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ABSTRACT

A new hyperspectral texture descriptor, Relocated Spec-

tral Difference Occurrence Matrix (rSDOM) is proposed.

It assesses the distribution of spectral difference in a given

neighborhood. For metrological purposes, rSDOM employs

Kullback-Leibler pseudo-divergence (KLPD) for spectral dif-

ference calculation. It is generic and adapted for any spectral

range and number of band. As validation, a texture classifica-

tion scheme based on nearest neighbor classifier is applied on

HyTexiLa dataset using rSDOM. The performance is close to

Opponent Band Local Binary Pattern (OBLBP) with classifi-

cation accuracy of 94.7%, but at a much-reduced feature size

(0.24% of OBLBP’s) and computational complexity.

Index Terms— hyperspectral, texture, non-uniformity,

metrology, Kullback-Leibler

1. INTRODUCTION

Nowadays, the application of hyperspectral imaging (HSI)

can be found everywhere. Ever since its deployment in re-

mote sensing in the 1970’s [1], HSI technology has been ex-

tended into many fields such as agriculture [2], medicine [3]

and food quality inspection [4]. With the growing integration

of HSI technology in our daily life, it becomes essential to

develop adapted metrological solutions based on the spectral

measurements. This is to ensure the reproducibility, accuracy

and all the other expected properties when precise measure-

ment are required for diagnosis, control or decision-making.

Texture or non-uniformity assessment was one of the first

tasks developed in image processing. It originates from the

psychophysical findings of Julesz which inspires the develop-

ment of Haralick’s texture features [5]. Since then, there has

been a long list of texture feature propositions [6, 7, 8]. Nev-

ertheless, texture evaluation for multivariate images (color,

multi- and hyperspectral) is still an open question. The most

direct solution is to perform assessment in a marginal way

(band by band) or in a cross-channel processing [9, 10]. Few

texture features are developed specifically for hyperspectral

∗This work is supported by the French national projects ANR DigiPi and
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image processing such as 3D gray-level co-occurrence matrix

[11] and three-dimensional wavelet texture feature [12].

Hyperspectral image processing is often faced with the

curse of dimensionality due to the large number of spectral

bands. As such, dimensionality reduction [13, 14] or band

selection [15, 16] are usually performed prior to texture as-

sessment. Such approaches are data-dependent as the result

depends on the image content instead of the actually mea-

sured spectra. Hence, they are not adapted for metrological

purposes as results from different dataset are incomparable.

The rest of the article is organized as follows. Section 2

recalls the definition of an electromagnetic spectrum and its

similarity measure in a metrological context. Next, Section

3 details the hyperspectral texture descriptor. Section 4 then

presents a texture classification scheme with analysis and dis-

cussion. Finally, Section 5 provides the concluding remarks.

2. A METROLOGICAL CONSIDERATION

Under the point of view of signal and image processing, a

spectrum S is defined as a continuous function S = f(λ) over

the wavelengths λ. Due to sampling operation, its hyperspec-

tral acquisition is given by a discrete sequence of measure-

ments S = {s(λ), ∀λ ∈ [λmin, λmax]}. This causes spectra

to be considered as a set of independent measures, hence as

vectors, probability density functions or sequences and asso-

ciated with L2-norm for distance assessment.

The limits of such definition and of the use of L2-based

metrics in the context of metrological processing have been

shown in [17]. In order to obtain an adapted spectral dif-

ference respecting the metrological constraints, Kullback-

Leibler pseudo-divergence (KLPD) is introduced [18]. Con-

sidering two spectra S1 and S2, KLPD combines their shape

difference ∆G and intensity difference ∆W as:

dKLPD(S1, S2) = ∆G(S1, S2) + ∆W (S1, S2) (1)

where:

∆G(S1, S2) = k1 ·KL(S̄1‖S̄2) + k2 ·KL(S̄2‖S̄1)

∆W (S1, S2) = (k1 − k2) log

(

k1

k2

)

(2)



noting that the normalized spectrum S̄ is given by:

S̄ =

{

s̄(λ) =
s(λ)

k
, ∀λ ∈ [λmin, λmax]

}

(3)

with the normalization constant k:

k =

∫ λmax

λmin

s(λ) dλ (4)

and the KL divergence:

KL(S̄1‖S̄2) =

∫ λmax

λmin

S̄1(λ) · log
S̄1(λ)

S̄2(λ)
dλ (5)

For a demonstration of KLPD application, consider the

Food images from HyTexiLa hyperspectral texture dataset.

We split each image into 25 patches from which an average

spectrum is extracted a marginal way (Equation 10). Using

KLPD, we calculate their spectral difference with respect to

that of “Oregon”. This is shown in Figure 1a which illustrates

the average spectra (25 for each image) and Figure 1b which

plots the spectral shape and intensity differences.

3. MEASURING HYPERSPECTRAL TEXTURE

The first Julesz conjecture describes the pre-attentive discrim-

ination of textures based on second-order statistics [19]. Un-

der this context, we formulate a texture descriptor with refer-

ence to Haralick’s texture features and Local Binary Pattern

(LBP). To increase discrimination, we propose a joint spatial-

spectral formulation together with its similarity measure.

3.1. Spectral Difference Occurrence Matrix

The co-occurrence matrix in Haralick’s [5] gives precise tex-

ture description, but the subsequent reduction into moments

for similarity assessment leads to reduced efficiency. By con-

trast, LBP [8] provides weak texture characterization due to

the binarization, but its similarity measure using Kullback dis-

crimination is extremely efficient. Combining their strength

and considering the relationship between co-occurrence and

histogram of difference as defined by Unser [20], we intro-

duce the Spectral Difference Occurrence Matrix (SDOM):

M (l,θ)(∆G,∆W ) = Prob

(

dKLPD(Si, Sj) = (∆G,∆W )

)

,

∀i, j ∈ I, ‖−→ij ‖ = l, 6
−→
ij = θ

(6)

which is defined over hyperspectral image I . It expresses the

probability of finding a specific spectral difference (KLPD)

dKLPD(Si, Sj) = (∆G,∆W ) between two pixels separated

by a spatial vector with distance l and orientation θ. When

texture is stationary, SDOM is centered at the origin of ∆G−
∆W plane in a dense distribution as illustrated in Figure 2.

(a) Average spectra (25 for each image)

(b) Spectral differences with respect to “Oregon”

Fig. 1: A demonstration of KLPD application with Food im-

ages, each split into 25 patches and evaluated independently.

3.2. Kullback-Leibler divergence as similarity measure

Considering SDOM as a probability density function, Kullback-

Leibler (KL) divergence [21] has been identified as the most

efficient similarity measure [22]. As the direct calculation of

KL divergence is laborious, we proceed to model SDOM us-

ing bivariate normal distribution with mean µ and covariance

Σ. KL divergence can then be estimated as [23]:

KL(M1‖M2) =
1

2

[

log
|Σ2|
|Σ1|

+ tr
(

Σ−1
2 Σ1

)

−D (7)

+ (µ2 − µ1)
TΣ−1

2 (µ2 − µ1)

]

where D = 2 is the data dimension. As KL divergence is not

symmetric, the SDOM similarity measure is expressed as:

dKL(M1,M2) = KL(M1‖M2) +KL(M2‖M1) (8)



3.3. Relocated Spectral Difference Occurrence Matrix

By construction, SDOM is invariant to spectral information

as it considers only the spatial variability. For a joint spatial-

spectral formulation, we modify SDOM into Relocated Spec-

tral Difference Occurrence Matrix (rSDOM) that considers

spatial variability around the average spectrum Sµ:

M̂ (l,θ) = {Sµ,M
(l,θ)} (9)

where Sµ is defined over image with N pixels as:

Sµ =

{

sµ(λ) =
1

N

N
∑

i=1

s(λ), ∀λ ∈ [λmin, λmax]

}

(10)

Essentially, rSDOM is SDOM displaced in the ∆G − ∆W

plane in accordance to the spectral difference of the aver-

age spectrum dKLPD(Sµ1, Sµ2) = (∆Gµ,∆Wµ). Conse-

quently, the KL divergence in Equation 7 can be modified as:

KLR(M̂1‖M̂2) =
1

2

[

log
|Σ2|
|Σ1|

+ tr
(

Σ−1
2 Σ1

)

− 2

+

[

∆Gµ

∆Wµ

]T

Σ−1
2

[

∆Gµ

∆Wµ

]

] (11)

noting that µ is close to zero for stationary textures. The rS-

DOM similarity measure is then expressed as:

dKLR
(M̂1, M̂2) = KLR(M̂1‖M̂2) +KLR(M̂2‖M̂1) (12)

We have thus fully defined our proposed hyperspectral texture

descriptor rSDOM with its similarity measure in a metrolog-

ical framework.

4. EXPERIMENT AND DISCUSSION

To assess the efficiency of rSDOM, we apply a classification

scheme on a hyperspectral texture dataset. We analyze and

discuss the performance of rSDOM with reference to Oppo-

nent Band Local Binary Pattern (OBLBP). We also list down

the limitations of our approach for future improvements.

4.1. Classification using nearest neighbor

HyTexiLa [10] is a hyperspectral texture dataset consists of

112 images from five categories: Food (10 images), Stone

(4 images), Textile (65 images), Vegetation (15 images) and

Wood (18 images). The spectral range is 405.37 nm − 995.83

nm, spanning the visible and near infrared (NIR) parts of

the electromagnetic spectrum. Each image measures N =
1024 × 1024 with L = 186 spectral bands. The interest of

using HyTexiLa is that there exists a complete ground truth

(a) coffee (b) milkcoffee

Fig. 2: sRGB-rendered image and Spectral Difference Occur-

rence Matrix (SDOM) of “Coffee” and “Milkcoffee”.

as each pixel is associated with a known texture. This is un-

like other datasets such as Pavia University, Indian Pines and

Salinas-A for which a part of the pixels is manually labeled.

Following the setting in [10], we split each image into

25 patches, using 12 of them for training and 13 for testing.

Considering each image as a class on its own, we perform

classification using nearest neighbor which assigns the query

image to class in the training set which has the minimum dis-

tance with. This is to address the lack of global stationarity

that is common in natural scenes, hence improving robust-

ness of the classification scheme. Both intra-categorical and

inter-categorical (denoted as All) classification are performed

using T = 10 trials with random selection of training and

testing sets. The average accuracy and standard error are re-

ported, with the later defined as standard deviation/
√
T . All

calculation is performed using l = 3 and θ = 0.

4.2. Result and analysis

Figure 2 depicts the sRGB rendering (only a quarter of the full

image is displayed) and SDOM for “Coffee” and “Milkcof-

fee”. Visually, “Coffee” is identified by its coarser structure

while “Milkcoffee” exhibits a smoother surface. Clearly,

SDOM (and hence rSDOM) is able to capture this texture

difference in an easily understandable manner. On shape

difference ∆G, both shows identical distribution which is

explainable from the fact that they are of the same food origin

albeit at different processing level. On intensity difference



∆W , “Coffee” is more pronounced than “Milkcoffee” which

is expected due to their difference in granular size. Evidently,

“Coffee” is grainier and its high surface non-uniformity

promotes various kinds of light reflection, inducing differ-

ent shades of color varying from very dark to very light

brownish-like appearance. On the other hand, “Milkcoffee”

is powder-like with very fine particle size, making it a perfect

light diffuser for uniform surface appearance.

To demonstrate efficiency of the joint spatial-spectral for-

mulation of rSDOM, we present three results in Table 1 that

represents classification based on spectral information (aver-

age spectrum, A. Spec.), spatial variability (SDOM) and both

(rSDOM). It can be observed that rSDOM performs best in all

classification (except in Food), with accuracy ranging from

85.9 to 99.7% which is considered excellent. Expectedly,

SDOM registers poorer performance (47.1 - 79.9%) as it dis-

regards spectral information which plays an important role in

texture discrimination. On the other hand, it is interesting to

note that the performance of average spectrum is quite high

(79.0 - 98.7%). This may be attributed to the fact that Hy-

TexiLa is a relatively small dataset with limited spectral and

spatial variety for hyperspectral texture assessment.

From the intra-categorical classification, it can be seen

that the rSDOM misclassification in All is mainly due to Veg-

etation and Wood images. For this, we identify three reasons.

Firstly, the texture are predominantly green for Vegetation

and brown for Wood, therefore limiting discrimination from

each other. Secondly, the choice of l = 3 prevents rSDOM

from assessing texture with larger texton (repeating geomet-

rical structure) size. This explains the better classification of

Food, Stone and Textile which consist of mainly fine textons,

but reduced performance in classification of Wood and Vege-

tation with larger texton size. Thirdly, rSDOM is only able

to assess texture varying in vertical direction but not in oth-

ers with the unitary choice of θ = 0. This is acceptable for

isotropic textures, but not adapted for anisotropic ones such

as those found in Vegetation and Wood.

4.3. Discussion and future work

In [10], a texture classification scheme is applied on HyTex-

iLa using Opponent Band Local Binary Pattern (OBLBP). A

maximum score of 98.76% (with 18 principal components)

on the inter-categorical classification is reported, while the

intra-categorical results are unavailable. In comparison, the

performance of rSDOM is slightly lower (94.7%) although in

the same efficiency range. This is possibly due to the fact that

rSDOM cannot assess texture directionality. While rSDOM

evaluates texture in one direction, OBLBP is able to do so in

eight directions, hence the better performance of the later.

Nevertheless, we would like to highlight the fact that rS-

DOM is extremely lightweight compared to OBLBP. The fea-

ture size of OBLBP is L2 · 2P for L spectral bands and tex-

ture evaluation in P directions. For 18 principal components

Category A. Spec. (%) SDOM (%) rSDOM (%)

Food 96.3 ± 0.4 79.9 ± 0.7 91.5 ± 0.6

Stone 87.9 ± 2.2 75.2 ± 1.5 94.6 ± 1.1

Textile 98.7 ± 0.1 79.7 ± 0.4 99.7 ± 0.1

Vegetation 84.7 ± 0.5 47.1 ± 0.6 88.9 ± 0.4

Wood 79.0 ± 0.6 51.4 ± 0.8 85.9 ± 0.8

All 92.0 ± 0.2 62.1 ± 0.3 94.7 ± 0.1

Table 1: Classification performance on HyTexiLa dataset.

and texture assessment in 8 directions, OBLBP has a size of

182 · 28 = 82944. In comparison, rSDOM is represented us-

ing D +D2 + L = 2 + 4 + 186 = 196 scalar values which

is about 0.24% of OBLBP’s, where D + D2 is due to the

bivariate (D = 2) normal approximation. Such significant

difference is also reflected in the computational complexity.

Considering an image of N pixels, the rSDOM complexity is

O(N ·L) in contrast to OBLBP’s O(N ·P ·2L). For each patch

of N = 204×204 in the HyTexiLa classification scheme, the

rSDOM computational time is about two seconds.

One of the limitations in our work lies in the assumption

that rSDOM is normally distributed. In fact, this is not ex-

actly the case and statistical transformation may be required

to conform better to the normality assumption. On the other

hand, Gaussian Mixture Model (GMM) could be used to im-

prove rSDOM modeling for multi-modal distribution of spec-

tral difference. Last but not least, rSDOM would benefit too

from a future multi-scale and multi-direction implementation.

5. CONCLUSION

We have proposed a new hyperspectral texture descriptor

named Relocated Spectral Difference Occurrence Matrix (rS-

DOM). It assesses the distribution of spectral difference in a

given neighborhood around the average spectrum. For spec-

tral distance calculation, rSDOM employs Kullback-Leibler

pseudo-divergence (KLPD). Adapted for any spectral range

and number of band, it is suitable for industrial and medical

applications whereby precision, reproducibility and metro-

logical traceability are of utmost importance. Thanks to its

distance-based construction, the curse of dimensionality is

solved without requiring any spectral band reduction, there-

fore preserving all the metrological properties.

The performance of rSDOM has been assessed via a tex-

ture classification scheme on HyTexiLa dataset. The obtained

results confirms the efficiency of its joint spatial-spectral for-

mulation, with performance exceeding discrimination based

on spatial variability or spectral information alone. The per-

formance is also close to Opponent Band Local Binary Pat-

tern (OBLBP), even though rSDOM is processed only for one

spatial distance and direction. Besides, rSDOM is extremely

lightweight with feature about the size of number of spectral

bands, or about 0.24% of OBLBP’s in this work.



6. REFERENCES

[1] A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock,

“Imaging spectrometry for earth remote sensing,” Sci-

ence, vol. 228, no. 4704, pp. 1147–1153, 1985.

[2] N. Pettorelli, J. O. Vik, A. Mysterud, J. Gaillard, C. J.

Tucker, and N. C. Stenseth, “Using the satellite-derived

ndvi to assess ecological responses to environmental

change,” Trends in Ecology and Evolution, vol. 20, no.

9, pp. 503 – 510, 2005.

[3] C. Wang, W. Zheng, Y. Bu, S. Chang, S. Zhang, and

R. X. Xu, “Multi-scale hyperspectral imaging of cervi-

cal neoplasia,” Archives of Gynecology and Obstetrics,

vol. 293, no. 6, pp. 1309–1317, 2016.

[4] R. Siche, R. Vejarano, V. Aredo, L. Velasquez,

E. Saldaña, and R. Quevedo, “Evaluation of food qual-

ity and safety with hyperspectral imaging (HSI),” Food

Engineering Review, vol. 8, no. 3, pp. 306–322, 2016.

[5] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Tex-

tural feature for image classification,” IEEE Trans. on

Systems, Man and Cybernetics, vol. 3, no. 6, pp. 610–

621, 1973.

[6] Mary M. Galloway, “Texture analysis using gray level

run lengths,” Computer Graphics and Image Process-

ing, vol. 4, no. 2, pp. 172 – 179, 1975.

[7] J. Huang, S. R. Kumar, M. Mitra, W. J. Zhu, and

R. Zabih, “Image indexing using color correlograms,”

in Proceedings of IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 1997, pp.

762–768.
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