of
methods. It should be clearly understood that instance variables
are not properties of methods, but it is consistent with the
notion that methods of an object are intimately connected to
its instance variables.

where u(M1. M2) = degree of similarity of methods MI and
Mz and { I i } = set of instance variables used by method M,.

Example: Let { I I } = { a , b , c , d , e } and (1 2) = { n , b , e } .
(11) n { I 2 } is nonempty, and C T (M I , M ~) = { a , b , e } .

The degree of similarity of methods relates both to the
conventional notion of cohesion in software engineering, (i.e.,
keeping related things together) as well as encapsulation, that
is, the bundling of methods and instance variables in an object
class. The degree of similarity of methods can be viewed as
a major aspect of object class cohesiveness. If an object class
has different methods performing different operations on the
same set of instance variables, the class is cohesive. This view
of cohesion is centered on data that is encapsulated within an
object and on how methods interact with data. It is proposed
for object orientation as an alternative to other previous
approaches, such as generalization-specialization cohesion or
service cohesion as defined by Coad and Yourdon [111.
Complexity of an Object: Bunge defines complexity of an
individual to be the “numerosity of its composition”, implying
that a complex individual has a large number of properties
(51. Using this definition as a base, the complexity of an object
class can be defined to be the cardinality of its set of properties.
Complexity of (z , p (z)) = l p (z) I , where lp(z)I is the cardi-
nality of p(z).
Scope of Properties: In simple terms, a class is a set of
objects that have common properties (i.e., methods and in-
stance variables). A designer develops an abstraction of the

’ Note that this will include coupling due to inheritance.

480 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20, NO. 6, JUNE 1994

application domain by arranging the classes in a hierarchy.
The inheritance hierarchy is a directed acyclic graph that can
be described as a tree structure with classes as nodes, leaves
and a root. In any application, there can be many possible
choices for the class hierarchy. Design choices on the hierarchy
employed to represent the application are essentially choices
about restricting or expanding the scope of properties of the
classes of objects in the application. Two design decisions
which relate to the inheritance hierarchy can be defined. They
are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdepth of inheritance of a class of objects and the number
of children of the class.

Depth of Inheritance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= depth of the class in the inheritance tree.

The depth of a node of a tree refers to the length of the
maximal path from the node to the root of the tree.

Number of Children

= Number of immediate descendants of the class.

Both these concepts relate to the ontological notion of scope
of properties,6 i.e., how far does the influence of a property
extend? Depth of inheritance indicates the extent to which
the class is influenced by the properties of its ancestors,
and number of children indicates the potential impact on
descendants. The depth of inheritance and number of children
collectively indicate the genealogy of a class.

Methods as Measures of Communication: In the object
oriented approach, objects communicate primarily through
message passing.’ A message can cause an object to “behave”
in a particular manner by invoking a particular method.
Methods can be viewed as definitions of responses to possible
messages [I] . It is reasonable, therefore, to define a response
set for a class of objects in the following manner:

Response set of a class of objects

= {set of all methods

that can be invoked in response

to a message to an object of the class}

Note that this set will include methods outside the class as well,
since methods within the class may call methods from other
classes. The response set will be finite since the properties of
a class are finite and there are a finite number of classes in a
design. During the implementation and maintenance phases of
systems development, the response set may change, since new
object instantiations may create different communication links.

Combination of Object Classes: As Booch observes, class
design is an iterative process involving subclassing (creat-
ing new classes based on existing ones), factoring (splitting
existing classes into smaller ones) and composition (or com-
bination) that unites existing classes into one. The notion of
subclassing is well understood in 00 design, but the semantics
of combination are less clear. However, Bunge’s ontology

‘For formal mathematical definitions of scope of properties. see 1441.

’While objects can communicate through more complex mechanisms like
bulletin boards, a majority of 00 designers employ message passing as the
primary mechanism for communicating between objects 141.

provides a basis for defining the combination of object classes.
From the principle of additive aggregation of two (or more)
things, the combination of two object classes results in another
class whose properties are the union of the properties of the
component classes.

Let X = (x , p (x)) and Y = (y.p(y)) be two object classes,
then X + Y is defined as (z , p (z)) where z is the token with
which X + Y is represented and p (z) is given by

For example, if a class foo-a has properties (i.e. methods
and instance variables) a , b, c, d and class f oo-b has properties
a. 1. r n , n then foo-a+ foo-b has properties a. b. c, d, 1, m. n. If
f 00-u and f oo-b both have identical properties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. b, c, d, then
f oo-a + f oo-b will also have the same properties a , b , c. d.

Designers’ empirical operations of combining two classes
in order to achieve better representation are formally denoted
here as combination and shown with a + sign. Combination
results in a single joint state space of instance variables and
methods instead of two separate state spaces; the only definite
result of combination of two classes is the elimination of all
prior messages between the two component classes.

IV. METRICS EVALUATION CRITERIA

Several researchers have recommended properties that soft-
ware metrics should possess to increase their usefulness. For
example, Basili and Reiter suggest that metrics should be sen-
sitive to externally observable differences in the development
environment, and must also correspond to intuitive notions
about the characteristic differences between the software ar-
tifacts being measured [2]. The majority of recommended
properties are qualitative in nature and consequently, most
proposals for metrics have tended to be informal in their
evaluation of metrics.

Consistent with the desire to move metrics research into a
more rigorous footing, it is desirable to have a formal set
of criteria with which to evaluate proposed metrics. More
recently, Weyuker has developed a formal list of desiderata
for software metrics and has evaluated a number of existing
software metrics using these properties [47]. These desiderata
include notions of monotonicity, interaction, noncoarseness,
nonuniqueness and permutation.

Weyuker’s properties are not without criticism. Fenton
suggests that Weyuker’s properties are not predicated on a
single consistent view of complexity [141. Zuse criticizes
Weyuker on the grounds that her properties are not consistent
with the principles of scaling [50]. Cherniavsky and Smith
suggest that Weyuker’s properties should be used carefully
since the properties may only give necessary, but not sufficient
conditions for good complexity metrics [SI.

However, as Gustafson and Prasad suggest, formal analyti-
cal approaches subsume most of the earlier, less well-defined
and informal properties and provide a language for evaluation
of metrics [161. Her list, while currently still subject to debate
and refinement, is a widely known formal analytical approach,
and is therefore chosen for this analysis. Finally, in the course
of the analysis presented below further suggestions are offered

CHIDAMBER AND KEMERER: A METRICS SUITE FOR OBJECT ORIENTED DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA48 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

on the relative appropriateness of these axioms for object
oriented development.

Of Weyuker’s nine properties, three will be dealt with only
briefly here. Weyuker’s second property, “granularity,” only
requires that there be a finite number of cases having the same
metric value. Since the universe of discourse deals with at
most a finite set of applications, each of which has a finite
number of classes, this property will be met by any metric
measured at the class level. The “renaming property” (Property
8) requires that when the name of the measured entity changes,
the metric should remain unchanged.’ As all metrics proposed
in this paper are measured at the class level and, as none of
them depend on the names of the class or the methods and
instance variables, they also satisfy this property. Since both
these properties are met, they will not be discussed further.

Weyuker’s seventh property requires that permutation of
elements within the item being measured can change the
metric value. The intent is to ensure that metric values change
due to permutation of program statements. This property is
meaningful in traditional program design, where the ordering
of if-then-else blocks could alter the program logic (and
consequent complexity). In OOD, a class is an abstraction of
the problem space, and the order of statements within the class
definition has no impact on eventual execution or use. For
example, changing the order in which methods are declared
does not affect the order in which they are executed, since
methods are triggered by the receipt of different messages
from other objects. In fact, Chemiavsky and Smith specifically
suggest that this property is not appropriate for OOD metrics
because “the rationales used may be applicable only to tradi-
tional programming” [8, p. 6381. Therefore, this property is not
considered further. The remaining six properties are repeated
below.’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Properry 1) Noncoarseness: Given a class P and a metric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp
another class Q can always be found such that: p (P) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(Q).
This implies that not every class can have the same value for
a metric, otherwise it has lost its value as a measurement.
Property 2) Nonuniqueness (Notion of Equivalence): There
can exist distinct classes P and Q such that p (P) = /L (Q) .
This implies that two classes can have the same metric value,
i.e., the two classes are equally complex.

Property 3) Design Details are Important: Given two class
designs, P and Q, which provide the same functionality, does
not imply that p(P) = p(Q). The specifics of the class must
influence the metric value. The intuition behind Property 3 is
that even though two class designs perform the same function,
the details of the design matter in determining the metric for
the class.

Property 4) Monotonicity: For all classes P and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU , the
following must hold: p(P) 5 p(P+c)) and p(Q) 5 p(P+Q)

where P + Q implies combination of P and QI0. This implies
that the metric for the combination of two classes can never
be less than the metric for either of the component classes.

such that
p (P) = p(Q) does not imply that y (P + R) = p(Q + R).
This suggests that interaction between P and R can be
different than interaction between Q and R resulting in
different complexity values for P + R and Q + R.

Property 6) Interaction Increases Complexity: 3 P and 3Q
such that:

The principle behind this property is that when two classes
are combined, the interaction between classes can increase the
complexity metric value.
Assumptions Some basic assumptions made regarding the dis-
tribution of methods and instance variables in the discussions
for each of the metric properties.

Property 5) Nonequivalence of Interaction: 3 P, 3 Q , 3 R,

P(P) + /4Q) < PL(P + Q)

Assumption 1: Let

X , = The number of methods in a given class i.

Y, = The number of methods called from a given method i. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2, = The number of instance variables used by a method %.
C, = The number of couplings between a given class of

objects i and all other classes.

Xi. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX I Zj. C; are discrete random variables each characterized
by some general distribution function. Further, all the X i s
are independent and identically distributed (i.i.d.). The same
is true for all the Xs, 2;s and C,s. This suggests that the
number of methods, variables and couplings follow a statistical
distribution that is not apparent to an observer of the system.
Further, the observer cannot predict the variables, methods etc.
of one class based on the knowledge of the variables, methods
and couplings of another class in the system.

Assumption 2: In general, two classes can have a finite
number of “identical” methods in the sense that a combination
of the two classes into one class would result in one class’s
version of the identical methods becoming redundant. For
example, a class ‘ ‘ f oo~me” has a method “draw” that is
responsible for drawing an icon on a screen; another class
“f oo-two” also has a “draw” method. Now a designer decides
to have a single class “foo” and combines the two classes.
Instead of having two different “draw” methods the designer
can decide to just have one “draw” method (albeit modified
to reflect the new abstraction).

Assumption 3: The inheritance tree is “full”, i.e., there is a
root, intermediate nodes and leaves. This assumption merely
states that an application does not consist only of stand-alone
classes; there is some use of subclassing.”

‘Note, this property deals only with the name of the entity, and not the

gReaders familiar with Weyuker.s work should note that the exclusion of

here no longer consistent with the original property numbers. It should also
be noted that Weyuker’s definitions have been modified where necessary to
use classes rather than programs.

names associated with any of the intemals of the entity.
’“It should be noted that P+Q is the combination of two classes, whereas

these three propenies makes the properties makes the property numbers used ! ‘ (Q) + !‘(U) is the addition Of the metric Of and Ihe metric value
Of c2.

assumption.
“Based on the data from sites .4 and l3, this appears to be a reasonable

482 IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. JUNE 1994

V. EMPIRICAL DATA COLLECTION

As defined earlier, a design encompasses the implicit
ideas designers have about complexity. These viewpoints
are the empirical relations R I , RP, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . R, in the formal
definition of the design D. The viewpoints that were used in
constructing the metrics presented in this paper were gathered
from extensive collaboration with a highly experienced
team of software engineers from a software development
organization. This organization has used OOD in more than
four large projects over the past five years. Though the primary
development language for all projects at this site was C++,
the research aim was to propose metrics that were language
independent. As a test of this, later data were collected at two
new sites which used different languages.'*

The metrics proposed in this paper were collected using
automated tools developed for this research at two different
organizations which will be referred to here as Site A and
Site B. Site A is a software vendor that uses OOD in their
development work and has a collection of different C++
class libraries. Metrics data from 634 classes from two C++
class libraries that are used in the design of graphical user
interfaces (GUI) were collected. Both these libraries were used
in different product applications for rapid prototyping and
development of windows, icons and mouse-based interfaces.
Reuse across different applications was one of the primary
design objectives of these libraries. These typically were
used at Site A in conjunction with other C++ libraries
and traditional C-language programs in the development of
software sold to UNIX workstation users.

Site B is a semiconductor manufacturer and uses the
Smalltalk programming language for developing flexible
machine control and manufacturing systems. Metrics were
collected on the class libraries used in the implementation of
a computer aided manufacturing system for the production of
VLSI circuits. Over 30 engineers worked on this application,
after extensive training and experience with object orientation
and the Smalltalk environment. Metrics data from 1459 classes
from Site B were collected.

VI. RESULTS

Metric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: Weighted Methods Per Class (WMC)

Definition: Consider a Class C1~ with methods M I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ad, that are defined in the class. Let CI . " ' , c , be the
complexity of the methods.13 Then: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n

WMC = C C ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1=l

"The metrics were gathered from code, since no other design artifacts were
available at either site.

"Complexity is deliberately not defined more specifically here in order
to allow for the most general application of this metric. It can be argued
that developers approach the task of writing a method as they would a
traditional program, and therefore some traditional static complexity metric
may be appropriate. This is left as an implementation decision, as the general
applicability of any existing static complexity metric has not been generally
agreed upon. Any complexity metric used in this manner should have the
properties of an interval scale to allow for summation. The general nature of
the WMC metric is presented as a strength, not a weakness of this metric as
has been suggested elsewhere [19).

If all method complexities are considered to be unity, then
WMC = n, the number of methods.

Theoretical Basis: WMC relates directly to Bunge's defini-
tion of complexity of a thing, since methods are properties of
object classes and complexity is determined by the cardinality
of its set of properties. The number of methods is, therefore,
a measure of class definition as well as being attributes of a
class, since attributes correspond to proper tie^.'^

Viewpoints:

1) The number of methods and the complexity of methods
involved is a predictor of how much time and effort is
required to develop and maintain the class.

2) The larger the number of methods in a class the greater
the potential impact on children, since children will
inherit all the methods defined in the class.

3) Classes with large numbers of methods are likely to
be more application specific, limiting the possibility of
reuse.

Analytical Evaluation of Weighted Methods Per Class (WMC)

From assumption 1 , the number of methods in class P
and another class Q are i.i.d., this implies that there is a
nonzero probability that 3 Q such that p (P) # p (Q) , therefore
property 1 is satisfied. Similarly, there is a nonzero probability
that 3R such that p (P) = p (R) . Therefore property 2 is
satisfied. The function of the class does not define the number
of methods in a class. The choice of the number of methods is
a design decision and independent of the functionality of the
class, therefore Property 3 is satisfied. Let p (P) = np and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p (Q) = n ~ , then p (P + Q) = n p + n~ - 13, where d is the
number of common methods between P and Q. Clearly, the
maximum value of i3 is min(np, n ~) . Therefore, p (P + Q) 2
n p + nQ - min(np,nQ). It follows that p (P + Q) 2 p (P)
and p (P + Q) 2 p(Q), thereby satisfying Property 4. Now,
let p (P) = R, ,U(&) = n, and 3 a class R such that it has a
number of methods b, in common with 62 (as per assumption
2) and f l methods in common with P, where d # io. Let
p(R) = r ;

therefore p(P + R) # p(Q + R) and Property 5 is satisfied.
For any two classes P and Q, n p + 7 1 ~ - i3 5 n p + nQ
i.e., p (P + Q) 5 p (P) + p (Q) for any P and Q. Therefore,
Property 6 is not ~at isf ied. '~

14Note that this is one interpretation of Bunge's definition, since it does
not include the number of instance variables in the definition of the metric.
This is done for two reasons: 1) Developers expressed the view that methods
are more time consuming to design than instance variables, and adding the
instance variables to the definition will increase the noise in the relationship
between this metric and design effort. 2) By restricting the metric to methods,
the 'process of adding static complexity weights to methods will not detract
from the comprehensibility of the metric.

"The implications of not satisfying Property 6 is discussed in the Summary
section.

CHIDAMBER AND KEMERER: A METRICS SUITE FOR OBJECT ORIENTED DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

483 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
300 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

WMC metric value
(Site A)

Fig. 1. Histogram for the WMC metric (Site A).

TABLE I
SUMMARY STATISTICS FOR THE WMC METRIC

0 175 350

WMC metric value
(Site 6)

Fig. 2. Histogram for the WMC metric (Site B).

~

Site Metric Median Max Min
A WMC 5 106 0
B WMC 10 346 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Empirical Data

The histograms (Fig. 1 and Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) and summary statistics
(Table I) from both sites are shown above:

Interpretation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Data: The most interesting aspect of the
data is the similarity in the nature of the distribution of the
metric values at Site A and B, despite differences in 1) the
nature of the application; 2) the people involved in their
design; and 3) the languages (C++ and Smalltalk) used. This
seems to suggest that most classes tend to have a small number
of methods (0 to lo), while a few outliers declare a large
number of them. Most classes in an application appear to
be relatively simple in their construction, providing specific
abstraction and functionality.

Examining the outlier classes at Site A revealed some
interesting observations. The class with the maximum number
of methods (106) had no children and was at the root of
the hierarchy, whereas another outlier class with 87 methods
had 14 subclasses and a total number of 43 descendants. In
the first case, the class’s methods have no reuse within the
application and, unless this is a generalized class that is reused
across applications, the effort expended in developing this
class will be a one-shot investment. However, the class with 87
methods has significant reuse potential within the application
making increased attention to testing the methods in this class
worthwhile, since the methods can have widespread use within
the system.

Metric 2: Depth of Inheritance Tree (DIT)

Definition: Depth of inheritance of the class is the DIT metric
for the class. In cases involving multiple inheritance, the DIT will
be the maximum length from the node to the root of the tree.

Theoretical Basis: DIT relates to Bunge’s notion of the
scope of properties. DIT is a measure of how many ancestor
classes can potentially affect this class.

Viewpoints:
1) The deeper a class is in the hierarchy, the greater the

number of methods it is likely to inherit, making it more
complex to predict its behavior.16

’61nterestingly, this has been independently observed by other researchers
P61.

Fig. 3.

2) Deeper trees constitute greater design complexity, since

3) The deeper a particular class is in the hierarchy, the
more methods and classes are involved.

greater the potential reuse of inherited methods.

Analytical Evaluation of Depth of Inheritance Tree (DIT)
Per assumption 3, the inheritance hierarchy has a root and

leaves. The depth of inheritance of a leaf is always greater
than that of the root. Therefore, property 1 is satisfied. Also,
since every tree has at least some nodes with siblings (per
assumption 3), there will always exist at least two classes
with the same depth of inheritance, i.e., property 2 is satisfied.
Design of a class involves choosing what properties the class
must inherit in order to perform its function. In other words,
depth of inheritance is design implementation dependent, and
Property 3 is satisfied.

When any two classes P and Q are combined, there are
three possible cases” : 1) P and Q are siblings; 2) P and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ
are neither children nor siblings of each other; and 3) one is
the child of the other.
Case 1) P and Q are siblings (see Figs. 3 and 4).

In this case, p (P) = p(Q) = n and p (P + Q) = n, i.e.,
Property 4 is satisfied.
Case 2) P and Q are neither children nor siblings of each
other (see Figs. 5 and 6).

If P + Q is located as the immediate ancestor to B and
C (P’s location) in the tree, the combined class cannot
inherit methods from X , however if P + Q is located as
an immediate child of X (Q’s location), the combined class

”A fourth case would involve multiple inheritance, and it can be shown
that Property 4 is satisfied in this case also. Suppose d has two subclasses
P and S. Q is a subclass of 9 and also a subclass of B. p (P) = 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/ I (&) = 2. The combined class P + 4 will be a subclass of S and B, and
p (P + 4) = 2. In general / I (P) and p (Q) will be 72p and 7 2 6 respectively
a n d p (P + Q) will beequal to Max(np ,w~) .Consequen t l y l l (P+Q) will
always be greater than or equal to p(P)and/ l (Q) .

484 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 6, JUNE 1994

Fig. 4.

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.

Fig. 7.

can still inherit methods from all the ancestors of P and Q.
Therefore, P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ Q will be in located &’s location.’8 In this
case, p (P) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,p(Q) = y and y > z. p (P + &) = Y, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p (~ + &) > p (P) and p (p + Q) = p(Q) and Property 4
is satisfied.
3) when one is a child of the other (see Figs. 7 and 8):19

In this case, p (P) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, p(Q) = n + 1, but p (P + &) = n,
i.e., p (P + &) < p(Q). Property 4 is not satisfied.

Let P and &’ be siblings, i.e., p (P) = /L(&’) = 71, and let
R be a child of P. Then p(P+R) = n and p(Q’+R) = n+ l .
i.e., p(P + R) is not equal to p(Q’ + R). Therefore, Property 5
is satisfied. For any two classes P and Q, p(P+Q) = p(P) or
= p(Q). Therefore, p (P + &) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI p (P) + p(Q), i.e., Property
6 is not satisfied.

‘*If there are several intermediate classes between P and the common
ancestor of P and 9, the combined class will still be located as an immediate
child of A- and also inherit (via multiple inheritance) from P’s immediate
ancestors.

”This case is also representative of the situation where Q is a descendent,
but not an immediate child of P.

Fig. 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 1 2 3 4 5 6 7 8

DIT melric value
(Site A)

Fig. 9. Histogram for the DIT metric (Site A).

0 1 2 3 4 5 6 7 8 9 1 0

DIT melk value
(Sile E)

Fig. 10. Histogram for the DIT metric (Site B).

TABLE I1
SUMMARY STATISTICS FOR THE DIT METRIC

Site Metric Median Max Min
A DIT 1 8 0
B DIT 3 10 0

Empirical Data: The histograms are shown in Figs. 9 and
10, and the summary statistics are shown in Table I1 (all metric
values are integers).

Interpretation of Data: Both Site A and B libraries have a
low median value for the DIT metric. This suggests that most
classes in an application tend to be close to the root in the
inheritance hierarchy. By observing the DIT metric for classes
in an application, a senior designer or manager can determine
whether the design is “top heavy” (too many classes near the
root) or “bottom heavy” (many classes are near the bottom of
the hierarchy). At both Site A and Site B, the library appears
to be top heavy, suggesting that designers may not be taking
advantage of reuse of methods through inheritance*’. Note that

’“Of course, such occurrences may also be function of the application.

CHIDAMBER AND KEMERER: A METRICS SUITE FOR OBJECT ORIENTED DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA485

the Smalltalk application has a higher depth of inheritance
due, in part, to the library of reusable classes that are a part
of the language. For example, all classes are subclasses of the
class “object”. Another interesting aspect is that the maximum
value of DIT is rather small (10 or less). One possible
explanation is that designers tend to keep the number of levels
of abstraction to a manageable number in order to facilitate
comprehensibility of the overall architecture of the system.
Designers may be forsaking reusability through inheritance
for simplicity of understanding. This also illustrates one of the
advantages of gathering metrics of design complexity in that a
clearer picture of the conceptualization of software systems
begins to emerge with special attention focused on design
tradeoffs. Examining the class at Site A with a DIT value
of 8 revealed that it was a case of increasingly specialized
abstractions of a graphical concept of control panels. The class
itself had only 4 methods and only local variables, but objects
of this specialized class had a total of 132 methods available
through inheritance. Designing this class would have been
a relatively simple task, but the testing could become more
complicated due to the high inheritance.21 Resources between
design and testing could be adjusted accordingly to reflect this.

0 1 2 3 4 5 7

NOC mbic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvalue zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Site A)

Fig. 1 1 . Histograms for the NOC metric (Site A). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1500 T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Metric 3: Number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Children (NOC)

Definition: NOC = number of immediate subclasses subordi-
nated to a class in the class hierarchy.

Theoretical Basis: NOC relates to the notion of scope of
properties. It is a measure of how many subclasses are going
to inherit the methods of the parent class.

Viewpoints:
1) Greater the number of children, greater the reuse, since

inheritance is a form of reuse. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2) Greater the number of children, the greater the likelihood

of improper abstraction of the parent class. If a class has
a large number of children, it may be a case of misuse
of subclassing.

3) The number of children gives an idea of the potential
influence a class has on the design. If a class has a large
number of children, it may require more testing of the
methods in that class.

Analytical Evaluation of Number Of Children (NOC)
Let P and R be leaves, p (P) = p (R) = 0, let Q be the root

p(Q) > 0. p (P) # p(Q) therefore property 1 is satisfied.
Since p (R) = p(P) , Property 2 is also satisfied. Design
of a class involves decisions on the scope of the methods
declared within the class, i.e., the subclassing for the class. The
number of subclasses is therefore dependent upon the design
implementation of the class. Therefore, Property 3 is satisfied.

Let P and Q be two classes with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnp and nQ subclasses
respectively (i.e., p (P) = np and p(Q) = no). Combining

It is interesting to note, however, that this phenomenon appears to be
present in both data sets, which represent relatively different applications and
implementation environments.

2’ Testers have frequently experienced that finding which method is execut-
ing (and from where) is a time consuming task [26].

0 1 2 3 4 5 6 7

NOC metric value
(Site 6)

Fig. 12. Histograms for the NOC metric (Site B).

P and Q,22 will yield a single class with np + nQ - d
subclasses, where d is the number of children P and Q have
in common. Clearly, d is 0 if either n p or TLQ is 0. If Q is a
subclass of P, then P + Q will have n p + ng - 1 subclasses.
Therefore, in general the number of subclasses of P + Q is
n p + n ~ -@, where @ = 1 or S. Now, np + n ~ - @ 2 np and
np + n~ - p 2 ng. This can be written as: p(P + Q) 2 p(P)
and p(P + Q) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 p(Q) for all P and all Q. Therefore, Property
4 is satisfied.23 Let P and Q each have 71 children and R be
a child of P which has T children. p (P) = n = p(Q). The
class obtained by combining P and R will have (n - 1) + T

children, whereas a class obtained by combining Q and R will
have n + T children, which means that p(P + R) # p(Q + R).
Therefore Property 5 is satisfied. Given any two classes P
and Q with np and nQ children respectively, the following
relationship holds:

p (P) = np and p(Q) = n~

p (P + &) = n P + ”Q - 8

where d is the number of common children. Therefore, p(P +
Q) 5 p (P) + p(Q) for all P and Q. Property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 is not satisfied.

Empirical Data: The histograms and summary statistics
from both sites are shown in Figs. 1 1 and 12 and Table 111.

22The combination of two classes will result in the combined class located
in the inheritance hierarchy at the position of the class with the greater depth
of inheritance.

231n cases where a class is both a parent and a grandparent of another class,
this property will be violated. However, most 00 environments will disallow
this type of hierarchy.

486 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 6, JUNE 1994

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111

SUMMARY STATISTICS FOR THE NOC METRIC

Site Metric Median Max Min
A NOC 0 42 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0
B NOC 0 SO

Interpretation of Data: Like the WMC metric, an interesting
aspect of the NOC data is the similarity in the nature of the
distribution of the metric values at Site A and B. This seems
to suggest that classes in general have few immediate children
and that only a very small number of outliers have many
immediate subclasses. This further suggests that designers may
not be using inheritance of methods as a basis for designing
classes, as the data from the histograms show that a majority
of the classes (73% at Site A and 68% at Site B) have no
children. Considering the large sample sizes at both sites and
their remarkable similarity, both the DIT and NOC data seem
to strongly suggest that reuse through inheritance may not
be being fully adopted in the design of class libraries, at
least at these two sites. One explanation for the small NOC
count could be that the design practice followed at the two
sites dictated the use of shallow inheritance hi er arc hie^.^^
A different explanation could be a lack of communication
between different class designers and therefore that reuse
opportunities are not being realized. Whatever the reason,
the metric values and their distribution provide designers and
managers with an opportunity to examine whether their partic-
ular design philosophy is being adhered to in the application.
An examination of the class with 42 subclasses at Site A
was a GUI-command class for which all possible commands
were separate subclasses. Further, none of these subclasses
had any subclasses of their own. Systematic use of the NOC
metric could have helped to restructure the class hierarchy
to exploit common characteristic of different commands (e.g.,
text commands, mouse commands etc.).

Metric 4: Coupling between object classes (CBO)

Definition: CBO for a class is a count of the number of other
classes to which it is coupled.

Theoretical Basis: CBO relates to the notion that an object is
coupled to another object if one of them acts on the other, i.e.,
methods of one use methods or instance variables of another.
As stated earlier, since objects of the same class have the same
properties, two classes are coupled when methods declared in
one class use methods or instance variables defined by the
other class.

Viewpoints:

1) Excessive coupling between object classes is detrimental
to modular design and prevents reuse. The more inde-
pendent a class is, the easier it is to reuse it in another
application. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2) In order to improve modularity and promote encapsu-
lation, inter-object class couples should be kept to a
minimum. The larger the number of couples, the higher

24Some C++ designers at this site systematically avoid subclassing in
order to maximize operational performance.

the sensitivity to changes in other parts of the design,
and therefore maintenance is more difficult.

3) A measure of coupling is useful to determine how
complex the testing of various parts of a design are
likely to be. The higher the inter-object class coupling,
the more rigorous the testing needs to be.

Analytical Evaluation of Coupling Between Objects (CBO)

As per assumption 1, there exist classes P , Q and R such
that p (P) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(Q) and p (P) = p (R) thereby satisfying
properties 1 and 2. Inter-class coupling occurs when methods
of one class use methods or instance variables of another class,
i.e., coupling depends on the manner in which methods are
designed and not on the functionality provided by P. Therefore
Property 3 is satisfied. Let P and Q be any two classes with
p (P) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71p and p(Q) = n ~ . If P and Q are combined, the
resulting class will have np + 710 - d couples, where d is the
number of couples reduced due to the combination. That is
p(P + Q) = n p + nQ - d, where d is some function of the
methods of P and Q. Clearly, n p - d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 and n ~ - d 2 0 since
the reduction in couples cannot be greater than the original
number of couples. Therefore,

rip + 7 1 0 - d 2 n p for all P and Q and

n p + nQ - d 2 nQ for all P and Q

i.e., p (P + Q) 2 p (P) and p (P + Q) 2 p(Q) for all P and
Q. Thus, Property 4 is satisfied. Let P and Q be two classes
such that p (P) = p(Q) = n, and let R be another class with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p(R) = T .

p (P + Q) = n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT - d ; similarly

p(Q + R) = n + T - p.

Given that d and ,6’ are independent functions, they will not
be equal, i.e., p (P + R) is not equal to p(Q + R) , satisfying
Property 5. For any two classes P and Q , p (P + Q) =
71p + ILQ - d.

p (P + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ) = p (P) + p(Q) - d which implies that

p (P + Q) 5 p (P) + p(Q) for all P and Q.

Therefore Property 6 is not satisfied.
Empirical Data: The histograms and summary statistics

from both sites are shown in Figs. 13 and 14, and in Table
IV .

Interpretation of Datu: Both Site A and Site B class
libraries have skewed distributions for CBO, but the Smalltalk
application at Site B has relatively high median values. One
possible explanation is that contingency factors (e.g., type
of application) are responsible for the difference. A more
likely reason is the difference between the Smalltalk and C++
languages? Smalltalk requires virtually every interaction be-
tween run-time entities be done through message passing,
while C++ does not. In Smalltalk, simple scalar variables
(integers, reals, and characters) and control flow constructs
like f , while, repeat statements are objects. Each of these

2sWe are indebted to an anonymous referee who provided the following
explanation.

CHIDAMBER AND KEMERER: A METRICS SUITE FOR OBJECT ORIENTED DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA487

6oo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 44 88

CBO metric value
(Site A)

Fig. 13. Histogram for the CBO metric (Site A).

invocations is performed via message passing which will be
counted as an interaction in the CBO metric. Simple scalars
will not be defined as C++ classes, and certainly control flow
entities are not objects in C++. Thus, CBO values are likely
to be smaller in C++ applications. However, that does not
explain the similarity in the shape of the distribution. One
interpretation that may account for both the similarity and the
higher values for Site B is that coupling between classes is an
increasing function of the number of classes in the application.
The Site B application has 1459 classes compared to the 634
classes at Site zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. It is possible that complexity due to increased
coupling is a characteristic of large class libraries. This could
be an argument for a more informed selection of the scale size
(as measured by number of classes) in order to limit coupling.
The low median values of coupling at both sites suggest that at
least 50% of the classes are self-contained and do not refer to
other classes (including super-classes). Since a fair number of
classes at both sites have no parents or no children, the limited
use of inheritance may be also responsible for the small CBO
values. Examination of the outliers at Site B revealed that
classes responsible for managing interfaces have high CBO
values. These classes tended to act as the connection point for
two or more subsystems within the same application. At Site
A, the class with the highest CBO value was also the class
with the highest NOC value, further suggesting the need to
re-evaluate that portion of the design. The CBO metric can be
used by senior designers and project managers as a relative
simple way to track whether the class hierarchy is losing
its integrity, and whether different parts of a large system
are developing unnecessary interconnections in inappropriate
places. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Metric 5: Response For a Class (UFC)

class.

expressed as

Definition: RFC = IRS(where RS is the response set for the

Theoretical Basis: The response set for the class can be

RS = {MI Uall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{R i }
where { R,} = set of methods called by method i and

{ M } = set of all methods in the class.

The response set of a class is a set of methods that can
potentially be executed in response to a message received

800 -f

0 120 240

CBO metric value
(Site B)

Fig. 14. Histogram for the CBO metric (Site B).

TABLE IV
SUMMARY STATISTICS FOR THE CBO METRIC

Site Metric Median Max Min
A CBO 0 84 0
B CBO 9 234 0

by an object of that class.26 The cardinality of this set is
a measure of the attributes of objects in the class. Since it
specifically includes methods called from outside the class, it
is also a measure of the potential communication between the
class and other classes.

Viewpoints:
1) If a large number of methods can be invoked in response

to a message, the testing and debugging of the class
becomes more complicated since it requires a greater
level of understanding required on the part of the tester.

2) The larger the number of methods that can be invoked
from a class, the greater the complexity of the class.

3) A worst case value for possible responses will assist in
appropriate allocation of testing time.

Analytical Evaluation of Response for a Class (RFC)

Let X p = RFC for class P

XQ = RFC for class Q.

X p and X Q are functions of the number of methods and
the external coupling of P and Q respectively. It follows
from assumption 1 (since functions of i.i.d. random variables
are also i.i.d.) that X p and X Q are i.i.d. Therefore, there
is a nonzero probability that 3 Q such that p (P) # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(Q)
resulting in property 1 being satisfied. Also there is a nonzero
probability that 3 Q such that p (P) = p(Q), therefore
property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 is satisfied. Since the choice of methods is a design
decision, Property 3 is satisfied. Let P and Q be two classes
with RFC of P = n p and RFC of Q = 7LQ. If these two
classes are combined to form one class, the response for that
class will depend on whether P and Q have any common
methods. Clearly, there are three possible cases: 1) when P
and Q have no common methods nor do their methods use any
of the same methods, and therefore the combined class P + Q

'61t should be noted that membership to the response set is defined only up
to the first level of nesting of method calls due to the practical considerations
involved in collection of the metric.

488 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20, NO. 6, JUNE 1994 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
300 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt

0 60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA120

RFC metric value

(Site A)

Fig. 15. Histogram for the RFC metric (Site zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA)

5oo T

0 210 420

RFC metric value

(Site B)

Fig. 16. Histogram for the RFC metric (Site B).

TABLE V
SUMMARY STATISTICS FOR THE RFC METRIC

Site Metric Median Max Min
A RFC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 120 0
B RFC 29 422 3

will have a response set = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnp + nQ. 2) when P and Q have
methods in common, and the response set will smaller than
np + nQ. 3) when P and Q have no methods in common but
some of methods used by methods of P and Q are the same,
the response set will be smaller than n p + T L Q . For both cases
2 and 3, p (P + Q) = np + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATLQ - d, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi) is some function
of the methods of P and Q. Clearly, np + n~ - d 2 n p and
n p f n Q - 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ~ L Q for all possible P and Q. /L(P+Q) 2 p (P)
and 2 p(Q) for all P and Q. Therefore, Property 4 is satisfied.

Let P and Q be two classes such that p (P) = p(Q) = n,
and let R be another class with p (R) = T .

k (P + Q) = n + T - 13, similarly

j L (Q + R) = n, + 7’ - B.

Given that d and /? are independent functions, they will not
necessarily be equal, i.e., p (P + R) is not necessarily equal to
p(Q+ R) , satisfying Property 5. For any two classes P and Q,

of methods, while a few outliers maybe be most profligate
in their potential invocation of methods. This reinforces the
argument that a small number of classes may be responsible for
a large number of the methods that executed in an application,
either because they contain many methods (this appears to
be the case at Site A) or that they call many methods. By
using high RFC valued classes as structural drivers, high test
coverage can be achieved during system test.

Another interesting aspect is the difference in values for
RFC between Site A and B. Note that the median and
maximum values of RFC at Site B are higher than the
RFC values at Site A. As in the case of the CBO metric,
this may relate to the complete adherence to object oriented
principles in Smalltalk which necessitates extensive method
invocation, whereas C++’s incremental approach to object
orientation gives designers altematives to message passing
through method inv~cation.~’ Not surprisingly, at Site B high
RFC value classes performed interface functions within the
application. Since there are a number of classes that are stand-
alone (i.e. no parents, no children, no coupling) the RFC
values also tend to be low. Again, the metrics collectively
and individually provide managers and designers a basis for
examining the design of class hierarchies.

Metric 6: Lack of Cohesion in Methods (LCOM)

Definition: Consider a Class C1 with n methods
MI, M2. . . . , Mn. Let { I , } = set of instance variables
used by method Mt.

Thereare rt suchsets(l1) { I,}.Let P = { (l z , I J) l I t n
I3 = S} and Q = { (I t l 1 3) l I z n IJ # 8). If all n sets
{Il}. {In} are Q) then let P = Q).

Example: Consider a class C with three methods
M1,Mz and Ms. Let { I I } = { a , b . c , d , e } and
{Iz} = { a , b , e } and { I s } = {x,y,z}. {II} n (1 2) is
nonempty, but {II} n (13) and { I 2 } n { I s } are null sets.
LCOM is the (number of null intersections-number of
nonempty intersections), which in this case is 1.

Theoretical Basis: This uses the notion of degree of simi-
larity of methods. The degree of similarity for two methods
M I and M2 in class C1 is given by:

o() = (11) f’ (1 2) where { I l } and (1 2) are the sets of

instance variables used by M I and Mz

The LCOM is a count of the number of method pairs whose
similarity is 0 (i.e., U () is a null set) minus the count of method

p,(P + Q) = p (P) + p(Q) - i) which implies that

p (P + Q) 5 p (P) + p(Q) for all P and Q.

Therefore Property 6 is not satisfied.
27RFC does not count calls to S-library functions and I/O functions like

printf, scanf that are present in C++ applications. Similar functionality is

Empirical &a: The histograms and summary statistics obtained through interface classes in Smalltalk that are counted in the RFC

will be zero.
This does not imolv maximal cohensiveness. since within the set of classes

from both sites are shown in Figs. 15 and 16 and Table V. ca‘cu*ations’
2XNote that the LCOM metric for a class where [PI =

‘nterpreta*ion ofData’ The data from both Site A and Site
I ,

suggest that most classes tend to able to invoke a small number with LCOM = 0, some may be more coherive than others

CHIDAMBER AND KEMERER: A METRICS SUITE FOR OBJECT ORIENTED DESIGN 489 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pairs whose similarity is not zero. The larger the number
of similar methods, the more cohesive the class, which is
consistent with traditional notions of cohesion that measure
the inter-relatedness between portions of a program. If none
of the methods of a class display any instance behavior, i.e.,
do not use any instance variables, they have no similarity and
the LCOM value for the class will be zero. The LCOM value
provides a measure of the relative disparate nature of methods
in the class. A smaller number of disjoint pairs (elements of set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P) implies greater similarity of methods. LCOM is intimately
tied to the instance variables and methods of a class, and
therefore is a measure of the attributes of an object class.

Viewpoints:

1) Cohesiveness of methods within a class is desirable,
since it promotes encapsulation.

2) Lack of cohesion implies classes should probably be
split into two or more subclasses.

3) Any measure of disparateness of methods helps identify
flaws in the design of classes.

4) Low cohesion increases complexity, thereby increasing
the likelihood of errors during the development process.

Analytical Evaluation of Lack Of Cohesion
Of Methods (LCOM)

Let

X p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= LCOM for class P
X Q = LCOM for class Q.

X p and X Q are functions of the number of methods and
the instance variables of P and Q respectively. It follows
from assumption 1 (since functions of i.i.d. random variables
are also i.i.d.) that X p and X Q are i.i.d. Therefore, there
is a nonzero probability that 3 Q such that p (P) # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(Q)
resulting in property 1 being satisfied. Also there is a nonzero
probability that 3 Q such that p (P) = p(Q), therefore
property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 is satisfied. Since the choice of methods and
instance variables is a design decision, Property 3 is satisfied.

Suppose class P has 3 methods M I , M2, M3, and M2 and
M3 use common instance variables, while M I has no common
instance variables with M2 and M3. The LCOM for P will
be 1. Now, let another class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ have 3 methods, all of which
use common instance variables. The LCOM for Q will be 0.
When P and Q are combined, if the instance variables of Q
are the same as the variables used by M2 and M3, the LCOM
for P + Q will become 0, since the number of nonempty
intersections will exceed the number of empty intersections.
This implies that p (P + Q) > p(Q), which violates Property
4. Therefore, LCOM does not satisfy Property 4.29

Let P and Q be two classes such that p (P) = p(Q) = n,
and let R be another class with p (R) = T .

p (P + Q) = a + T - d, similarly

p (Q + R) = n + r - P .

Given that d and /3 are independent functions, they will not
necessarily be equal. i.e., p (P + R) # p(Q + R), satisfying

2y We are indebted to the associate editor for providing thls example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA67 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA135 202
LCOM metric value
(Site A)

Histogram for the LCOM metric (Site A). Fig. 17.

+

0 5

LCOM metric value

(She 8)

Histogram for the LCOM metric (Site B). Fig. 18.

TABLE VI
SUMMARY STATISTICS FOR THE LCOM METRIC

Site Metric Median Max Min
A LCOM 0 200 0
B LCOM 2 17 0

Property 5. For any two classes P and Q, p (P + Q) =
rip + nQ - d. i.e.,

p (P + Q) = p (P) + p(Q) - d which implies that

p (P + Q) 5 p (P) + p(Q) for all P and Q.

Therefore, Property 6 is not ~atisfied.~'
Empirical Data: The histograms and summary statistics

from both sites are shown in Figs. 17 and 18 and Table VI.
Interpretation of Data: At both sites, LCOM median values

are extremely low, indicating that at least 50% of classes
have cohesive methods. In other words, instance variables
seem to be operated on by more than one method defined
in the class. This is consistent with the principle of building
methods around the essential data elements that define a class.
The Site A application has a few outlier classes that have
low cohesion, as evidenced by the high maximum value 200.
In comparison, the Site B application has almost no outliers,
which is demonstrated by the difference in the shape of the
two distributions.

A high LCOM value indicates disparateness in the func-
tionality provided by the class. This metric can be used to

'OIt can be shown for some cases that the number of disjoint sets will
increase (i.e h will be negatlve) when two classes are combined. Under these
circumstances, property 6 will be satisfied.

490 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 6, JUNE 1994

identify classes that are attempting to achieve many different
objectives, and consequently are likely to behave in less
predictable ways than classes that have lower LCOM values.
Such classes could be more error prone and more difficult to
test and could possibly be disaggregated into two or more
classes that are more well defined in their behavior. The
LCOM metric can be used by senior designers and project
managers as a relatively simple way to track whether the
cohesion principle is adhered to in the design of an application
and advise changes, if necessary, at an earlier phase in the
design cycle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Summary

The Metrics Suite and Booch OOD Steps:
The six metrics are designed to measure the three non-

implementation steps in Booch’s definition of OOD. Each
metric is one among several that can be defined using Bunge’s
ontological principles. For example, the cardinality of the set
of properties of an object (which will include both methods and
instance variables could be defined as a metric. But inclusion
in the proposed suite is influenced by three additional criteria:
1) ability to meet analytical properties 2) intuitive appeal to
practitioners and managers in organizations and 3) ease of
automated collection. Other comprehensive approaches may
prove equally useful.

Reading down the columns of Table VII, WMC, DIT and
NOC relate to the first step (identification of classes) in OOD
since WMC is an aspect of the complexity of the class and
both DIT and NOC directly relate to the layout of the class
hierarchy. WMC and RFC capture how objects of a class may
“behave” when they get messages. For example, if a class has
a large WMC or RFC, i t has many possible responses (since a
potentially large number of methods can execute). The LCOM
metric relates to the packaging of data and methods within a
class definition provides a measure of the cohesiveness of a
class. Thus WMC, RFC and LCOM relate to the second step
(the semantics of classes) in OOD. A benefit of having a suite
of metrics is that there is the potential for multiple measures of
the same underlying construct”. The RFC and CBO metrics
also capture the extent of communication between classes
by counting the inter-class couples and methods external to
a given class, providing a measure of the third step (the
relationships between classes) in OOD.

Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Analytical Results: All the metrics satisfy the
majority of the properties prescribed by Weyuker, with one
strong exception, Property 6 (interaction increases complex-
ity). Property 6 is not met by any of the metrics in this
suite. Weyuker’s rationale for Property 6 is to allow for
the possibility of increased complexity due to interaction.
Failing to meet Property 6 implies that a complexity metric
could increase, rather than reduce, if a class is divided into
more classes. Interestingly, the experienced 00 designers who
participated in this study found that memory management and

3 ’ Another outcome of multiple measures is the statistical correlation
between some metrics. For example, the RFC and WMC metric were highly
correlated (Spearman rank correlation of 0.9) at both sites, while the NOC and
LCOM had low correlation (less than 0.1). The median value of inter-metric
correlations was 0.22 at Site A and 0.16 at Site B.

TABLE VI1
MAPPING OF METRICS TO BOOCH OOD STEPS

Metric Identification Semantics Relationships

WMC X X
DIT X
NOC X
RFC X X
CBO X

LCOM X

run-time detection of errors are both more difficult when there
are a large number of classes to deal with. In other words,
their viewpoint was that complexity can increase when classes
are divided into more classes. Therefore, satisfying Property
6 may not be an essential feature for 00 software design
complexity metrics. From a measurement theoretic standpoint,
a metric that meets property 6, cannot be an interval or a ratio
scale. This means that such a metric cannot be used to make
judgments like “class A is twice as complex as class B”, which
limits its appeal. Thus, not satisfying property 6 may be seen
as beneficial, rather than detrimental to widespread usage of
the metrics.

The only other violation of Weyuker’s properties is in the
case of the DIT and LCOM metrics. The DIT metric fails
to satisfy Property 4 (monotonicity) only in cases where two
classes are in a parent-descendent relationship. This is because
the distance from the root of a parent cannot become greater
than one of its descendants. In all other cases, the DIT metric
satisfies Property 4.32 Also, under certain conditions of class
combination, the LCOM metric can fail to satisfy this property
as well.

Summary of Managerial Results: The data from two differ-
ent commercial projects and subsequent discussions with the
designers at those sites lead to several interesting observations
that may be useful to managers of OOD projects. Designers
may tend to keep the inheritance hierarchies shallow, forsaking
reusability through inheritance for simplicity of understanding.
This potentially reduces the extent of method reuse within
an application. However, even in shallow class hierarchies
it is possible to extract reuse benefits, as evidenced by the
class with 87 methods at Site A that had a total of 43
descendants. This suggests that managers need to proactively
manage reuse opportunities and that this metrics suite can aid
this process.

Another demonstrable use of these metrics is in uncovering
possible design flaws or violations of design philosophy.
As the example of the command class with 42 children at
Site A demonstrates, the metrics help to point out instances
where subclassing has been misused. This is borne out by
the experience of the designers interviewed at one of the data
sites where excessive declaration of subclasses was common
among engineers new to the 00 paradigm. These metrics can
be used to allocate testing resources. As the example of the
interface classes at Site B (with high CBO and RFC values)

”It is interesting to note that other authors have also observed difficulties
in applying this particular property of Weyuker’s. For example, see [IS].

CHIDAMBER AND KEMERER: A METRICS SUITE FOR OBJECT ORIENTED DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA49 I

demonstrates, concentrating test efforts on these classes may
have been a more efficient utilization of resources.

Using several of the metrics together can help managers
and senior designers, who may be unable to review design
materials for the entire application, to exercise some mea-
sure of architectural control over the evolution of an 00
application. They could by means of the WMC, DIT and
NOC metrics check whether the application is getting “top
heavy” (i.e., too many classes at the root level declaring
many methods) or using the RFC and CBO metrics check
whether there are interconnections between various parts of the
application that are unwarranted. The metrics values are likely
to change as a project proceeds from design to implementation.
If the system has been well architected, the class hierarchy
will be stable, and the WMC, NOC, DIT metrics will reflect
this. However, during implementation, new class coupling
and communication may develop, affecting the CBO and
RFC metric values. If implementation requires changes in the
class definitions itself, the WMC and LCOM metrics will
also change. Tracking these metrics through the life of the
project, will provide managers with information to monitor
00 systems evolution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs maintenance of the architectural
integrity of an application becomes an important managerial
responsibility, and this metrics suite could be used as a tool
to meet this challenge. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Future Directions: The proposed OOD metrics have al-
ready begun to be used in a few leading edge organizations.
Sharble and Cohen report on how these metrics were used by
Boeing Computer Services to evaluate different 00 method-
ologies [37]. Two implementations of an example system, one
using responsibility based methodology and another using data
driven methodology were analyzed using these six metrics.
Based on this analysis, Sharble and Cohen recommended
the responsibility based design methodology for use in the
organization. This suggests an active interest in the practitioner
community to use well-constructed metrics as a basis for
managerial decision-making.

Another application of these metrics is in studying differ-
ences between different 00 languages and environments. As
the RFC and DIT data suggest, there are differences across
the two sites that may be due to the features of the two
target languages. However, despite the large number of classes
examined (634 at Site A and 1459 at Site B), only two sites
were used in this study, and therefore no claims are offered as
to any systematic differences between the C++ and Smalltalk
environments. This is suggested as a future avenue where
00 metrics can help establish a preliminary benchmarking
of languages and environments.

The most obvious extension of this research is to analyze
the degree to which these metrics correlate with managerial
performance indicators, such as design, test and maintenance
effort, quality and system performance. The metrics proposed
in this paper were used recently by Li and Henry who
found that they explain additional variance in maintenance
effort beyond that explained by traditional size metrics [27].
Another interesting study would be to follow a commercial
application from conception to deployment and gather metrics
at various intermediate stages of the project. This would

provide insight into how application complexity evolves and
how it can be managed through the use of metrics. These
are highly promising avenues for research in the immediate
future.

VII. CONCLUDING REMARKS

This research has developed and implemented a new set
of software metrics for 00 design. These metrics are based
in measurement theory and also reflect the viewpoints of
experienced 00 software developers. In evaluating these met-
rics against a set of standard criteria, they are found to
both a) possess a number of desirable properties, and b)
suggest some ways in which the 00 approach may differ in
terms of desirable or necessary design features from more
traditional approaches. Clearly, future research designed to
further investigate these apparent differences seems warranted.

In addition to the proposal and analytic test of theoretically-
grounded metrics, this paper has also presented empirical
data on these metrics from actual commercial systems. The
implementation independence of these metrics is demonstrated
in part through data collection from both C++ and Smalltalk
implementations, two of the most widely used object oriented
environments. These data are used to demonstrate not only the
feasibility of data collection, but also to suggest ways in which
these metrics might be used by managers. In addition to the
usual benefits obtained from valid measurements, 00 design
metrics should offer needed insights into whether developers
are following 00 principles in their designs. This use of
metrics may be an especially critical one as organizations begin
the process of migrating their staffs toward the adoption of
00 principles.

Collectively, the suite provides senior designers and man-
agers, who may not be completely familiar with the design
details of an application, with an indication of the integrity
of the design. They can use it as a vehicle to address the
architectural and structural consistency of the entire applica-
tion. By using the metrics suite they can identify areas of
the application that may require more rigorous testing and
areas that are candidates for redesign. Using the metrics in
this manner, potential flaws and other leverage points in the
design can be identified and dealt with earlier in the design-
develop-test-maintenance cycle of an application. Yet another
benefit of using these metrics is the added insight gained about
trade-offs made by designers between conflicting requirements
such as increased reuse (via more inheritance) and ease of
testing (via a less complicated inheritance hierarchy). Since
there are typically many possible 00 designs for the same
application, these metrics can help in selecting one that is most
appropriate to the goals of the organization, such as reducing
the cost of development, testing and maintenance over the life
of the application. In general the idea is to use measurement
to improve the process of software development.

This set of six proposed metrics is presented as the first
empirically validated proposal for formal metrics for OOD.
By bringing together the formalism of measurement theory,
Bunge’s ontology, Weyuker’s evaluation criteria and empir-
ical data from professional software developers working on

492 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 6, JUNE 1994

commercial projects, this paper seeks to demonstrate the level [I71 M. Halstead, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAElements of Software Science. New York: Elsevier North- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . _

of rigor required in the development of usable metrics for
design of software systems. Of course, there is no reason

Holland, 1977.
[181 W. Harrison, “Software science and Weyuker’s fifth property,’’ Internal

ReD.. Univ. of Portland. Comput. Sci. Dept.. 1988.
to believe that the proposed metrics will be found to be
comprehensive, and further work could result in additions,
changes and possible deletions from this suite. In particular,
the LCOM metric might warrant altemative interpretations
since it is currently based on a data-centered view of cohesion.
However, the suite provides coverage for all three of Booth's
steps for OOD and, at a minimum, this metrics suite should
lay the groundwork for a
for OOD. In addition, these metrics may also serve as a

[191 R. ’Kalakota, S. Rathnam, and ‘A. Whinston, “The role of complexity in
object-oriented development,” in 26th Annu. ConJ Syst. Sci., Maui, HI,

1201 A. A. Kaposi, “ Measurement theory,” in Software Engineer’s Ref. Book,
1993, pp. 759-768.

J. McDermid, Ed.,
[21l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. K. Keamey et al., “Software complexity measurement,” Commun.

ACM, vol. 29, pp. 1044-1050, 1986.
~221 C. F. Kemerer, “Reliability of function points measurement: A field

experiment,” Commun. ACM, vol. 36, pp. 85-97, 1993.
[23] J. Kim and J. F. Lerch, “Cognitive processes in logical design: Com-

paring object-oriented and traditional functional decomposition soft-
ware methodologies,” Working Paper, Camegie Mellon Univ. Graduate

Oxford: Butterworth-Heinemann Ltd., 1991.

language to describe

generalized solution for other researchers to rely on when
seeking to develop specialized metrics for particular purposes
or customized environments.

It is often noted that 00 may hold some of the solutions
to the software crisis. Further research in moving 00 devel-
opment management towards a strong theoretical base should
help to provide a basis for significant future progress.

ACKNOWLEDGMENT

Helpful comments were received on earlier drafts from
N. Fenton, Y. Wand, R. Weber, and S. Zweben, plus four
anonymous reviewers.

REFERENCES

J. Banerjee, H. Chou, J. Garza, W. Kim, D. Woelk, and N. Ballou,
“Data model issues for object oriented applications,” ACM Trans. Oflce
Inform. Syst., vol. 5, pp. 3-26, 1987.
V. Basili and R. Reiter, “Evaluating automatable measures of software
models,” in IEEE Workshop Quantitative Sofware Models, Kiamesha,

S. C. Bilow, “Applying graph-theoretic analysis models to object
oriented system models,” in OOPSLA 92 Workshop zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon Metricsfor Object
Oriented Software Eng., Position Paper, 1992.
G. Booch, Object Oriented Design with Applications. Redwood City,
CA: Benjamin/Cummings, 1991.
M. Bunge, Treatise on Basic Philosophy: Ontology I : The Furniture of
the World. Boston: Riedel, 1977.
M. Bunge, Treatise on Basic Philosophv: Ontology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/I: The World of
Systems. Boston: Riedel. 1979.
D. N. Card and W. W. Agresti, “Measuring software design complexity,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J . Syst. and Sofh+are, vol. 8, pp. 185-197, 1988.
J. C. Chemiavsky and C. H. Smith, “On Weyuker’s axioms for software
complexity measures,” IEEE Trans. Sofn*“z Eng., vol. 17, pp. 636-638,
1991.
V. Chemiavsky and D. G. Lakhuty, “On the problem of informa-
tion system evaluation,” Automatic Documentation and Mathematical
Linguistics, vol. 4, pp. 9-26, 1971.
S. R. Chidamber and C. F. Kemerer, “Towards a metrics suite for object
oriented design,” in Proc. 6th ACM Conf. Object Oriented Programming.
Syst., Lung. and Applicat. (OOPSLA), Phoenix, AZ, 1991, pp. 197-21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.
P. Coad and E. Yourdon, Object-Oriented Design. Englewood Cliffs,
NJ: Prentice-Hall, 1991.
J. Coplien, “Looking over one’s shoulder at a c++ program,” AT&T
Bell Labs. Tech. Memo., Jan. 1993.
D. dechampeaux et al., “The process of object oriented design,” in
the Seventh Annu. Coni. Object Oriented Programmiti,y Syst.. Lung. and
Applicat., Vancouver, Canada. 1992, pp. 45-62. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N. E. Fenton, Software Metrics, A Rigorous Approach. New York:
Chapman & Hall, 1991.
R. Fichman and C. Kemerer, “Object-oriented and conventional analysis
and design methodolozies: comparison and critique.” IEEE Comuut.,

NY, 1979, pp. 107-116.

vol. 25, pp. 20-39, 1932.
D. A. Gustafson and B. Praaad. “Properties ot \oftware meawres,” in
Formal Aspects of Measurement. T. Denvir et a / , Ed\.
Springer-Verlag. 1991.

New York:

School of lndus&ial Admin., -1991,
(241 J. Kriz, Facts and Artifacts in Social Science: An Epistemological and

Methodological Analysis of Empirical Social Science Techniques. New
York: McGraw Hill, 1988.

[25] A. Lake and C. Cook, “A software complexity metric for C++,” Tech.
Rep. 92-60-03, Oregon State Univ., 1992.

1261 M. Lejter et al., “Support for maintaining object-oriented programs,”
IEEE Trans. Software Eng., vol. 18, pp. 1045-1052, 1992.

[27] W. Li and S. Henry, “Maintenance metrics for the object oriented
paradigm,” inFirst Int. Sofrware Metrics Symp., Baltimore, MD, 1993,

[28] K. Lieberherr, I . Holland, and A. Riel, “Object oriented programming:
An objective sense of style,’’ in Third Annu. ACM Conf: Object Oriented
Prog. Syst., Lung. and Applicat. (OOPSLA), 1988, pp. 323-334.

1291 T. J. McCabe, “A complexity measure,” IEEE Trans. Software Eng.,
vol. SE-2, pp. 308-320, 1976.

[30] D. R. Moreau and W. D. Dominick, “Object oriented graphical infor-
mation svstems: Research olan and evaluation metrics,” J . Svst. and

pp. 52-60.

Software, vol. 10, pp. 23-28, 1989.
K. Moms, “Metrics for object oriented software development,” Masters
thesis, M.I.T., Sloan School of Management, Cambridge, MA, 1988.
J. Parsons and Y. Wand, “Object-oriented systems analysis: A rep-
resentational view,” Working Paper, Univ. of British Columbia, Jan.
1993.
S. L. Pfleeger and J. D. Palmer, “Software estimation for object-oriented
systems,” in 1990 Int. Function Point Users Group Fall Conf., San
Antonio, TX, 1990, pp. 181-196.
R. E. Prather, “An axiomatic theory of software complexity measures,”
Comput. J . , vol. 27, pp, 340-346, 1984.
C. Rajaraman and M. R. Lyu, “Some coupling measures for C++
programs,” TOOLS USA 92, vol. 6, pp. 225-234, 1992.
F. Roberts, Encyclopedia of Mathematics and its Applications. Read-
ing, MA: Addison-Wesley, 1979.
R. C. Sharble and S. S. Cohen, “The object oriented brewery: A com-
parison of two object-oriented development methods,” ACM SIGSOFT
Software Eng. Notes, vol. 18, pp. 60-73, 1993.
S. D. Sheetz, D. P. Tegarden, and D. E. Monarchi, “Measuring object
oriented system complexity,” Working Paper, Univ. of Colorado, 1992.
K. Tagaki and Y. Wand, “An object-oriented information systems model
based on ontology,” in Object Oriented Approach in Inform. Syst., F.
Van Assche and B. M. C. Rolland, Eds. New York: Elsevier Science
Publishers B.V. (North Holland), 1991.
D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi, “Effectiveness of
traditional software metrics for object oriented systems,” presented at
the 25th Annu. Conf. Syst. Sci., Maui, HI, 1992.
1. Vessey and R. Weber, “Research on structured programming: An
empiricist’s evaluation,” IEEE Trans. Software Eng., vol. SE-IO, pp.
394407, 1984.
Y. Wand, “A proposal for a formal model of objects,” in Object-Oriented
Concepts, Databases aiid Applications, W. Kim and F. Lochovsky, Eds.
Reading, MA: Addison-Wesley, 1989.
Y. Wand and R. Weber, “An ontological evaluation of systems analysis
and design methods,” in Information Systems Concepts: An In-depth
Aidysrs, E. D. Falkenberg and P. Lindgreen, Eds. Amsterdam: Else-
vier Science,, 1989.
-, “An ontological model of an information system,” IEEE Trans.
Softwsare Eng., vol. 16, pp. 1282-1292, 1990.
-, “Toward a theory of the deep structure of information systems,”
in Int. Cot$ Inform. Syst., Copenhagen, Denmark, 1990, pp. 61-71.
R. Weber and Y. Zhang, “An ontological evaluation of Niam’s grammar
for conceptual schema diagrams,” in Proc. Twelfth Int. Conf. Inform.
Syst., New York, 1991, pp. 75-82,

CHIDAMBER AND KEMERER: A METRICS SUITE FOR OBJECT ORIENTED DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA493

[47] E. Weyuker, “Evaluating software complexity measures,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE Trans.
Software Eng., vol. 14, pp. 1357-1365, 1988.

[48] S. Whitmire, “Measuring complexity in object-oriented software,” pre-
sented at the Third Int. Conf. Applicat. Software Meas., La Jolla, CA,
1992.

[49] N. Wilde and R. Huitt, “Maintenance support for object-oriented pro-
grams,” IEEE Trans. Software zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEng. , vol. 18, pp. 1038-1044, 1992.

[50] H. Zuse, “Properties of software measures,” Software Quality J., vol. I ,
pp. 225-260, 1992.

Shyam R. Chidamber is a doctoral candidate at
the Massachusetts Institute of Technology in Cam-
bridge, MA. His research focuses on the man-
agement of object oriented software development
efforts in organizations.

Prior to joining MIT, he was a Member of Tech-
nical Staff at AT&T Bell Laboratories where he
was involved in the management and development
of software applications for telecommunications.
He was also an adjunct faculty member at the
department of Computer and Information Systems

at the New Jersey Institute of Technology.
Mr. Chidamber’s prior publications include articles in the OOPSLA Pro-

ceedings, Journal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Systems and Software, and the International Journal of
Technology Management.

Chris F. Kemerer received the B.S degree in
decision sciences and economics from the Wharton
School of the University of Pennsylvania, Philadel-
phia, PA, and the Ph D degree from the Graduate
School of Industnal Administration at Camegie
Mellon University.

He is the Douglas Drane Career Development
Associate Professor of Information Technology and
Management at the MIT Sloan School of Manage-
ment His research interests are in the measurement
and modeling of software development for improved

performance. He has published articles on these topics in Communrcatrons of
the ACM IEEE Computer, IEEE Software, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, Informatron and Software Technology, Informatron Systems
Research, Management Science, Sloan Management Revrew, and others

Prof Kemerer serves on the editonal boards of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACommunrcatrons of
the ACM, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInfor mation Systems Research, the Journal of Organrzatronal
Computing, the Journal of Software Quality, and MIS Quarterly, and IS

a member of the IEEE Computer Society, ACM, and The Institute for
Management Sciences

