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A Metrics Suite for Object Oriented Design 
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Abstruct- Given the central role that software development 

plays in the delivery and application of information technology, 
managers are increasingly focusing on process improvement in 
the software development area. This demand has spurred the 
provision of a number of new and/or improved approaches to 
software development, with perhaps the most prominent being 
object-orientation (00). In addition, the focus on process im- 
provement has increased the demand for software measures, or  
metrics with which to manage the process. The need for such 
metrics is particularly acute when an organization is adopting 
a new technology for which established practices have yet to 
be developed. This research addresses these needs through the 
development and implementation of a new suite of metrics for 
00 design. Metrics developed in previous research, while con- 
tributing to the field’s understanding of software development 
processes, have generally been subject to serious criticisms, in- 
cluding the lack of a theoretical base. Following Wand and Weber, 
the theoretical base chosen for the metrics was the ontology of 
Bunge. Six design metrics are developed, and then analytically 
evaluated against Weyuker’s proposed set of measurement prin- 
ciples. An automated data collection tool was then developed 
and implemented to collect an empirical sample of these metrics 
at two field sites in order to demonstrate their feasibility and 
suggest ways in which managers may use these metrics for process 
improvement. 

Index Terms- CR categories and subject descriptors: D.2.8 
[software engineering]: metrics; D.2.9 [software engineering]: 
management; F.2.3 [analysis of algorithms and problem complex- 
ity]: tradeoffs among complexity measures; K.6.3 [management 
of computing and information systems]: software management. 
General terms: Class, complexity, design, management, measure- 
ment, metrics, object orientation, performance. 

I. INTRODUCTION 

T has been widely recognized that an important component I of process improvement is the ability to measure the 
process. Given the central role that software development plays 
in the delivery and application of information technology, 
managers are increasingly focusing on process improvement 
in the software development area. This emphasis has had two 
effects. The first is that this demand has spurred the provision 
of a number of new andlor improved approaches to software 
development, with perhaps the most prominent being object- 
orientation (00). Second, the focus on process improvement 
has increased the demand for software measures, or metrics 
with which to manage the process. The need for such metrics 
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is particularly acute when an organization is adopting a new 
technology for which established practices have yet to be 
developed. 

This research addresses these needs through the devel- 
opment and implementation of a new suite of metrics for 
00 design. Previous research on software metrics, while 
contributing to the field’s understanding of software devel- 
opment processes, have generally been subject to one or more 
types of criticisms. These include: lacking a theoretical basis 
[4 11, lacking in desirable measurement properties [47], being 
insufficiently generalized or too implementation technology 
dependent [45], and being too labor-intensive to collect [22]. 

Following Wand and Weber, the theoretical base chosen for 
the 00 design metrics was the ontology of Bunge [51,[61,[431. 
Six design metrics were developed, and analytically evaluated 
against a previously proposed set of measurement principles. 
An automated data collection tool was then developed and 
implemented to collect an empirical sample of these metrics 
at two field sites in order to demonstrate their feasibility and 
to suggest ways in which managers may use these metrics for 
process improvement. 

The key contributions of this paper are the development 
and empirical validation of a set of theoretically-grounded 
metrics of 00 design. The rest of this paper is organized 
as follows. The next section presents a brief summary of 
the research problem, followed by a section describing the 
theory underlying the approach taken. Then Weyuker’s list 
of software metric evaluation criteria is presented, along with 
a brief description of the empirical data collection sites. The 
Results section presents the metrics, their analytical evaluation, 
the empirical data and a managerial interpretation of the data 
for each metric. Some concluding remarks are presented in 
the final section. 

11. RESEARCH PROBLEM 

There are two general types of criticisms that can be 
applied to current software metrics. The first category are 
those theoretical criticisms that are leveled at conventional 
software metrics as they are applied to traditional, non-00 
software design and development. Kearney, et al. criticized 
software complexity metrics as being without solid theoretical 
bases and lacking appropriate properties [21]. Vessey and 
Weber also commented on the general lack of theoretical rigor 
in the structured programming literature [41]. Both Prather 
and Weyuker proposed that traditional software complexity 
metrics do not possess appropriate mathematical properties, 
and consequently fail to display what might be termed normal 
predictable behavior [34], [47]. This suggests that software 
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metrics need to be constructed with a stronger degree of 
theoretical and mathematical rigor. 

The second category of criticisms is more specific to 00 
design and development. The 00 approach centers around 
modeling the real world in terms of its objects, which is in 
contrast to older, more traditional approaches that emphasize 
a function-oriented view that separates data and procedures. 
Several theoretical discussions have speculated that 00 ap- 
proaches may even induce different problem-solving behavior 
and cognitive processing in the design process, e.g. [4], [23]. 
Given the fundamentally different notions inherent in these 
two views, it is not surprising to find that software metrics 
developed with traditional methods in mind do not readily 
lend themselves to 00 notions such as classes, inheritance, 
encapsulation and message passing [49]. Therefore, given that 
current software metrics are subject to some general criticism 
and are easily seen as not supporting key 00 concepts, it 
seems appropriate to develop a set, or suite of new metrics 
especially designed to measure unique aspects of the 00 
approach. 

The shortcomings of existing metrics and the need for new 
metrics especially designed for 00 have been suggested by 
a number of authors. Tegarden et al. and Bilow have called 
for theoretical rigor in the design of 00 metrics [40] [3]. 
The challenge is therefore to propose metrics that are firmly 
rooted in theory and relevant to practitioners in organizations. 
Some initial proposals for such metrics are set out by Morris, 
although they are not tested [31]. Lieberherr and his colleagues 
present a more formal attempt at defining the rules of correct 
object oriented programming style, building on concepts of 
coupling and cohesion that are used in traditional programming 
[28]. Likewise Coplien suggests a number of rules of thumb 
for 00 programming in C++ [12]. Moreau and Dominick 
suggest three metrics for 00 graphical information systems, 
but do not provide formal, testable definitions [30]. Pfleeger 
also suggests the need for new measures, and uses simple 
counts of objects and methods to develop and test a cost 
estimation model for 00 development [33]. Lake and Cook 
prescribe metrics for measurement of inheritance in C++ 
environments, and have gathered data from an experimental 
system using an automated tool [25]. Other authors, such as 
Chidamber and Kemerer, Sheetz, et al., and Whitmire propose 
metrics, but do not offer any empirical data [lo], [38], [48]. 
More recently, Rajaraman and Lyu [35] and Li and Henry 
[27] test the metrics proposed in [ lo] and measured them 
for applications developed by university students. However, 
despite the active interest in this area, no empirical metrics 
data from commercial object oriented applications have been 
published in the archival literature. 

Given the extant software metrics literature, this paper has 
a three fold agenda: 1) to propose metrics that are constructed 
with a firm basis in theoretical concepts in measurement and 
the ontology of objects, and which incorporate the experiences 
of professional software developers; 2) evaluate the proposed 
metrics against established criteria for validity, and 3) present 
empirical data from commercial projects to illustrate the char- 
acteristics of these metrics on real applications, and suggest 
ways in which these metrics may be used. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

111. THEORY BASE FOR OOD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMETRICS 

While there are many object oriented design (OOD) method- 
ologies, one that reflects the essential features of OOD is 
presented by Booch [4].’ He outlines four major steps involved 
in the object-oriented design process. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Identification of Classes (and Objects): In this step, key 
abstractions in the problem space are identified and 
labeled as potential classes and objects. 
Identif) the Semantics of Classes (and Objects): In this 
step, the meaning of the classes and objects identified 
in the previous step is established, this includes defini- 
tion of the life-cycles of each object from creation to 
destruction. 
Identif) Relationships Between Classes (and Objects): In 
this step, class and object interactions, such as patterns 
of inheritance among classes and pattems of visibility 
among objects and classes (what classes and objects 
should be able to “see” each other) are identified. 
Implementation of Classes (and Objects): In this step, 
detailed intemal views are constructed, including defini- 
tions of methods and their various behaviors. 

Whether the design methodology chosen is Booch’s OOD or 
any of the several other methodologies, design of classes is 
consistently declared to be central to the 00 paradigm. As 
dechampeaux et al. suggest, class design is the highest priority 
in OOD, and since it deals with the functional requirements 
of the system, it must occur before systems design (mapping 
objects to processors, processes) and program design (reconcil- 
ing of functionality using the target languages, tools, etc.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 131. 
Given the importance of class design, the metrics outlined in 
this paper specifically are designed to measure the complexity 
in the design of classes.2 The limitation of this approach is that 
possible dynamic behavior of a system is not captured. Since 
the proposed metrics are aimed at assessing the design of an 
object oriented system rather than its specific implementation, 
the potential benefits of this information can be substantially 
greater than metrics aimed at later phases in the life-cycle of an 
application. In addition, implementation-independent metrics 
will be applicable to a larger set of users, especially in the 
early stages of industry’s adoption of 00 before dominant 
design standards emerge. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Measurement Theory Base 

An object oriented design can be conceptualized as a 
relational system, which is defined by Roberts as an ordered 
tuple consisting of a set of elements, a set of relations 
and a set of binary operations. [36]. More specifically, an 
object oriented design, D, is conceptualized as a relational 
system consisting of object-elements (classes and objects), 
empirical relations and binary operations that can be performed 
on the object-elements. By starting with these definitions, the 
mathematical role of metrics as a mapping (or transformation) 

‘For a comparison and critique of six different 00 analysis and design 

’These are therefore static metrics, and they can be gathered prior to 

methodologies see [15]. 

program execution. 
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Empirical Relational System 

can be formally outlined. Notationally: 

Formal Relational System 

where 
A is a set of object-elements 
RI . . . R, are empirical relations on object-elements of A 
(e.g., bigger than, smaller than, etc.) 
01 . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Om are binary operations on elements of A (e.g., 
combination) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A useful way to understand empirical relations on a set of 
object-elements is to consider the measurement of complexity. 
A designer generally has some intuitive ideas about the com- 
plexity of different object-elements, as to which element is 
more complex than another or which ones are equally complex. 
For example, a designer intuitively understands that a class that 
has many methods is generally more complex, ceteris paribus, 
than one that has few methods. This intuitive idea is defined 
as a viewpoint. The notion of a viewpoint was originally 
introduced to describe evaluation measures for information 
retrieval systems and is applied here to capture designer views 
[9 1. More recently, Fenton states that viewpoints characterize 
intuitive understanding and that viewpoints must be the logical 
starting point for the definition of metrics [14]. An empirical 
relation is identical to a viewpoint, and the two terms are 
distinguished here only for the sake of consistency with the 
measurement theory literature. 

A viewpoint is a binary relation . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 defined on a set P (the 
set of all possible designs). For P, P’, P” E P,  the following 
two axioms must hold: 

Heights of school children 

Relations: Equal or taller than 

Child P is taller than Child P’ 

Binary Operations: Combination: 

two children standing atop one 

another 

P. 2 PI or PI. 2 P(comp1eteness: P is more complex 

than P’ or PI is more complex than P )  

Real Numbers 

Relations: = or > 
36 inch child > 30 inch child 

Binary Operations: +: 
add the real numbers associated with 

the two children 

This required transformation is accomplished by a metric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 
which maps an empirical system D to a formal system F. For 
every element a E D,p(a) E F. It must be noted here that 
p preserves and does not alter the implicit notion underlying 
the empirical relations. The example below involving a set of 
school children illustrates the mapping between an empirical 
relational system and a formal relational system [20]: 

The empirical relation “Child P is taller than Child PI” in 
the above example is transformed to the formal relation “36 
inch child > 30 inch child”, enabling the explicit understand- 
ing of the heights of school children. The assumption in the 
argument for transformation of empirical relational systems to 
a formal empirical systems is that the “intelligence barrier” 
to understanding of the former is circumvented due to the 
transformation [24]. In the example of the school children the 
intelligence barrier is small, but the principle is that numeri- 
cal representations produced by the transformation to formal 
systems help in better understanding the empirical system. 
While the exercise of transformation may seem laborious for 
the simple example above, it can prove to be valuable in 
understanding complexity of software where the complexity 
relationships are not visible or not well understood [20]. 
Design of object oriented systems is a difficult undertaking in 

* P. 2 P”(transitivity: if P is more complex part due to the newness of the technology, and the consequent 
lack of formal metrics to aid designers and managers in 
managing complexity in OOD. 

than P’ and P’ is more complex 

than PI’, then P is more complex than P”) 

i.e., a viewpoint must be of weak order [36]. 
To be able to measure something about an object design, 

the empirical relational system as defined above needs to be 
transformed to a formal relational system. Therefore, let a 
formal relational system F be defined as follows: 

C is a set of elements (e.g., real numbers) 

S1 . . . S, are formal relations on elements of C 

(e.g., >, <, =) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B1 . . . B,, are binary operations on elements of C 

(e.g., +. -, *) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B.  Definitions 

The ontological principles proposed by Bunge in his “Trea- 
tise on Basic Philosophy” forms the basis of the concept 
of objects. While Bunge did not provide specific ontolog- 
ical definitions for object oriented concepts, several recent 
researchers have employed his generalized concepts to the 
object oriented domain [42], [44], [46]. Bunge’s ontology has 
considerable appeal for 00 researchers since it deals with the 
meaning and definition of representations of the world, which 
are precisely the goals of the object oriented approach [32]. 
Consistent with this ontology, objects are defined independent 
of implementation considerations and encompass the notions 
of encapsulation, independence and inheritance. According to 
this ontology, the world is viewed as composed of things, 
referred to as substantial individuals, and concepts. The key 
notion is that substantial individuals possess properties. A 
property is a feature that a substantial individual possesses 
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inherently. An observer can assign features to an individual, 
but these are attributes and not properties. All substantial 
individuals possess a finite set of properties; as Bunge notes, 
“there are no bare individuals except in our imagination” [5]. 

Some of the attributes of an individual will reflect its 
properties. Indeed, properties are recognized only through 
attributes. A known property must have at least one attribute 
representing it. Properties do not exist on their own, but are 
“attached” to individuals. On the other hand, individuals are 
not simply bundles of properties. A substantial individual 
and its properties collectively constitute an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAobject [42], [43]. 
Therefore, an object is not simply a bundle of methods, 
but a representation of the application domain that includes 
the methods and instance variables that a designer assigns 
to that object. Another benefit of this stream of research is 
that it provides a formal mathematical approach to dealing 
specifically with the key ideas of object orientation. 
An object can be represented in the following manner: 

X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( ~ , p ( z ) )  where z is the substantial iniividual and 

p ( z )  is the finite collection of its properties. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
:I: can be considered to be the token or name by which 
the object is represented in a system. In object oriented 
terminology, the instance variables’ together with its methods4 
are the properties of the object [l]. 

Using these representations of objects, previous research has 
defined concepts like scope and similarity that are relevant to 
object oriented systems [5], [42]. Following this tradition, this 
paper defines in the paragraphs below two important software 
design concepts for object classes, coupling and cohesion. 
Intuitively, coupling refers to the degree of interdependence 
between parts of a design, while cohesion refers to the internal 
consistency within parts of the design. All other things being 
equal, good software design practice calls for minimizing 
coupling and maximizing cohesiveness. It should be noted that 
these definitions are derived from the ontology of objects as 
opposed to other sources that have been graph-theory (e.g., 
McCabe [29]), information content (e.g., Halstead [ 171) or 
structural attributes (e.g., Card and Agresti [7]). For further 
details on the appropriateness of the ontological approach the 
reader is referred to the comprehensive treatment of the subject 
in [42], [321 and [391. 
Coupling In ontological terms, “two objects are coupled if 
and only if at least one of them acts upon the other, X is said 
to act upon Y if the history of Y is affected by X ,  where 
history is defined as the chronologically ordered states that a 
thing traverses in time” [41, p. 5471. 

Let X = ( z ,p (z ) )  and E’ = (y ,p(y) )  be two objects. 

‘An instance variable stores a unique value in each instance of a class 

4 A  method is an operation on an object that is defined as part of the 
declaration of the class. 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{M,} is the set of methods and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ I t }  is the set of instance 
variables of object i. 

Using the above definition of coupling, any action by {M-y}  
on { M y }  or { l y }  constitutes coupling, as does any action by 
{ M y }  on {M*y}  or {I-y}. When A4-y calls My, Mdy alters 
the history of the usage of My;  similarly when May uses I,, 
it alters the access and usage history of 11,. Therefore, any 
evidence of a method of one object using methods or instance 
variables of another object constitutes coupling. Since objects 
of the same class have the same properties, two classes are 
coupled when methods declared in one class use methods or 
instance variables of the other class.5 
Cohesion Bunge defines similarity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI T ( )  of two things to be the 
intersection of the sets of properties of the two things [5, p 871: 

Following this general principle of defining similarity in terms 
of sets, the degree of similarity of the methods within the 
object can be defined to be the intersection of the sets of 
instance variables that are used by the methods. This is an 
extension of Bunge’s definition of similarity to similarity of 
methods. It should be clearly understood that instance variables 
are not properties of methods, but it is consistent with the 
notion that methods of an object are intimately connected to 
its instance variables. 

where u(M1. M2) = degree of similarity of methods MI and 
Mz and { I i }  = set of instance variables used by method M,. 

Example: Let { I I }  = { a , b , c , d , e }  and ( 1 2 )  = { n , b , e } .  
(11) n { I 2 }  is nonempty, and C T ( M I , M ~ )  = { a , b , e } .  

The degree of similarity of methods relates both to the 
conventional notion of cohesion in software engineering, (i.e., 
keeping related things together) as well as encapsulation, that 
is, the bundling of methods and instance variables in an object 
class. The degree of similarity of methods can be viewed as 
a major aspect of object class cohesiveness. If an object class 
has different methods performing different operations on the 
same set of instance variables, the class is cohesive. This view 
of cohesion is centered on data that is encapsulated within an 
object and on how methods interact with data. It is proposed 
for object orientation as an alternative to other previous 
approaches, such as generalization-specialization cohesion or 
service cohesion as defined by Coad and Yourdon [ 111. 
Complexity of an Object: Bunge defines complexity of an 
individual to be the “numerosity of its composition”, implying 
that a complex individual has a large number of properties 
(51. Using this definition as a base, the complexity of an object 
class can be defined to be the cardinality of its set of properties. 
Complexity of ( z , p ( z ) )  = l p ( z ) I ,  where lp(z)I is the cardi- 
nality of p(z).  
Scope of Properties: In simple terms, a class is a set of 
objects that have common properties (i.e., methods and in- 
stance variables). A designer develops an abstraction of the 

’ Note that this will include coupling due to inheritance. 
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application domain by arranging the classes in a hierarchy. 
The inheritance hierarchy is a directed acyclic graph that can 
be described as a tree structure with classes as nodes, leaves 
and a root. In any application, there can be many possible 
choices for the class hierarchy. Design choices on the hierarchy 
employed to represent the application are essentially choices 
about restricting or expanding the scope of properties of the 
classes of objects in the application. Two design decisions 
which relate to the inheritance hierarchy can be defined. They 
are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdepth of inheritance of a class of objects and the number 
of children of the class. 

Depth of Inheritance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= depth of the class in the inheritance tree. 

The depth of a node of a tree refers to the length of the 
maximal path from the node to the root of the tree. 

Number of Children 

= Number of immediate descendants of the class. 

Both these concepts relate to the ontological notion of scope 
of properties,6 i.e., how far does the influence of a property 
extend? Depth of inheritance indicates the extent to which 
the class is influenced by the properties of its ancestors, 
and number of children indicates the potential impact on 
descendants. The depth of inheritance and number of children 
collectively indicate the genealogy of a class. 

Methods as Measures of Communication: In the object 
oriented approach, objects communicate primarily through 
message passing.’ A message can cause an object to “behave” 
in a particular manner by invoking a particular method. 
Methods can be viewed as definitions of responses to possible 
messages [ I ] .  It is reasonable, therefore, to define a response 
set for a class of objects in the following manner: 

Response set of a class of objects 

= {set of all methods 

that can be invoked in response 

to a message to an object of the class} 

Note that this set will include methods outside the class as well, 
since methods within the class may call methods from other 
classes. The response set will be finite since the properties of 
a class are finite and there are a finite number of classes in a 
design. During the implementation and maintenance phases of 
systems development, the response set may change, since new 
object instantiations may create different communication links. 

Combination of Object Classes: As Booch observes, class 
design is an iterative process involving subclassing (creat- 
ing new classes based on existing ones), factoring (splitting 
existing classes into smaller ones) and composition (or com- 
bination) that unites existing classes into one. The notion of 
subclassing is well understood in 00 design, but the semantics 
of combination are less clear. However, Bunge’s ontology 

‘For formal mathematical definitions of scope of properties. see 1441. 

’While objects can communicate through more complex mechanisms like 
bulletin boards, a majority of 00 designers employ message passing as the 
primary mechanism for communicating between objects 141. 

provides a basis for defining the combination of object classes. 
From the principle of additive aggregation of two (or more) 
things, the combination of two object classes results in another 
class whose properties are the union of the properties of the 
component classes. 

Let X = ( x , p ( x ) )  and Y = (y.p(y)) be two object classes, 
then X + Y is defined as ( z , p ( z ) )  where z is the token with 
which X + Y is represented and p ( z )  is given by 

For example, if a class foo-a has properties (i.e. methods 
and instance variables) a ,  b,  c, d and class f oo-b has properties 
a.  1. r n ,  n then foo-a+ foo-b has properties a. b. c, d, 1, m. n. If 
f 00-u and f oo-b both have identical properties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. b, c, d, then 
f oo-a + f oo-b will also have the same properties a ,  b ,  c. d. 

Designers’ empirical operations of combining two classes 
in order to achieve better representation are formally denoted 
here as combination and shown with a + sign. Combination 
results in a single joint state space of instance variables and 
methods instead of two separate state spaces; the only definite 
result of combination of two classes is the elimination of all 
prior messages between the two component classes. 

IV. METRICS EVALUATION CRITERIA 

Several researchers have recommended properties that soft- 
ware metrics should possess to increase their usefulness. For 
example, Basili and Reiter suggest that metrics should be sen- 
sitive to externally observable differences in the development 
environment, and must also correspond to intuitive notions 
about the characteristic differences between the software ar- 
tifacts being measured [2]. The majority of recommended 
properties are qualitative in nature and consequently, most 
proposals for metrics have tended to be informal in their 
evaluation of metrics. 

Consistent with the desire to move metrics research into a 
more rigorous footing, it is desirable to have a formal set 
of criteria with which to evaluate proposed metrics. More 
recently, Weyuker has developed a formal list of desiderata 
for software metrics and has evaluated a number of existing 
software metrics using these properties [47]. These desiderata 
include notions of monotonicity, interaction, noncoarseness, 
nonuniqueness and permutation. 

Weyuker’s properties are not without criticism. Fenton 
suggests that Weyuker’s properties are not predicated on a 
single consistent view of complexity [ 141. Zuse criticizes 
Weyuker on the grounds that her properties are not consistent 
with the principles of scaling [50]. Cherniavsky and Smith 
suggest that Weyuker’s properties should be used carefully 
since the properties may only give necessary, but not sufficient 
conditions for good complexity metrics [SI. 

However, as Gustafson and Prasad suggest, formal analyti- 
cal approaches subsume most of the earlier, less well-defined 
and informal properties and provide a language for evaluation 
of metrics [ 161. Her list, while currently still subject to debate 
and refinement, is a widely known formal analytical approach, 
and is therefore chosen for this analysis. Finally, in the course 
of the analysis presented below further suggestions are offered 
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on the relative appropriateness of these axioms for object 
oriented development. 

Of Weyuker’s nine properties, three will be dealt with only 
briefly here. Weyuker’s second property, “granularity,” only 
requires that there be a finite number of cases having the same 
metric value. Since the universe of discourse deals with at 
most a finite set of applications, each of which has a finite 
number of classes, this property will be met by any metric 
measured at the class level. The “renaming property” (Property 
8) requires that when the name of the measured entity changes, 
the metric should remain unchanged.’ As all metrics proposed 
in this paper are measured at the class level and, as none of 
them depend on the names of the class or the methods and 
instance variables, they also satisfy this property. Since both 
these properties are met, they will not be discussed further. 

Weyuker’s seventh property requires that permutation of 
elements within the item being measured can change the 
metric value. The intent is to ensure that metric values change 
due to permutation of program statements. This property is 
meaningful in traditional program design, where the ordering 
of if-then-else blocks could alter the program logic (and 
consequent complexity). In OOD, a class is an abstraction of 
the problem space, and the order of statements within the class 
definition has no impact on eventual execution or use. For 
example, changing the order in which methods are declared 
does not affect the order in which they are executed, since 
methods are triggered by the receipt of different messages 
from other objects. In fact, Chemiavsky and Smith specifically 
suggest that this property is not appropriate for OOD metrics 
because “the rationales used may be applicable only to tradi- 
tional programming” [8, p. 6381. Therefore, this property is not 
considered further. The remaining six properties are repeated 
below.’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Properry 1 )  Noncoarseness: Given a class P and a metric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 
another class Q can always be found such that: p ( P )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(Q). 
This implies that not every class can have the same value for 
a metric, otherwise it has lost its value as a measurement. 
Property 2 )  Nonuniqueness (Notion of Equivalence): There 
can exist distinct classes P and Q such that p ( P )  = /L (Q) .  
This implies that two classes can have the same metric value, 
i.e., the two classes are equally complex. 

Property 3 )  Design Details are Important: Given two class 
designs, P and Q,  which provide the same functionality, does 
not imply that p(P)  = p(Q). The specifics of the class must 
influence the metric value. The intuition behind Property 3 is 
that even though two class designs perform the same function, 
the details of the design matter in determining the metric for 
the class. 

Property 4 )  Monotonicity: For all classes P and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ,  the 
following must hold: p(P)  5 p(P+c)) and p(Q) 5 p( P+Q) 

where P + Q implies combination of P and QI0. This implies 
that the metric for the combination of two classes can never 
be less than the metric for either of the component classes. 

such that 
p ( P )  = p(Q) does not imply that y ( P  + R )  = p(Q + R). 
This suggests that interaction between P and R can be 
different than interaction between Q and R resulting in 
different complexity values for P + R and Q + R. 

Property 6 )  Interaction Increases Complexity: 3 P and 3Q 
such that: 

The principle behind this property is that when two classes 
are combined, the interaction between classes can increase the 
complexity metric value. 
Assumptions Some basic assumptions made regarding the dis- 
tribution of methods and instance variables in the discussions 
for each of the metric properties. 

Property 5 )  Nonequivalence of Interaction: 3 P, 3 Q ,  3 R, 

P(P)  + /4Q) < PL(P + Q) 

Assumption 1: Let 

X ,  = The number of methods in a given class i. 

Y, = The number of methods called from a given method i. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2, = The number of instance variables used by a method %. 
C, = The number of couplings between a given class of 

objects i and all other classes. 

Xi. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX I  Zj. C; are discrete random variables each characterized 
by some general distribution function. Further, all the X i s  
are independent and identically distributed (i.i.d.). The same 
is true for all the Xs, 2;s and C,s. This suggests that the 
number of methods, variables and couplings follow a statistical 
distribution that is not apparent to an observer of the system. 
Further, the observer cannot predict the variables, methods etc. 
of one class based on the knowledge of the variables, methods 
and couplings of another class in the system. 

Assumption 2: In general, two classes can have a finite 
number of “identical” methods in the sense that a combination 
of the two classes into one class would result in one class’s 
version of the identical methods becoming redundant. For 
example, a class ‘ ‘ f oo~me”  has a method “draw” that is 
responsible for drawing an icon on a screen; another class 
“f oo-two” also has a “draw” method. Now a designer decides 
to have a single class “foo” and combines the two classes. 
Instead of having two different “draw” methods the designer 
can decide to just have one “draw” method (albeit modified 
to reflect the new abstraction). 

Assumption 3: The inheritance tree is “full”, i.e., there is a 
root, intermediate nodes and leaves. This assumption merely 
states that an application does not consist only of stand-alone 
classes; there is some use of subclassing.” 

‘Note, this property deals only with the name of the entity, and not the 

gReaders familiar with Weyuker.s work should note that the exclusion of 

here no longer consistent with the original property numbers. It should also 
be noted that Weyuker’s definitions have been modified where necessary to 
use classes rather than programs. 

names associated with any of the intemals of the entity. 
’“It should be noted that P+Q is the combination of two classes, whereas 

these three propenies makes the properties makes the property numbers used ! ‘ (Q) + !‘(U) is the addition Of the metric Of and Ihe metric value 
Of c2. 

assumption. 
“Based on the data from sites .4 and l3, this appears to be a reasonable 
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V. EMPIRICAL DATA COLLECTION 

As defined earlier, a design encompasses the implicit 
ideas designers have about complexity. These viewpoints 
are the empirical relations R I ,  RP, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . R, in the formal 
definition of the design D. The viewpoints that were used in 
constructing the metrics presented in this paper were gathered 
from extensive collaboration with a highly experienced 
team of software engineers from a software development 
organization. This organization has used OOD in more than 
four large projects over the past five years. Though the primary 
development language for all projects at this site was C++, 
the research aim was to propose metrics that were language 
independent. As a test of this, later data were collected at two 
new sites which used different languages.'* 

The metrics proposed in this paper were collected using 
automated tools developed for this research at two different 
organizations which will be referred to here as Site A and 
Site B. Site A is a software vendor that uses OOD in their 
development work and has a collection of different C++ 
class libraries. Metrics data from 634 classes from two C++ 
class libraries that are used in the design of graphical user 
interfaces (GUI) were collected. Both these libraries were used 
in different product applications for rapid prototyping and 
development of windows, icons and mouse-based interfaces. 
Reuse across different applications was one of the primary 
design objectives of these libraries. These typically were 
used at Site A in conjunction with other C++ libraries 
and traditional C-language programs in the development of 
software sold to UNIX workstation users. 

Site B is a semiconductor manufacturer and uses the 
Smalltalk programming language for developing flexible 
machine control and manufacturing systems. Metrics were 
collected on the class libraries used in the implementation of 
a computer aided manufacturing system for the production of 
VLSI circuits. Over 30 engineers worked on this application, 
after extensive training and experience with object orientation 
and the Smalltalk environment. Metrics data from 1459 classes 
from Site B were collected. 

VI. RESULTS 

Metric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: Weighted Methods Per Class (WMC) 

Definition: Consider a Class C1~ with methods M I .  . . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ad, that are defined in the class. Let CI . " ' , c ,  be the 
complexity of the methods.13 Then: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 

WMC = C C ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1=l 

"The metrics were gathered from code, since no other design artifacts were 
available at either site. 

"Complexity is deliberately not defined more specifically here in order 
to allow for the most general application of this metric. It can be argued 
that developers approach the task of writing a method as they would a 
traditional program, and therefore some traditional static complexity metric 
may be appropriate. This is left as an implementation decision, as the general 
applicability of any existing static complexity metric has not been generally 
agreed upon. Any complexity metric used in this manner should have the 
properties of an interval scale to allow for summation. The general nature of 
the WMC metric is presented as a strength, not a weakness of this metric as 
has been suggested elsewhere [19). 

If all method complexities are considered to be unity, then 
WMC = n, the number of methods. 

Theoretical Basis: WMC relates directly to Bunge's defini- 
tion of complexity of a thing, since methods are properties of 
object classes and complexity is determined by the cardinality 
of its set of properties. The number of methods is, therefore, 
a measure of class definition as well as being attributes of a 
class, since attributes correspond to proper tie^.'^ 

Viewpoints: 

1) The number of methods and the complexity of methods 
involved is a predictor of how much time and effort is 
required to develop and maintain the class. 

2) The larger the number of methods in a class the greater 
the potential impact on children, since children will 
inherit all the methods defined in the class. 

3 )  Classes with large numbers of methods are likely to 
be more application specific, limiting the possibility of 
reuse. 

Analytical Evaluation of Weighted Methods Per Class (WMC) 

From assumption 1 ,  the number of methods in class P 
and another class Q are i.i.d., this implies that there is a 
nonzero probability that 3 Q such that p ( P )  # p ( Q ) ,  therefore 
property 1 is satisfied. Similarly, there is a nonzero probability 
that 3R such that p ( P )  = p ( R ) .  Therefore property 2 is 
satisfied. The function of the class does not define the number 
of methods in a class. The choice of the number of methods is 
a design decision and independent of the functionality of the 
class, therefore Property 3 is satisfied. Let p ( P )  = np and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p ( Q )  = n ~ ,  then p ( P  + Q) = n p  + n~ - 13, where d is the 
number of common methods between P and Q. Clearly, the 
maximum value of i3 is min(np, n ~ ) .  Therefore, p ( P  + Q) 2 
n p  + nQ - min(np,nQ).  It follows that p ( P  + Q) 2 p ( P )  
and p ( P  + Q) 2 p(Q),  thereby satisfying Property 4. Now, 
let p ( P )  = R,  ,U(&) = n, and 3 a class R such that it has a 
number of methods b, in common with 62 (as per assumption 
2) and f l  methods in common with P, where d # io. Let 
p(R) = r ;  

therefore p(P + R) # p(Q + R) and Property 5 is satisfied. 
For any two classes P and Q, n p  + 7 1 ~  - i3 5 n p  + nQ 
i.e., p ( P  + Q) 5 p ( P )  + p ( Q )  for any P and Q. Therefore, 
Property 6 is not ~at isf ied. '~ 

14Note that this is one interpretation of Bunge's definition, since it does 
not include the number of instance variables in the definition of the metric. 
This is done for two reasons: 1) Developers expressed the view that methods 
are more time consuming to design than instance variables, and adding the 
instance variables to the definition will increase the noise in the relationship 
between this metric and design effort. 2) By restricting the metric to methods, 
the 'process of adding static complexity weights to methods will not detract 
from the comprehensibility of the metric. 

"The implications of not satisfying Property 6 is discussed in the Summary 
section. 
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Fig. 1. Histogram for the WMC metric (Site A). 

TABLE I 
SUMMARY STATISTICS FOR THE WMC METRIC 

0 175 350 

WMC metric value 
(Site 6) 

Fig. 2. Histogram for the WMC metric (Site B). 

~ 

Site Metric Median Max Min 
A WMC 5 106 0 
B WMC 10 346 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Empirical Data 

The histograms (Fig. 1 and Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 )  and summary statistics 
(Table I) from both sites are shown above: 

Interpretation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Data: The most interesting aspect of the 
data is the similarity in the nature of the distribution of the 
metric values at Site A and B, despite differences in 1) the 
nature of the application; 2 )  the people involved in their 
design; and 3) the languages (C++ and Smalltalk) used. This 
seems to suggest that most classes tend to have a small number 
of methods (0 to lo), while a few outliers declare a large 
number of them. Most classes in an application appear to 
be relatively simple in their construction, providing specific 
abstraction and functionality. 

Examining the outlier classes at Site A revealed some 
interesting observations. The class with the maximum number 
of methods (106) had no children and was at the root of 
the hierarchy, whereas another outlier class with 87 methods 
had 14 subclasses and a total number of 43 descendants. In 
the first case, the class’s methods have no reuse within the 
application and, unless this is a generalized class that is reused 
across applications, the effort expended in developing this 
class will be a one-shot investment. However, the class with 87 
methods has significant reuse potential within the application 
making increased attention to testing the methods in this class 
worthwhile, since the methods can have widespread use within 
the system. 

Metric 2: Depth of Inheritance Tree (DIT) 

Definition: Depth of inheritance of the class is the DIT metric 
for the class. In cases involving multiple inheritance, the DIT will 
be the maximum length from the node to the root of the tree. 

Theoretical Basis: DIT relates to Bunge’s notion of the 
scope of properties. DIT is a measure of how many ancestor 
classes can potentially affect this class. 

Viewpoints: 
1) The deeper a class is in the hierarchy, the greater the 

number of methods it is likely to inherit, making it more 
complex to predict its behavior.16 

’61nterestingly, this has been independently observed by other researchers 
P61. 

Fig. 3. 

2 )  Deeper trees constitute greater design complexity, since 

3) The deeper a particular class is in the hierarchy, the 
more methods and classes are involved. 

greater the potential reuse of inherited methods. 

Analytical Evaluation of Depth of Inheritance Tree (DIT) 
Per assumption 3, the inheritance hierarchy has a root and 

leaves. The depth of inheritance of a leaf is always greater 
than that of the root. Therefore, property 1 is satisfied. Also, 
since every tree has at least some nodes with siblings (per 
assumption 3), there will always exist at least two classes 
with the same depth of inheritance, i.e., property 2 is satisfied. 
Design of a class involves choosing what properties the class 
must inherit in order to perform its function. In other words, 
depth of inheritance is design implementation dependent, and 
Property 3 is satisfied. 

When any two classes P and Q are combined, there are 
three possible cases” : 1) P and Q are siblings; 2) P and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ 
are neither children nor siblings of each other; and 3) one is 
the child of the other. 
Case 1) P and Q are siblings (see Figs. 3 and 4). 

In this case, p ( P )  = p(Q) = n and p ( P  + Q) = n, i.e., 
Property 4 is satisfied. 
Case 2 )  P and Q are neither children nor siblings of each 
other (see Figs. 5 and 6). 

If P + Q is located as the immediate ancestor to B and 
C (P’s location) in the tree, the combined class cannot 
inherit methods from X ,  however if P + Q is located as 
an immediate child of X (Q’s location), the combined class 

”A  fourth case would involve multiple inheritance, and it can be shown 
that Property 4 is satisfied in this case also. Suppose d has two subclasses 
P and S. Q is a subclass of 9 and also a subclass of B. p ( P )  = 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/ I ( & )  = 2.  The combined class P + 4 will be a subclass of S and B,  and 
p ( P  + 4) = 2.  In general / I (  P )  and p ( Q )  will be 72p and 7 2 6  respectively 
a n d p ( P + Q )  will beequal to Max(np ,w~) .Consequen t l y l l (P+Q)  will 
always be greater than or equal to p(P)and/ l (Q) .  
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Fig. 4. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.  

Fig. 7. 

can still inherit methods from all the ancestors of P and Q. 
Therefore, P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ Q will be in located &’s location.’8 In this 
case, p ( P )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,p(Q) = y and y > z. p ( P  + &) = Y, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p ( ~  + &) > p ( P )  and p ( p  + Q )  = p(Q) and Property 4 
is satisfied. 
3) when one is a child of the other (see Figs. 7 and 8):19 

In this case, p ( P )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, p(Q) = n + 1, but p ( P  + &) = n, 
i.e., p ( P  + &) < p(Q). Property 4 is not satisfied. 

Let P and &’ be siblings, i.e., p ( P )  = /L(&’) = 71, and let 
R be a child of P. Then p(P+R)  = n and p(Q’+R) = n+ l .  
i.e., p( P + R) is not equal to p( Q’ + R). Therefore, Property 5 
is satisfied. For any two classes P and Q, p(P+Q) = p(P)  or 
= p(Q). Therefore, p ( P  + &) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI p ( P )  + p(Q),  i.e., Property 
6 is not satisfied. 

‘*If there are several intermediate classes between P and the common 
ancestor of P and 9, the combined class will still be located as an immediate 
child of A- and also inherit (via multiple inheritance) from P’s immediate 
ancestors. 

”This case is also representative of the situation where Q is a descendent, 
but not an immediate child of P. 

Fig. 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 9. Histogram for the DIT metric (Site A). 
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Fig. 10. Histogram for the DIT metric (Site B). 

TABLE I1 
SUMMARY STATISTICS FOR THE DIT METRIC 

Site Metric Median Max Min 
A DIT 1 8 0 
B DIT 3 10 0 

Empirical Data: The histograms are shown in Figs. 9 and 
10, and the summary statistics are shown in Table I1 (all metric 
values are integers). 

Interpretation of Data: Both Site A and B libraries have a 
low median value for the DIT metric. This suggests that most 
classes in an application tend to be close to the root in the 
inheritance hierarchy. By observing the DIT metric for classes 
in an application, a senior designer or manager can determine 
whether the design is “top heavy” (too many classes near the 
root) or “bottom heavy” (many classes are near the bottom of 
the hierarchy). At both Site A and Site B, the library appears 
to be top heavy, suggesting that designers may not be taking 
advantage of reuse of methods through inheritance*’. Note that 

’“Of course, such occurrences may also be function of the application. 
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the Smalltalk application has a higher depth of inheritance 
due, in part, to the library of reusable classes that are a part 
of the language. For example, all classes are subclasses of the 
class “object”. Another interesting aspect is that the maximum 
value of DIT is rather small (10 or less). One possible 
explanation is that designers tend to keep the number of levels 
of abstraction to a manageable number in order to facilitate 
comprehensibility of the overall architecture of the system. 
Designers may be forsaking reusability through inheritance 
for simplicity of understanding. This also illustrates one of the 
advantages of gathering metrics of design complexity in that a 
clearer picture of the conceptualization of software systems 
begins to emerge with special attention focused on design 
tradeoffs. Examining the class at Site A with a DIT value 
of 8 revealed that it was a case of increasingly specialized 
abstractions of a graphical concept of control panels. The class 
itself had only 4 methods and only local variables, but objects 
of this specialized class had a total of 132 methods available 
through inheritance. Designing this class would have been 
a relatively simple task, but the testing could become more 
complicated due to the high inheritance.21 Resources between 
design and testing could be adjusted accordingly to reflect this. 

0 1 2 3 4 5 7  

NOC mbic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvalue zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Site A) 

Fig. 1 1 .  Histograms for the NOC metric (Site A). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Metric 3: Number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Children (NOC) 

Definition: NOC = number of immediate subclasses subordi- 
nated to a class in the class hierarchy. 

Theoretical Basis: NOC relates to the notion of scope of 
properties. It is a measure of how many subclasses are going 
to inherit the methods of the parent class. 

Viewpoints: 
1) Greater the number of children, greater the reuse, since 

inheritance is a form of reuse. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 )  Greater the number of children, the greater the likelihood 

of improper abstraction of the parent class. If a class has 
a large number of children, it may be a case of misuse 
of subclassing. 

3) The number of children gives an idea of the potential 
influence a class has on the design. If a class has a large 
number of children, it may require more testing of the 
methods in that class. 

Analytical Evaluation of Number Of Children (NOC) 
Let P and R be leaves, p ( P )  = p ( R )  = 0, let Q be the root 

p(Q) > 0. p ( P )  # p(Q) therefore property 1 is satisfied. 
Since p ( R )  = p(P) ,  Property 2 is also satisfied. Design 
of a class involves decisions on the scope of the methods 
declared within the class, i.e., the subclassing for the class. The 
number of subclasses is therefore dependent upon the design 
implementation of the class. Therefore, Property 3 is satisfied. 

Let P and Q be two classes with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnp and nQ subclasses 
respectively (i.e., p ( P )  = np and p(Q) = no). Combining 

It is interesting to note, however, that this phenomenon appears to be 
present in both data sets, which represent relatively different applications and 
implementation environments. 

2’ Testers have frequently experienced that finding which method is execut- 
ing (and from where) is a time consuming task [26]. 
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Fig. 12. Histograms for the NOC metric (Site B). 

P and Q,22 will yield a single class with np + nQ - d 
subclasses, where d is the number of children P and Q have 
in common. Clearly, d is 0 if either n p  or TLQ is 0. If Q is a 
subclass of P,  then P + Q will have n p  + ng - 1 subclasses. 
Therefore, in general the number of subclasses of P + Q is 
n p + n ~  -@, where @ = 1 or S. Now, np + n ~  - @  2 np and 
np + n~ - p 2 ng.  This can be written as: p( P + Q )  2 p( P )  
and p( P + Q )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 p( Q) for all P and all Q. Therefore, Property 
4 is satisfied.23 Let P and Q each have 71 children and R be 
a child of P which has T children. p ( P )  = n = p(Q). The 
class obtained by combining P and R will have (n  - 1) + T 

children, whereas a class obtained by combining Q and R will 
have n + T children, which means that p( P + R) # p( Q + R). 
Therefore Property 5 is satisfied. Given any two classes P 
and Q with np and nQ children respectively, the following 
relationship holds: 

p ( P )  = np and p(Q) = n~ 

p ( P  + &) = n P  + ”Q  - 8 

where d is the number of common children. Therefore, p( P + 
Q) 5 p ( P )  + p( Q) for all P and Q. Property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 is not satisfied. 

Empirical Data: The histograms and summary statistics 
from both sites are shown in Figs. 1 1  and 12 and Table 111. 

22The combination of two classes will result in the combined class located 
in the inheritance hierarchy at the position of the class with the greater depth 
of inheritance. 

231n cases where a class is both a parent and a grandparent of another class, 
this property will be violated. However, most 00 environments will disallow 
this type of hierarchy. 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 

SUMMARY STATISTICS FOR THE NOC METRIC 

Site Metric Median Max Min 
A NOC 0 42 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
B NOC 0 SO 

Interpretation of Data: Like the WMC metric, an interesting 
aspect of the NOC data is the similarity in the nature of the 
distribution of the metric values at Site A and B. This seems 
to suggest that classes in general have few immediate children 
and that only a very small number of outliers have many 
immediate subclasses. This further suggests that designers may 
not be using inheritance of methods as a basis for designing 
classes, as the data from the histograms show that a majority 
of the classes (73% at Site A and 68% at Site B) have no 
children. Considering the large sample sizes at both sites and 
their remarkable similarity, both the DIT and NOC data seem 
to strongly suggest that reuse through inheritance may not 
be being fully adopted in the design of class libraries, at 
least at these two sites. One explanation for the small NOC 
count could be that the design practice followed at the two 
sites dictated the use of shallow inheritance hi er arc hie^.^^ 
A different explanation could be a lack of communication 
between different class designers and therefore that reuse 
opportunities are not being realized. Whatever the reason, 
the metric values and their distribution provide designers and 
managers with an opportunity to examine whether their partic- 
ular design philosophy is being adhered to in the application. 
An examination of the class with 42 subclasses at Site A 
was a GUI-command class for which all possible commands 
were separate subclasses. Further, none of these subclasses 
had any subclasses of their own. Systematic use of the NOC 
metric could have helped to restructure the class hierarchy 
to exploit common characteristic of different commands (e.g., 
text commands, mouse commands etc.). 

Metric 4: Coupling between object classes (CBO) 

Definition: CBO for a class is a count of the number of other 
classes to which it is coupled. 

Theoretical Basis: CBO relates to the notion that an object is 
coupled to another object if one of them acts on the other, i.e., 
methods of one use methods or instance variables of another. 
As stated earlier, since objects of the same class have the same 
properties, two classes are coupled when methods declared in 
one class use methods or instance variables defined by the 
other class. 

Viewpoints: 

1) Excessive coupling between object classes is detrimental 
to modular design and prevents reuse. The more inde- 
pendent a class is, the easier it is to reuse it in another 
application. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 )  In order to improve modularity and promote encapsu- 
lation, inter-object class couples should be kept to a 
minimum. The larger the number of couples, the higher 

24Some C++ designers at this site systematically avoid subclassing in 
order to maximize operational performance. 

the sensitivity to changes in other parts of the design, 
and therefore maintenance is more difficult. 

3) A measure of coupling is useful to determine how 
complex the testing of various parts of a design are 
likely to be. The higher the inter-object class coupling, 
the more rigorous the testing needs to be. 

Analytical Evaluation of Coupling Between Objects (CBO) 

As per assumption 1, there exist classes P ,  Q and R such 
that p ( P )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(Q) and p ( P )  = p ( R )  thereby satisfying 
properties 1 and 2. Inter-class coupling occurs when methods 
of one class use methods or instance variables of another class, 
i.e., coupling depends on the manner in which methods are 
designed and not on the functionality provided by P. Therefore 
Property 3 is satisfied. Let P and Q be any two classes with 
p ( P )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71p and p(Q) = n ~ .  If P and Q are combined, the 
resulting class will have np + 710 - d couples, where d is the 
number of couples reduced due to the combination. That is 
p(P  + Q) = n p  + nQ - d, where d is some function of the 
methods of P and Q. Clearly, n p - d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 and n ~ - d  2 0 since 
the reduction in couples cannot be greater than the original 
number of couples. Therefore, 

rip + 7 1 0  - d 2 n p  for all P and Q and 

n p  + nQ - d 2 nQ for all P and Q 

i.e., p ( P  + Q) 2 p ( P )  and p ( P  + Q) 2 p(Q) for all P and 
Q. Thus, Property 4 is satisfied. Let P and Q be two classes 
such that p ( P )  = p(Q) = n, and let R be another class with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p(R) = T .  

p ( P  + Q )  = n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT - d ;  similarly 

p(Q + R) = n + T - p. 

Given that d and ,6’ are independent functions, they will not 
be equal, i.e., p ( P  + R) is not equal to p(Q + R ) ,  satisfying 
Property 5. For any two classes P and Q , p ( P  + Q) = 
71p + ILQ - d. 

p ( P  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ) = p ( P )  + p(Q) - d which implies that 

p ( P  + Q) 5 p ( P )  + p(Q)  for all P and Q. 

Therefore Property 6 is not satisfied. 
Empirical Data: The histograms and summary statistics 

from both sites are shown in Figs. 13 and 14, and in Table 
IV . 

Interpretation of Datu: Both Site A and Site B class 
libraries have skewed distributions for CBO, but the Smalltalk 
application at Site B has relatively high median values. One 
possible explanation is that contingency factors (e.g., type 
of application) are responsible for the difference. A more 
likely reason is the difference between the Smalltalk and C++ 
languages? Smalltalk requires virtually every interaction be- 
tween run-time entities be done through message passing, 
while C++ does not. In Smalltalk, simple scalar variables 
(integers, reals, and characters) and control flow constructs 
like f ,  while, repeat statements are objects. Each of these 

2sWe are indebted to an anonymous referee who provided the following 
explanation. 
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Fig. 13. Histogram for the CBO metric (Site A). 

invocations is performed via message passing which will be 
counted as an interaction in the CBO metric. Simple scalars 
will not be defined as C++ classes, and certainly control flow 
entities are not objects in C++. Thus, CBO values are likely 
to be smaller in C++ applications. However, that does not 
explain the similarity in the shape of the distribution. One 
interpretation that may account for both the similarity and the 
higher values for Site B is that coupling between classes is an 
increasing function of the number of classes in the application. 
The Site B application has 1459 classes compared to the 634 
classes at Site zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. It is possible that complexity due to increased 
coupling is a characteristic of large class libraries. This could 
be an argument for a more informed selection of the scale size 
(as measured by number of classes) in order to limit coupling. 
The low median values of coupling at both sites suggest that at 
least 50% of the classes are self-contained and do not refer to 
other classes (including super-classes). Since a fair number of 
classes at both sites have no parents or no children, the limited 
use of inheritance may be also responsible for the small CBO 
values. Examination of the outliers at Site B revealed that 
classes responsible for managing interfaces have high CBO 
values. These classes tended to act as the connection point for 
two or more subsystems within the same application. At Site 
A, the class with the highest CBO value was also the class 
with the highest NOC value, further suggesting the need to 
re-evaluate that portion of the design. The CBO metric can be 
used by senior designers and project managers as a relative 
simple way to track whether the class hierarchy is losing 
its integrity, and whether different parts of a large system 
are developing unnecessary interconnections in inappropriate 
places. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Metric 5: Response For a Class (UFC) 

class. 

expressed as 

Definition: RFC = IRS( where RS is the response set for the 

Theoretical Basis: The response set for the class can be 

RS = {MI Uall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{R i }  
where { R,} = set of methods called by method i and 

{ M }  = set of all methods in the class. 

The response set of a class is a set of methods that can 
potentially be executed in response to a message received 

800 -f 

0 120 240 

CBO metric value 
(Site B) 

Fig. 14. Histogram for the CBO metric (Site B). 

TABLE IV 
SUMMARY STATISTICS FOR THE CBO METRIC 

Site Metric Median Max Min 
A CBO 0 84 0 
B CBO 9 234 0 

by an object of that class.26 The cardinality of this set is 
a measure of the attributes of objects in the class. Since it 
specifically includes methods called from outside the class, it 
is also a measure of the potential communication between the 
class and other classes. 

Viewpoints: 
1) If a large number of methods can be invoked in response 

to a message, the testing and debugging of the class 
becomes more complicated since it requires a greater 
level of understanding required on the part of the tester. 

2) The larger the number of methods that can be invoked 
from a class, the greater the complexity of the class. 

3) A worst case value for possible responses will assist in 
appropriate allocation of testing time. 

Analytical Evaluation of Response for a Class (RFC) 

Let X p  = RFC for class P 

XQ = RFC for class Q. 

X p  and X Q  are functions of the number of methods and 
the external coupling of P and Q respectively. It follows 
from assumption 1 (since functions of i.i.d. random variables 
are also i.i.d.) that X p  and X Q  are i.i.d. Therefore, there 
is a nonzero probability that 3 Q such that p ( P )  # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(Q) 
resulting in property 1 being satisfied. Also there is a nonzero 
probability that 3 Q such that p ( P )  = p(Q), therefore 
property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 is satisfied. Since the choice of methods is a design 
decision, Property 3 is satisfied. Let P and Q be two classes 
with RFC of P = n p  and RFC of Q = 7LQ. If these two 
classes are combined to form one class, the response for that 
class will depend on whether P and Q have any common 
methods. Clearly, there are three possible cases: 1) when P 
and Q have no common methods nor do their methods use any 
of the same methods, and therefore the combined class P + Q 

'61t should be noted that membership to the response set is defined only up 
to the first level of nesting of method calls due to the practical considerations 
involved in collection of the metric. 
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Fig. 15. Histogram for the RFC metric (Site zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA) 
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Fig. 16. Histogram for the RFC metric (Site B). 

TABLE V 
SUMMARY STATISTICS FOR THE RFC METRIC 

Site Metric Median Max Min 
A RFC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 120 0 
B RFC 29 422 3 

will have a response set = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnp + nQ. 2)  when P and Q have 
methods in common, and the response set will smaller than 
np + nQ. 3 )  when P and Q have no methods in common but 
some of methods used by methods of P and Q are the same, 
the response set will be smaller than n p  + T L Q .  For both cases 
2 and 3, p ( P  + Q )  = np + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATLQ - d, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi) is some function 
of the methods of P and Q. Clearly, np + n~ - d 2 n p  and 
n p f n Q - 8  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ~ L Q  for all possible P and Q. /L(P+Q) 2 p ( P )  
and 2 p(Q) for all P and Q. Therefore, Property 4 is satisfied. 

Let P and Q be two classes such that p ( P )  = p(Q) = n, 
and let R be another class with p ( R )  = T .  

k ( P  + Q) = n + T - 13, similarly 

j L ( Q  + R )  = n, + 7’ - B. 

Given that d and /? are independent functions, they will not 
necessarily be equal, i.e., p ( P  + R) is not necessarily equal to 
p(Q+ R) ,  satisfying Property 5. For any two classes P and Q,  

of methods, while a few outliers maybe be most profligate 
in their potential invocation of methods. This reinforces the 
argument that a small number of classes may be responsible for 
a large number of the methods that executed in an application, 
either because they contain many methods (this appears to 
be the case at Site A) or that they call many methods. By 
using high RFC valued classes as structural drivers, high test 
coverage can be achieved during system test. 

Another interesting aspect is the difference in values for 
RFC between Site A and B. Note that the median and 
maximum values of RFC at Site B are higher than the 
RFC values at Site A. As in the case of the CBO metric, 
this may relate to the complete adherence to object oriented 
principles in Smalltalk which necessitates extensive method 
invocation, whereas C++’s incremental approach to object 
orientation gives designers altematives to message passing 
through method inv~cation.~’ Not surprisingly, at Site B high 
RFC value classes performed interface functions within the 
application. Since there are a number of classes that are stand- 
alone (i.e. no parents, no children, no coupling) the RFC 
values also tend to be low. Again, the metrics collectively 
and individually provide managers and designers a basis for 
examining the design of class hierarchies. 

Metric 6: Lack of Cohesion in Methods (LCOM) 

Definition: Consider a Class C1 with n methods 
MI, M2. . . . , Mn. Let { I , }  = set of instance variables 
used by method Mt.  

Thereare rt suchsets(l1) . . . . . {  I,}.Let P = { ( l z , I J ) l I t n  
I3 = S} and Q = { ( I t l 1 3 ) l I z  n IJ # 8). If all n sets 
{Il}. . . . . {In} are Q) then let P = Q). 

Example: Consider a class C with three methods 
M1,Mz and Ms. Let { I I }  = { a , b . c , d , e }  and 
{Iz} = { a , b , e }  and { I s }  = {x,y,z}. {II} n ( 1 2 )  is 
nonempty, but {II} n (13) and { I 2 }  n { I s }  are null sets. 
LCOM is the (number of null intersections-number of 
nonempty intersections), which in this case is 1. 

Theoretical Basis: This uses the notion of degree of simi- 
larity of methods. The degree of similarity for two methods 
M I  and M2 in class C1 is given by: 

o() = (11) f’ ( 1 2 )  where { I l }  and ( 1 2 )  are the sets of 

instance variables used by M I  and Mz 

The LCOM is a count of the number of method pairs whose 
similarity is 0 (i.e., U ( )  is a null set) minus the count of method 

p,(P + Q )  = p ( P )  + p(Q) - i) which implies that 

p ( P  + Q )  5 p ( P )  + p(Q)  for all P and Q. 

Therefore Property 6 is not satisfied. 
27RFC does not count calls to S-library functions and I/O functions like 

printf, scanf that are present in C++ applications. Similar functionality is 

Empirical &a: The histograms and summary statistics obtained through interface classes in Smalltalk that are counted in the RFC 

will be zero. 
This does not imolv maximal cohensiveness. since within the set of classes 

from both sites are shown in Figs. 15 and 16 and Table V. ca‘cu*ations’ 
2XNote that the LCOM metric for a class where [PI = 

‘nterpreta*ion ofData’ The data from both Site A and Site 
I ,  

suggest that most classes tend to able to invoke a small number with LCOM = 0, some may be more coherive than others 
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pairs whose similarity is not zero. The larger the number 
of similar methods, the more cohesive the class, which is 
consistent with traditional notions of cohesion that measure 
the inter-relatedness between portions of a program. If none 
of the methods of a class display any instance behavior, i.e., 
do not use any instance variables, they have no similarity and 
the LCOM value for the class will be zero. The LCOM value 
provides a measure of the relative disparate nature of methods 
in the class. A smaller number of disjoint pairs (elements of set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P )  implies greater similarity of methods. LCOM is intimately 
tied to the instance variables and methods of a class, and 
therefore is a measure of the attributes of an object class. 

Viewpoints: 

1) Cohesiveness of methods within a class is desirable, 
since it promotes encapsulation. 

2) Lack of cohesion implies classes should probably be 
split into two or more subclasses. 

3) Any measure of disparateness of methods helps identify 
flaws in the design of classes. 

4) Low cohesion increases complexity, thereby increasing 
the likelihood of errors during the development process. 

Analytical Evaluation of Lack Of Cohesion 
Of Methods (LCOM) 

Let 

X p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= LCOM for class P 
X Q  = LCOM for class Q. 

X p  and X Q  are functions of the number of methods and 
the instance variables of P and Q respectively. It follows 
from assumption 1 (since functions of i.i.d. random variables 
are also i.i.d.) that X p  and X Q  are i.i.d. Therefore, there 
is a nonzero probability that 3 Q such that p ( P )  # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(Q) 
resulting in property 1 being satisfied. Also there is a nonzero 
probability that 3 Q such that p ( P )  = p(Q), therefore 
property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 is satisfied. Since the choice of methods and 
instance variables is a design decision, Property 3 is satisfied. 

Suppose class P has 3 methods M I ,  M2, M3, and M2 and 
M3 use common instance variables, while M I  has no common 
instance variables with M2 and M3. The LCOM for P will 
be 1. Now, let another class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ have 3 methods, all of which 
use common instance variables. The LCOM for Q will be 0. 
When P and Q are combined, if the instance variables of Q 
are the same as the variables used by M2 and M3, the LCOM 
for P + Q will become 0, since the number of nonempty 
intersections will exceed the number of empty intersections. 
This implies that p ( P  + Q) > p(Q), which violates Property 
4. Therefore, LCOM does not satisfy Property 4.29 

Let P and Q be two classes such that p ( P )  = p(Q) = n, 
and let R be another class with p ( R )  = T .  

p ( P  + Q) = a + T - d, similarly 

p ( Q + R ) = n + r - P .  

Given that d and /3 are independent functions, they will not 
necessarily be equal. i.e., p ( P  + R )  # p(Q + R),  satisfying 

2y We are indebted to the associate editor for providing thls example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Histogram for the LCOM metric (Site A). Fig. 17. 
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Histogram for the LCOM metric (Site B). Fig. 18. 

TABLE VI 
SUMMARY STATISTICS FOR THE LCOM METRIC 

Site Metric Median Max Min 
A LCOM 0 200 0 
B LCOM 2 17 0 

Property 5. For any two classes P and Q, p ( P  + Q) = 
rip + nQ - d. i.e., 

p ( P  + Q )  = p ( P )  + p(Q) - d which implies that 

p ( P  + Q) 5 p ( P )  + p(Q) for all P and Q. 

Therefore, Property 6 is not ~atisfied.~' 
Empirical Data: The histograms and summary statistics 

from both sites are shown in Figs. 17 and 18 and Table VI. 
Interpretation of Data: At both sites, LCOM median values 

are extremely low, indicating that at least 50% of classes 
have cohesive methods. In other words, instance variables 
seem to be operated on by more than one method defined 
in the class. This is consistent with the principle of building 
methods around the essential data elements that define a class. 
The Site A application has a few outlier classes that have 
low cohesion, as evidenced by the high maximum value 200. 
In comparison, the Site B application has almost no outliers, 
which is demonstrated by the difference in the shape of the 
two distributions. 

A high LCOM value indicates disparateness in the func- 
tionality provided by the class. This metric can be used to 

'OIt can be shown for some cases that the number of disjoint sets will 
increase (i.e h will be negatlve) when two classes are combined. Under these 
circumstances, property 6 will be satisfied. 
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identify classes that are attempting to achieve many different 
objectives, and consequently are likely to behave in less 
predictable ways than classes that have lower LCOM values. 
Such classes could be more error prone and more difficult to 
test and could possibly be disaggregated into two or more 
classes that are more well defined in their behavior. The 
LCOM metric can be used by senior designers and project 
managers as a relatively simple way to track whether the 
cohesion principle is adhered to in the design of an application 
and advise changes, if necessary, at an earlier phase in the 
design cycle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Summary 

The Metrics Suite and Booch OOD Steps: 
The six metrics are designed to measure the three non- 

implementation steps in Booch’s definition of OOD. Each 
metric is one among several that can be defined using Bunge’s 
ontological principles. For example, the cardinality of the set 
of properties of an object (which will include both methods and 
instance variables could be defined as a metric. But inclusion 
in the proposed suite is influenced by three additional criteria: 
1)  ability to meet analytical properties 2) intuitive appeal to 
practitioners and managers in organizations and 3) ease of 
automated collection. Other comprehensive approaches may 
prove equally useful. 

Reading down the columns of Table VII, WMC, DIT and 
NOC relate to the first step (identification of classes) in OOD 
since WMC is an aspect of the complexity of the class and 
both DIT and NOC directly relate to the layout of the class 
hierarchy. WMC and RFC capture how objects of a class may 
“behave” when they get messages. For example, if a class has 
a large WMC or RFC, i t  has many possible responses (since a 
potentially large number of methods can execute). The LCOM 
metric relates to the packaging of data and methods within a 
class definition provides a measure of the cohesiveness of a 
class. Thus WMC, RFC and LCOM relate to the second step 
(the semantics of classes) in OOD. A benefit of having a suite 
of metrics is that there is the potential for multiple measures of 
the same underlying construct”. The RFC and CBO metrics 
also capture the extent of communication between classes 
by counting the inter-class couples and methods external to 
a given class, providing a measure of the third step (the 
relationships between classes) in OOD. 

Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Analytical Results: All the metrics satisfy the 
majority of the properties prescribed by Weyuker, with one 
strong exception, Property 6 (interaction increases complex- 
ity). Property 6 is not met by any of the metrics in this 
suite. Weyuker’s rationale for Property 6 is to allow for 
the possibility of increased complexity due to interaction. 
Failing to meet Property 6 implies that a complexity metric 
could increase, rather than reduce, if a class is divided into 
more classes. Interestingly, the experienced 00 designers who 
participated in this study found that memory management and 

3 ’  Another outcome of multiple measures is the statistical correlation 
between some metrics. For example, the RFC and WMC metric were highly 
correlated (Spearman rank correlation of 0.9) at both sites, while the NOC and 
LCOM had low correlation (less than 0.1). The median value of inter-metric 
correlations was 0.22 at Site A and 0.16 at Site B. 

TABLE VI1 
MAPPING OF METRICS TO BOOCH OOD STEPS 

Metric Identification Semantics Relationships 

WMC X X 
DIT X 
NOC X 
RFC X X 
CBO X 

LCOM X 

run-time detection of errors are both more difficult when there 
are a large number of classes to deal with. In other words, 
their viewpoint was that complexity can increase when classes 
are divided into more classes. Therefore, satisfying Property 
6 may not be an essential feature for 00 software design 
complexity metrics. From a measurement theoretic standpoint, 
a metric that meets property 6, cannot be an interval or a ratio 
scale. This means that such a metric cannot be used to make 
judgments like “class A is twice as complex as class B”, which 
limits its appeal. Thus, not satisfying property 6 may be seen 
as beneficial, rather than detrimental to widespread usage of 
the metrics. 

The only other violation of Weyuker’s properties is in the 
case of the DIT and LCOM metrics. The DIT metric fails 
to satisfy Property 4 (monotonicity) only in cases where two 
classes are in a parent-descendent relationship. This is because 
the distance from the root of a parent cannot become greater 
than one of its descendants. In all other cases, the DIT metric 
satisfies Property 4.32 Also, under certain conditions of class 
combination, the LCOM metric can fail to satisfy this property 
as well. 

Summary of Managerial Results: The data from two differ- 
ent commercial projects and subsequent discussions with the 
designers at those sites lead to several interesting observations 
that may be useful to managers of OOD projects. Designers 
may tend to keep the inheritance hierarchies shallow, forsaking 
reusability through inheritance for simplicity of understanding. 
This potentially reduces the extent of method reuse within 
an application. However, even in shallow class hierarchies 
it is possible to extract reuse benefits, as evidenced by the 
class with 87 methods at Site A that had a total of 43 
descendants. This suggests that managers need to proactively 
manage reuse opportunities and that this metrics suite can aid 
this process. 

Another demonstrable use of these metrics is in uncovering 
possible design flaws or violations of design philosophy. 
As the example of the command class with 42 children at 
Site A demonstrates, the metrics help to point out instances 
where subclassing has been misused. This is borne out by 
the experience of the designers interviewed at one of the data 
sites where excessive declaration of subclasses was common 
among engineers new to the 00 paradigm. These metrics can 
be used to allocate testing resources. As the example of the 
interface classes at Site B (with high CBO and RFC values) 

”It is interesting to note that other authors have also observed difficulties 
in applying this particular property of Weyuker’s. For example, see [IS]. 
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demonstrates, concentrating test efforts on these classes may 
have been a more efficient utilization of resources. 

Using several of the metrics together can help managers 
and senior designers, who may be unable to review design 
materials for the entire application, to exercise some mea- 
sure of architectural control over the evolution of an 00 
application. They could by means of the WMC, DIT and 
NOC metrics check whether the application is getting “top 
heavy” (i.e., too many classes at the root level declaring 
many methods) or using the RFC and CBO metrics check 
whether there are interconnections between various parts of the 
application that are unwarranted. The metrics values are likely 
to change as a project proceeds from design to implementation. 
If the system has been well architected, the class hierarchy 
will be stable, and the WMC, NOC, DIT metrics will reflect 
this. However, during implementation, new class coupling 
and communication may develop, affecting the CBO and 
RFC metric values. If implementation requires changes in the 
class definitions itself, the WMC and LCOM metrics will 
also change. Tracking these metrics through the life of the 
project, will provide managers with information to monitor 
00 systems evolution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs maintenance of the architectural 
integrity of an application becomes an important managerial 
responsibility, and this metrics suite could be used as a tool 
to meet this challenge. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Future Directions: The proposed OOD metrics have al- 
ready begun to be used in a few leading edge organizations. 
Sharble and Cohen report on how these metrics were used by 
Boeing Computer Services to evaluate different 00 method- 
ologies [37]. Two implementations of an example system, one 
using responsibility based methodology and another using data 
driven methodology were analyzed using these six metrics. 
Based on this analysis, Sharble and Cohen recommended 
the responsibility based design methodology for use in the 
organization. This suggests an active interest in the practitioner 
community to use well-constructed metrics as a basis for 
managerial decision-making. 

Another application of these metrics is in studying differ- 
ences between different 00 languages and environments. As 
the RFC and DIT data suggest, there are differences across 
the two sites that may be due to the features of the two 
target languages. However, despite the large number of classes 
examined (634 at Site A and 1459 at Site B), only two sites 
were used in this study, and therefore no claims are offered as 
to any systematic differences between the C++ and Smalltalk 
environments. This is suggested as a future avenue where 
00 metrics can help establish a preliminary benchmarking 
of languages and environments. 

The most obvious extension of this research is to analyze 
the degree to which these metrics correlate with managerial 
performance indicators, such as design, test and maintenance 
effort, quality and system performance. The metrics proposed 
in this paper were used recently by Li and Henry who 
found that they explain additional variance in maintenance 
effort beyond that explained by traditional size metrics [27]. 
Another interesting study would be to follow a commercial 
application from conception to deployment and gather metrics 
at various intermediate stages of the project. This would 

provide insight into how application complexity evolves and 
how it can be managed through the use of metrics. These 
are highly promising avenues for research in the immediate 
future. 

VII. CONCLUDING REMARKS 

This research has developed and implemented a new set 
of software metrics for 00 design. These metrics are based 
in measurement theory and also reflect the viewpoints of 
experienced 00 software developers. In evaluating these met- 
rics against a set of standard criteria, they are found to 
both a) possess a number of desirable properties, and b) 
suggest some ways in which the 00 approach may differ in 
terms of desirable or necessary design features from more 
traditional approaches. Clearly, future research designed to 
further investigate these apparent differences seems warranted. 

In addition to the proposal and analytic test of theoretically- 
grounded metrics, this paper has also presented empirical 
data on these metrics from actual commercial systems. The 
implementation independence of these metrics is demonstrated 
in part through data collection from both C++ and Smalltalk 
implementations, two of the most widely used object oriented 
environments. These data are used to demonstrate not only the 
feasibility of data collection, but also to suggest ways in which 
these metrics might be used by managers. In addition to the 
usual benefits obtained from valid measurements, 00 design 
metrics should offer needed insights into whether developers 
are following 00 principles in their designs. This use of 
metrics may be an especially critical one as organizations begin 
the process of migrating their staffs toward the adoption of 
00 principles. 

Collectively, the suite provides senior designers and man- 
agers, who may not be completely familiar with the design 
details of an application, with an indication of the integrity 
of the design. They can use it as a vehicle to address the 
architectural and structural consistency of the entire applica- 
tion. By using the metrics suite they can identify areas of 
the application that may require more rigorous testing and 
areas that are candidates for redesign. Using the metrics in 
this manner, potential flaws and other leverage points in the 
design can be identified and dealt with earlier in the design- 
develop-test-maintenance cycle of an application. Yet another 
benefit of using these metrics is the added insight gained about 
trade-offs made by designers between conflicting requirements 
such as increased reuse (via more inheritance) and ease of 
testing (via a less complicated inheritance hierarchy). Since 
there are typically many possible 00 designs for the same 
application, these metrics can help in selecting one that is most 
appropriate to the goals of the organization, such as reducing 
the cost of development, testing and maintenance over the life 
of the application. In general the idea is to use measurement 
to improve the process of software development. 

This set of six proposed metrics is presented as the first 
empirically validated proposal for formal metrics for OOD. 
By bringing together the formalism of measurement theory, 
Bunge’s ontology, Weyuker’s evaluation criteria and empir- 
ical data from professional software developers working on 
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commercial projects, this paper seeks to demonstrate the level [I71 M. Halstead, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAElements of Software Science. New York: Elsevier North- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. .  . _  

of rigor required in the development of usable metrics for 
design of software systems. Of course, there is no reason 

Holland, 1977. 
[ 181 W. Harrison, “Software science and Weyuker’s fifth property,’’ Internal 

ReD.. Univ. of Portland. Comput. Sci. Dept.. 1988. 
to believe that the proposed metrics will be found to be 
comprehensive, and further work could result in additions, 
changes and possible deletions from this suite. In particular, 
the LCOM metric might warrant altemative interpretations 
since it is currently based on a data-centered view of cohesion. 
However, the suite provides coverage for all three of Booth's 
steps for OOD and, at a minimum, this metrics suite should 
lay the groundwork for a 
for OOD. In addition, these metrics may also serve as a 

[ 191 R. ’Kalakota, S. Rathnam, and ‘A. Whinston, “The role of complexity in 
object-oriented development,” in 26th Annu. ConJ Syst. Sci., Maui, HI, 

1201 A. A. Kaposi, “ Measurement theory,” in Software Engineer’s Ref. Book, 
1993, pp. 759-768. 

J. McDermid, Ed., 
[21l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. K. Keamey et al., “Software complexity measurement,” Commun. 

ACM, vol. 29, pp. 1044-1050, 1986. 
~221 C. F. Kemerer, “Reliability of function points measurement: A field 

experiment,” Commun. ACM, vol. 36, pp. 85-97, 1993. 
[23] J. Kim and J. F. Lerch, “Cognitive processes in logical design: Com- 

paring object-oriented and traditional functional decomposition soft- 
ware methodologies,” Working Paper, Camegie Mellon Univ. Graduate 

Oxford: Butterworth-Heinemann Ltd., 1991. 

language to describe 

generalized solution for other researchers to rely on when 
seeking to develop specialized metrics for particular purposes 
or customized environments. 

It is often noted that 00 may hold some of the solutions 
to the software crisis. Further research in moving 00 devel- 
opment management towards a strong theoretical base should 
help to provide a basis for significant future progress. 
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