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Abstract: The past few years have witnessed the growing interest in vehicular ad hoc networks
(VANETs) and their potential applications for Internet of Things (IoT). Since the mobility model
is crucial to simulation based researches of VANET, using a realistic mobility model can ensure
the consistency between simulation results and real deployments. Although there are many mo-
bility models characterizing the movement of mobile nodes, none of them consider the behavior
of vehicles in a metropolitan scenario. In this paper, we present our study of extracting a mobility
model for VANET from a large amount of real taxi GPS trace data. In order to capture charac-
teristics of the urban vehicle network from microscopic to macroscopic aspects, we design three
parameters and extract their values from the GPS trace data. Using this mobility model, we can
generate the synthetic trace to simulate the movement of taxis in the urban area of a metropolis.
The validation is carried through extensive comparisons between the synthetic trace and the real
trace. The results show that our mobility model has a good approximation with the real scenario.
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1 Introduction

In recent years, Internet of Things (IoT) has attracted much attention because of its

wide applications. As a killer application of IoT, vehicular ad hoc networks (VANETs)

also have witnessed the growing interest from academy and industry. Supposing that

each vehicle on the road is equipped with wireless devices and sensors, these vehicles

can communicate each other or with the roadside infrastructures to transmit data for

sharing information or accessing Internet. This IoT on wheel can help to build many in-

telligent transportation applications such as traffic congestion relief, traffic monitoring,

and prediction of bus arrival time.

Since a large-scale testbed of VANETs is difficult to deploy, a mobility model is

needed to generate traces of vehicles so that people can study VANETs by simula-

tions. For example, Fiore and Harri [Fiore and Harri 2008] investigated the topology of

VANET based on some existing mobility model and then explain why different mobil-

ity models lead to dissimilar network protocol performance. In order to make results

of theoretical analysis suitable for real scenario, it is necessary to build these work on

realistic mobility models. For example, Hongzi et. al [Zhu et al. 2011] validated that

the node inter contact time in real VANET mobility follows exponential because of the

existence of traffic influxes. Similarly, Xu et. al [Xu et al. 2009] evaluated the perfor-

mance of traffic monitoring using VANET nodes which move according to realistic taxi

GPS traces. Hence a realistic mobility model is crucial to guarantee the consistency

between simulation results and real deployments.

Although there have been many mobility models, ranging from theoretical models

[Johnson and Maltz 1996] [Royer et al. 2001] to realistic models [Zhang et al. 2007]

[Burgess et al. 2006], none of them consider the continuous geographical mobility, i.e.,

node locations are given by coordinates from time to time, of vehicles in metropolitan

scenarios. Since such a mobility model is very important to the VANET research, e.g.,

the performance study of VANET routing protocols, we study how to extract a mobility

model from a large amount of empirical taxi GPS trace data.

In our work, we collected real GPS data which were reported by over 4,000 taxis

running in the Shanghai urban area for three months from February to April of 2007.

The GPS data includes not only the coordinates and timestamp, but also the moving

direction and the running status. By investigating the GPS data, we find that the taxi

mobility shows an obvious regularity. For example, taxis prefer to turn to the same

direction at some road intersections and their travels appear some patterns. In order

to capture the regularity of the taxi mobility, we propose three parameters, i.e., turn

probability, road section speed and travel pattern. Turn probability characterizes the

behavior of a taxi at a road intersection. Road section speed defines the running speed

of taxis on a given road section. Travel pattern depicts the regularity of long run trips

from origination to destination. We find that these parameters are able to capture char-

acteristics of taxi mobility. Therefore we propose the mobility model of MEtropolitan

TAxis (META) which can be used to generate the synthetic trace for the movement of
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taxis in an urban area.

In order to validate our mobility model, we generate the node trace according to

META and reconstruct the taxi trace from the GPS data, which are called as META

trace and real trace respectively in the rest of this paper. The validation was carried

out by comparing these two traces in terms of several important metrics including trace

characteristics, the network topology and the performance of a routing protocol. In

addition, we further add a trace generated according to the random waypoint mobility

model (RWP) [Johnson and Maltz 1996], called as RWP trace, into the comparison to

reveal the difference between realistic models and random models. The results show

that META trace has good approximation with the real trace which also validates the

effectiveness of model parameters.

The rest of the paper is organized as follows. Section 2 discusses some related work.

Section 3 describes the preliminary processing on the GPS data and then the method-

ologies of how to extract the mobility model are presented in Section 4. Section 5 shows

the validation methods and results. Finally, Section 6 presents our conclusions.

2 Related work

Early researches of mobility models stress on simplicity and theory. Some well known

mobility models such as random waypoint and random direction [Royer et al. 2001]

make the node randomly choose a destination or direction to move and then travel

with a randomly chosen speed. The advantages of these models are simple and good to

analyze, but they also have notable disadvantages. For example, the average speed of

nodes in the random waypoint mobility model is found to decrease with the progress

of the simulation [Yoon et al. 2003]. Although many modifications have been consid-

ered to make these simple models more realistic [Jardosh et al. 2003] and more stable

[Boudec and Vojnovic 2006], the consistency between the research results draw from

these models with the reality still needs to be investigated.

In recent years, researchers were inspired to collect data from the real world and

extract mobility models. Jain and Lelescu [Jain et al. 2005] [Lelescu et al. 2006] de-

rived empirical models from the trace of registrations of wireless users. Kim et al.

[Kim et al. 2006] also proposed a methodology to extract mobility model from real

WiFi user traces. Recently, Hsu et al. [Hsu et al. 2007] made use of the Dartmouth

WLAN dataset [CRAWDAD 2007] to model time-variant user mobility. The method-

ology in these researches is similar to ours, which is first revealing characteristics of real

traces such as registration pattern, user pause time and location visiting preferences of

users, and then extracting model parameters from these traces. Using this methodology,

the model is guaranteed to generate traces which can capture features of the real world.

Nevertheless, these traces are from human mobility so that they cannot be used directly

in the VANET research. As is known that the movement of vehicles is constrained to

running on the streets, traffic rules and status, so a realistic vehicular mobility model

should come from the traffic data.
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Actually, few researchers had studied on how to extract mobility model from real

traffic data. A recent work comes from Zhang et al. [Zhang et al. 2007]. They studied

the trace collected from UMass DieselNet [Burgess et al. 2006], which is a DTN testbed

consisting of WiFi nodes attached to buses. Based on the analysis of the deterministic

inter contact time for bus pairs running on route pairs, they constructed route-level

models to capture the periodic inter contact time pattern. Since their mobility model

is based on the interactions between a pair of buses, the ignorance of traces between

interactions limits this model for a wider applicability.

In fact, it is more relevant to compare our model with the microscopic traffic simula-

tor because both of them aim to generate continuous geographical traces. The common

used traffic simulators include the SUMO [Krajzewicz et al. 2002] and the VISSIM

[Vissim 2007]. Although they can generate realistic vehicular traces, their simulation

parameters, such as the traffic light and the vehicle length, are too complex to specify

for the VANET simulation so that they are more suitable to be used in transportation

and traffic science. In our work, we showed that three parameters are enough to capture

the characteristics of taxi mobility which can be used in the network simulation.

3 Background on data processing

Before we can extract the mobility model, there must be preprocess on the GPS data.

In this section, we first introduce the information recorded in the real GPS data and the

road network which our mobility model is based on. Since the GPS data needs to be

mapped on the road network to reconstruct the trace, so the process of map-matching

is also presented. For the sake of space limitation, we only briefly introduce the data

preprocessing, please refer to our previous work [Huang et al. 2007] for more details.

3.1 Data collection

From February to April of 2007, we collected GPS data from over 4,000 taxis which

were equipped with GPS devices, one of them is shown in Figure 1. These taxis reported

their running status to a data center through the GPRS system in real time. Every piece

of GPS data is defined by a 5-tuple D(VID, T, Ψ,Ω,Θ), where VID is the unique ID of

the taxi, T is a timestamp, Ψ is its geographical location represented by longitude and

latitude coordinates, Ω is its direction of headway represented by a geographical angle

clockwise from the due north, and Θ is the taxi status which tells whether the taxi is

carrying passengers or not. Note that the GPS data also records speed information, but

we have to discard it because it is inaccurate in most cases.

Since taxi GPS devices were originally deployed to monitor and schedule taxis and

the GPRS messages that carry the GPS data will be charged, taxis preferred to report

the GPS data in a long time interval. Although the report interval is not regular, varies

from 30 seconds to few minutes, the average value is about 60 seconds.
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Figure 1: A GPS device equipped on the taxi

3.2 Road network

Except for the taxi GPS data, there is a digital map of Shanghai city which records all

of the roads according to the shape file format [ESRI 1998]. The basic unit of the road

map is the road section which is between two consecutive intersections of a road. A

road section is defined as a polyline in the shape file. Each polyline is enclosed by a

bounding box which defines the maximum and minimum coordinates.

There are totally over 30 thousand road sections in the road map of the whole Shang-

hai city. In order to reduce the complexity of computation, we focus on the city center

area of Shanghai, which is shown in Figure 2.

The city center is about 20 km2(5km ∗ 4km). This area is chosen because it is the

most popular area of vehicles and the vehicle density in this area is very high. This road

network has 1522 road sections which include both arterial and inferior roads, so that

it is representative for a common urban road network. In our work, we regard all the

road sections are bidirectional and divide each road section into two road sections, so

we actually have 3044 road sections.

3.3 Map-matching

Before making use of GPS data, we need to map them onto the road map which is called

map-matching. In reality, due to various types of errors, e.g., tall buildings, the GPS

data itself is noisy, which means the geographical location Ψ is not accurate and can be
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Figure 2: A small road network of Shanghai

away from its real location as far as about 60 meters. In order to map the GPS data onto

the road network, we use a heuristic algorithm which considers both the distance and

direction between the taxi and the nearby road sections. This heuristic works fine in case

that the GPS data locates between two parallel road sections. So we also consider the

historical information of the former matching result. If one of the parallel road sections

belongs to the road that the former data mapped on, it is then determined as the result

of this matching, or otherwise the nearest one is chosen to be the result.

In our field test of the map-matching algorithm, we took a GPS equipped taxi and

record its traveling path. Then we retrieve the GPS data of this taxi collected during the

period we were traveling and compare the map-matching result with the real location.

The results of over 100 field tests show that the map-matching algorithm has a accuracy

higher than 95% which guarantees the quality of our mobility model.

4 Model parameters

In this section, we present our methodology of how to extract the mobility model from

the historical GPS data. The META mobility model includes three parameters, turn

probability, road section speed and travel pattern. The former two parameters describe

the microscopic behavior of vehicles and the latter focuses on the macroscopic feature.
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4.1 Turn probability

One of the basic behaviors of a vehicle is its turn at the exit intersection of a road section

because this reflects the common sense of drivers and sometimes the traffic rules. In

order to obtain turn probability, the traveling path of a taxi needs to be determined in

advance. If the interval between a pair of consecutive reports is long, the exact path

that the taxi traveled is hard to determine and the taxi behavior along the series of

intersections cannot be obtained. Therefore we define a turn pattern which is a definite

path between two consecutive GPS data.

We define the following concepts which is illustrated in Figure 3.

Intersection: the intersections are depicted as crosses in Figure 3, which are labeled

as A1, B2, etc.

Road section: a road section is a link between two adjacent intersections, labeled

as LI1,I2 where I1 and I2 are intersections defined above. Since all road sections are

regarded as bidirectional, so LI1,I2 and LI2,I1 are different. On the road section LI1,I2,

the vehicle must travels from I1 to I2 and vice versa. We call I1 is the entrance inter-

section of LI1,I2 and I2 is the exit intersection.

Path: a path is a sequence of road sections that the vehicle travels between two

consecutive data, labeled as P (L1, L2, ...) where Ln, n = 1, 2, ... are road sections.

Turn pattern: the turn pattern of a road section is a pair of road sections (L 1, L2)

where the first GPS data locates on L1 and the second data locates on L2. The turn pat-

tern is a kind of relationship between two consecutive GPS data from which we can def-

initely determine the path between the data without confusion. In Figure 3, the turn pat-

tern of LC2,C3 includes 10 road section pairs of (LC2,C3, LC3,B3), (LC2,C3, LC3,C4),

. . . , and (LC2,C3, LD3,D2) which represent data pairs (s, e1), (s, e2), . . ., and (s, e10).

We call (LC2,C3, LC3,B3), (LC2,C3, LC3,D3) and (LC2,C3, LC3,C4) as direct turn pat-

tern because LC3,B3, LC3,D3 and LC3,C4 are adjacent to LC2,C3. Then the other road

section pairs are called indirect turn pattern.

The turn probability of every road section is obtained by searching through the GPS

data of the three months. A turn probability from one road section to an adjacent road

section is defined as

TP (Li, Lj) = n/N, (1)

where N is the number of data pairs which match the direct turn pattern, and n is

the number of data pairs that match the turn pattern (L i, Lj). If a data pair matches

the indirect turn pattern (Li, Lk), it can be split into two direct patterns (Li, Lj) and

(Lj , Lk). So it can be easily obtained that

TP (Li) =

n
∑

j=1

TP (Li, Lj) = 1, (2)

where (Li, Lj) is direct turn pattern.
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Figure 3: The turn pattern

When the turn probability for all road sections to their adjacent road sections is

computed, we can use it to estimate the reasonable path for a long interval data pair. For

example, to estimate the path between two consecutive data s and d, we first compute

the metric λ which is defined as

λi =

n−1
∏

j=1

TP (Lj, Lj+1). (3)

In Equation 3, the λi is the path probability of the ith path, n is the number of road

sections along the path and TP (Lj, Lj+1) is the turn probability from road section L j

to Lj+1. We determine the path between s and d as the one which has maximum path

probability and call this path as the maximum turn probability path. Now, for a data pair

which cannot match the turn pattern, the maximum turn probability path between them

can be regarded as the actual path that the node has traveled.

In order to check the correctness of the maximum turn probability path, we intend-

edly remove some data from a series of GPS data and find the maximum turn probability
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path among the remained data to see whether it can match the actual path. The results

of over 10000 tests show that when the number of road sections between a data pair is

less than six, the accuracy of maximum turn probability path can achieve 100%. Based

on this accuracy, we make use of the data pairs between which the number of road sec-

tions of the maximum turn probability path is less than six. This promote the usage of

historical GPS data from 13%, which match the turn pattern, to 79%. This method not

only enables us to utilize more GPS data, but also help reconstruct real traces of taxis

which can be used to validate META trace.

4.2 Road section speed

The second parameter of META is road section speed which is defined as the average

speed of a road section during a time period, specified as five minutes in our work.

Different from the random mobility model, the speed of a vehicle is restricted by the

traffic status which is represented by road section speed. Because of the long interval

of the GPS data, the instant speed for taxis at every second is difficult to estimate so

the average speed is considered. The average speed between two consecutive GPS data

is easy to compute from s/t where s is the length of the path and t is the interval of

the two data. In order to convert the taxi speed to the road section speed, the average

speed of a taxi during a path is assigned to road sections along that path. For example,

in Figure 3, after the speed between s and e1 is computed, it is assigned to LC2,C3 and

LC3,B3 as one of their speed elements during the time period. For every time period,

we compute the average value of these speed elements of a road sections as its average

speed. If there are no taxis pass a road section, its average speed during that time period

is left to be blank.

Figure 4 shows the change of the speed of a road section, whose ID is 292431,

during a week from March19 to March 23, 2007. Each point in this figure represents a

road section speed of five minutes. The road section speed in this figure appears regular:

It climbs up to the peak during midnight and 4 am. Then it drops sharply after 6 am and

maintains at a low level during 8 am to 8 pm after when it rises and returns to the peak.

This change also represents the regularity of the traffic status in an urban area.

From Figure 4, we can also see that the road section speed has a large variation,

some values are very high and some are very low. Most of the variations come from

the case that only one taxi passed the road section during a time period, its individual

behavior will make the average speed inaccurate. If the taxi passes the road section

without waiting for the traffic light, the average speed will be very high, otherwise it

becomes low.

In order to get rid of oscillatory speeds and fill blank speeds of some time periods,

we make use of the Fast Fourier Transform (FFT) filter tool of the Origin software

[Origin 2009] to smooth the speed curve. To use the FFT filter, a parameter for the

cutoff frequency needs to be specified which is defined as

Fcutoff = 1/n∆T, (4)
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Figure 4: The change of the average speed of road section 292431 during March 19 and

March 23, 2007

where Fcutoff is the cutoff frequency and n is the number of data which is used in the

FFT filter and ∆T is the time spacing between two adjacent data points, which is a time

unit of five minutes. The red line in Figure 4 represents the smoothed curve of n=9. A

larger value of n will cut off the higher frequencies and generate a greater degree of

smoothness. We specify n to be 9 because it has a low Sum of Squared Error (SSE)

between the original data and the smoothed data while capturing the trend of the speed

change.

Considering the fact that in most of the VANET researches, the node trace of one

day duration is enough for simulations, so we assemble the data of all weekdays from

February to April 2007 into one day and smooth it using FFT filter to obtain road

section speed which is used in the META mobility model to generate synthetic traces.

An example of the average value of assembled data is shown in Figure 5 where the red

line is also the smoothed speed.

4.3 Travel pattern

The taxi mobility not only has regular microscopic behavior, but also appears macro-

scopic features. For example, a taxi locates in a certain area prefers to go to another

area as the destination of a travel. In order to characterize the macroscopic feature of

taxi mobility, we propose travel pattern which is defined as a probability that a node

travels from one area to another area.
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Figure 5: The change of the average speed of road section 292431 during a day with

assembled data

Figure 6: The road network with travel grids
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In order to recognize the distribution of originations and destinations of taxi travels,

the road network needs to be divided into different areas. For simplicity, we consider

rectangular area and divide the road network into n ∗ m grids, which are called travel

grids and shown in Figure 6. A large size of the travel grid will merge different travel

patterns. And a small size of the travel grid cannot capture the characteristic of the

travel pattern. As a result of tradeoff, we divide the road network into 4∗5 grids so each

grid is about 1km ∗ 1km. Then the travel pattern of taxis is recognized by investigating

their origination and destination. Recall that the GPS data records the status of the taxi

of whether it carries passengers. Searching through the taxi GPS data by the order of

timestamp, the first and last data of a series of consecutive data which have the same

status can be identified. We regard the first data as the origination of this travel and the

last data as the destination. Given the coordinate of the GPS data, we can easily tell

which travel grid it locates in and then the travel pattern can be written as (G1, G2),

where G1 is the grid ID that the origination locates in and G2 is for the destination.

Processing the historical GPS data in this way, the probability matrix for every travel

grid is defined as

DC3 =

⎡

⎢

⎣

PA1 . . . PA5

...
. . .

...

PD1 . . . PD5

⎤

⎥

⎦
. (5)

The Equation 5 means if a source is in grid C3, its destination, DC3, is chosen

based on the probability in the matrix, listed from PA1 to PD5. Note that the sum of the

elements in the matrix is equal or lesser than 1. When it is lesser than 1, it means there

is a probability of traveling out of the road network. Although the travel is identified

based on the status transition of taxis, the travel itself is independent on whether the taxi

is loaded with passengers or not. So only one probability matrix is enough for a taxi to

plan travels.

4.4 Other considerations

Besides the model parameters aforementioned, we need to consider the number of mo-

bile nodes in the road network and their initial distribution. To get the number of mobile

nodes, we also assembled the data of weekdays during the three months and compute

the average number of taxis. Figure 7 shows the change of the average number of nodes

in the network during a day.

We can see from Figure 7 that the number of taxis in the network varies significantly

during a day, from 200 in the morning to 500 in the afternoon. For simplicity, however,

we do not consider the variation of the number of nodes in META so it has a constant

number of nodes which run in the network. This constant value is determined based

on the time of the trace to be generated. When a node leaves the network, we insert

a new node on a road section which locates in the outer travel grids such as grid A1

or D3 in Figure 6. Finally, in order to determine the initial location of nodes for the
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Figure 7: Change of the number of taxis in the network during a day

synthetic trace, we directly take a network snapshot, which is the locations of all nodes

in the network at a certain time, from the real trace where the number of nodes in this

snapshot is equal to the aforementioned constant number.

5 Model validation

In order to validate META, we compare META trace with the real trace. As is mentioned

before, to reconstruct the real trace, we first map the GPS data on the road map. Then

the maximum turn probability path between every two consecutive data is determined.

Finally we interpolate the GPS data for every one second with the constant speed of s/t

where s is the distance between the two data and t is the time interval.

We also generate META trace according to the META mobility model. Before a

node begins to move, it randomly chooses a travel grid in the network according to the

travel pattern and a road section in that grid as the destination of the travel. Then the

node finds the maximum turn probability path between the origination and the desti-

nation. Note that such a path is not always available. Although every road section in

the network is regarded as bidirectional, some of them are actually one-way road so

one of the two road sections is impossible to reach. If a road section which locates on

the reverse side of a one-way road is chosen as the destination, the node will repeat

the processes to find a reachable destination. After the path is found, the node began to

1084 Huang H., Zhang D., Zhu Y., Li M., Wu M.-Y.: A Metropolitan Taxi ...



move towards the destination along the path. On each road section along the path, the

taxi speed is randomly chosen from [(1−α)∗v, (1+α)∗v] where v is the road section

speed and α is the variation which is set to be 15% in our work.

For simplicity, we simulate the scenario of the vehicular network from 2 pm to 5 pm

on the 21st March 2007. So the real trace is reconstructed using the GPS data collected

during that time. Figure 7 shows the number of taxis in the network during the time

period varies between 450 and 500, we choose to simulate 500 nodes when generating

META trace which means there are always 500 nodes in the network. Since nodes can

enter and leave network, the simulation result shows that 3161 nodes are generated in

META trace. Meanwhile the real trace also recorded totally 2687 taxis during the three

hours.

The META mobility model is validated from three aspects: trace characteristics,

network topology and performance of the routing protocol.

5.1 Trace characteristics

In order to analyze the approximation of the two traces from a macroscopic aspect, we

give the spatial and temporal evaluation of trace characteristics.

A straightforward metric for the spatial measurement is the distribution of nodes.

Since the number of road sections is much more than the number of nodes, even if we

simulate 500 nodes, the distribution of nodes in a single snapshot is meaningless. So

we assemble all of the network snapshots of the three hours and analyze the distribution

of how many nodes pass a road section during these three hours which can reflect the

popularity of road sections. Figure 8 shows the complementary CDF (CCDF) of the

number of nodes which pass a road section.

Figure 8 shows that the real trace and META trace follow the same trend and in both

traces there are 9% road sections which have over 240 nodes passed them. The differ-

ence between the real trace and META trace is no more than 15% when the number of

nodes that pass a road section is less than 420. In the real trace, there are some popular

road sections, about 7% of the road sections, which have more than 420 nodes passed

them.

From the temporal aspect, we consider the travel time of a node in the network

which is defined as the time interval from the time a node enters the network to the time

it leaves. Although META does not consider the temporal parameters, all of the three

parameters can affect the travel time of a node. For example, longer turn probability

path or lower road section speed will increase the node travel time.

Figure 9 shows the CCDF of the travel time of the real trace and META trace.

Both the real trace and META trace follow the exponential distribution and the largest

difference between them is no more than 15%.

1085Huang H., Zhang D., Zhu Y., Li M., Wu M.-Y.: A Metropolitan Taxi ...



Figure 8: The CCDF of the number of nodes which pass a road section

Figure 9: The CCDF of the travel time
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Figure 10: The sizes of the top 10 clusters in a network snapshot

5.2 Network topology

Since the network topology has a great impact on the performance of routing perfor-

mance, a good understanding of it can help to design an applicable routing protocol. In

order to investigate the network topology, we need to specify the communication range

for nodes. A pair of nodes can communicate if and only if their distance is smaller than

the communication range. There are some existing work which studied the performance

of inter-vehicle communication. For example, Singh et al. [Singh et al. 2005] conducted

field tests and claimed that the communication range of 400 meters is achievable under

suburban environment. Considering the interference in urban scenario, we assume the

communication range of a node is 200 meters.

To compare with the real trace and META trace, we also generate a trace according

to the RWP model. We simulate 500 nodes which move in a square area of 5km * 4km

for three hours. Each node randomly chooses a destination in the network and a speed

from (0km/h, 60km/h] and then starts to move. When arriving at the destination, the

node starts another travel immediately.

We first analyze the size of clusters, which are connected subnetworks. Since the

communication range is not large enough to make the network to be full connected,

there can be many clusters in the network. We randomly take a snapshot from each

trace and find out all clusters. For each trace, we sort the clusters by their sizes. Figure

10 shows the sizes of the top 10 largest clusters of each trace. Both the real trace and
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Figure 11: The CDF of the standard deviation of cluster size

META trace have a major cluster which connects over 40% of the nodes in the network.

Whilst in RWP trace, all clusters have similar size because of the uniform distribution

of nodes. We then compute the standard deviations (SD) of the cluster size for the real,

META and RWP trace and the result are 5.0, 4.9 and 2.6 respectively.

Since the SD of cluster size represents the skew degree of cluster sizes, so a larger

SD implicates a major cluster in the network and a smaller SD implicates the existence

of some relatively large clusters. Hence we also investigate the distribution of the SDs.

We choose 180 snapshots from each trace and every two snapshots have an interval of

one minute. For each snapshot, the SD of the cluster size is computed and Figure 11

shows the CDF of the 180 SDs. We can see in Figure 11 that 90% SDs of RWP trace

are distributed between 2.6 and 4.5. Meanwhile, 90% SDs of META trace are between

3.0 and 7.1 and 90% of SDs of the real trace are between 3.6 and 7.6.

Another important metric of the network topology is the distribution of contact time

because it represents the dynamical characteristics of the network. Furthermore, since

a longer contact time allows more data transmission during a contact, the knowledge of

average contact time determines data transmission strategies [Huang et al. 2007]. For

each trace, we randomly choose 3000 contacts which appear between 2 pm and 3 pm

and compute the contact time. Figure 12 shows the CCDF of the contact time.

It can be seen from Figure 12 that META trace is close to the real trace and RWP

trace appears a different trend. The average contact time of RWP trace is 17 seconds
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Figure 12: The CCDF of the contact time

while the average contact time of the real trace and META trace are 33 seconds and 30

seconds respectively. Although RWP trace has shorter average contact time, it has more

contacts which can last a long time. For example, there are about 1% of the contacts in

RWP trace can last over 600 seconds while both of the real trace and META trace have

less than 0.2% of contacts which can last such duration.

5.3 Network performance

Finally, we evaluate the network performance by simulating a routing protocol and

compare the data delivery ratio. Since the network is partially connected, we simulate

the Epidemic [Vahdat and Becker 2000] routing protocol and evaluate the delivery ratio

of different traces. We assume the communication between two nodes is duplex, but a

node can only communicate with one of its neighbor at one time. We also assume that

the size of data packet equals the network bandwidth so that when two nodes communi-

cate, they can transmit a packet per second. The communication range of nodes is set to

be 200 meters. Currently, we do not consider the signal collision and only focus on the

data exchange. Before the simulation begins, 200 nodes are randomly chosen, 100 of

them are sources and the other 100 nodes are destinations. Each source node generates

a data packet for the destination node so 100 data packets are totally generated.

Figure 13 shows the CDF of the average delivery ratio of 10 simulations. It can be

seen that all data packets can be delivered in 1500 seconds. However, RWP trace has
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Figure 13: The delivery ratio of the Epidemic routing protocol in different traces

a shorter delay because the nodes in RWP do not have the constraint from streets. The

average delay in RWP trace is around 240 seconds while META trace and the real trace

have the average delay of 350 seconds and 400 seconds respectively.

6 Conclusion

In this paper, we have presented our study of extracting the META mobility model from

the taxi GPS data. In order to characterize the regularity of taxi movement, we defined

three model parameters, turn probability, road section speed and travel pattern. We first

compute the turn probability at every intersection based on the turn pattern. Then the

maximum turn probability path between two GPS data is found to estimate the road

section speed. Since the GPS data records the taxi status of whether it is loaded with

passengers, we can also estimate its travel pattern. In order to validate the effective

of these model parameters, we compare META traces with the real traces which were

reconstructed from the GPS data. From the aspects of trace characteristics, the network

topology and the performance of Epidemic routing protocol, the validation shows that

our model has a good approximation with real scenario.

Although META can precisely capture the characteristic of taxi movement, there is

still space for improvement. For example, we intend to capture the feature that some of

the popular road sections by refining the grid based travel pattern to a road section level
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pattern. In addition, we aim to enlarge the network scale to the whole metropolitan area

of Shanghai so that people can do more applicable research based on META.
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