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ABSTRACT

In the framework of hidden Markov models (HMM) or hybrid
HMM/Artificial Neural Network (ANN) systems, we present a new
approach towards automatic speech recognition (ASR). The general
idea is to split the whole frequency band (represented in terms of
critical bands) into a few sub-bands on which different recognizers
are independently applied and then recombined at a certain speech
unit level to yield global scores and a global recognition decision.
The preliminary results presented in this paper show that such an ap-
proach, even using quite simple recombination strategies, can yield
at least comparable performance on clean speech while providing
better robustness in the case of noisy speech.

1. INTRODUCTION

Current automatic speech recognition (ASR) systems treat any in-
coming signal as one entity. Even when only a single frequency
component is corrupted (e.g., by a selective additive noise), the
whole feature vector is corrupted, and typically the performance of
the recognizer is severely impaired.

The work of Fletcher and his colleagues (see the insightful review
of his work in [1]) suggests that human decoding of the linguistic
message is based on decisions within narrow frequency sub-bands
that are processed quite independently of each other. Recombination
of decisions from these sub-bands is done at some intermediate level
and in such a way that the global error rate is equal to the product of
error rates in the sub-bands.

Whether or not this is an accurate statement for disparate bands
in continuous speech (the relevant Fletcher experiments were done
with nonsense syllables using highpass or lowpass filters only), we
see some engineering reasons for considering some form of this sub-
band approach:

1. The message may be impaired (e.g., by noise) only in some
specific frequency bands. When recognition is based on
several independent decisions from different frequency sub-
bands, the decoding of linguistic message need not be severely
impaired, as long as the remaining clean sub-bands supply suf-
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ficiently reliable information.

2. Some sub-bands may be inherently better for certain classes of
speech sounds than others.

3. Transitions between more stationary segments of speech do
not necessarily occur at the same time across the different fre-
quency bands, which makes the piecewise stationary assump-
tion more fragile. The sub-band approach may have the po-
tential of relaxing the synchrony constraint inherent in current
HMM systems.

4. Different recognition strategies might ultimately be applied in
different sub-bands.

Preliminary work in this direction has recently been reported, e.g.,
in [4]. Although the recombination scheme in [4] was quite sim-
ple, and no optimization of the frequency bands was performed, this
work yielded results that were quite similar to the results of con-
ventional full-band recognizers used for comparison. However, the
resulting system was not tested for conditions of narrowband noise
degradation (for which this kind of approach should prove to be most
interesting).

As initially discussed in [2], the work described here presents an at-
tempt to (1) better formalize the problem from a statistical pattern
recognition viewpoint, (2) determine the optimal way of recombin-
ing frequency sub-band recognizers, and (3) test the systems under
clean and noisy conditions.

2. APPROACH

It is perhaps obvious that a core issue in the design of any sub-band-
based system is the choice of the number and position of the con-
stituent sub-bands. Once these are determined, the approach pre-
sented here will fundamentally consist of the combination of the out-
put of multiple recognizers, one for each band, at some level of rep-
resentation. Fundamentally, each of these recognizers consists of a
probability estimator and a time-warp engine.

Of course, there is less information in a sub-band than in the whole
band; the partial decisions may thus be less reliable. To avoid too
much flexibility in choosing the time-warping path it is necessary
to re-introduce some constraints at a higher level. This is done by
forcing synchrony (in terms of the underlying segmentation) of the
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Figure 1: General form of a K-band recognizer with anchor points
between speech units (to force synchrony between frequency bands).

different independent frequency band recognizers at some level, as
shown Figure 1. In other words, the scores of the different sub-band
recognizers are recombined at a certain speech unit level (i.e., over
a certain time segment) to yield a global score and a global deci-
sion. Up to now we have done this at the state, phoneme, syllable
or word levels, although we are interested in looking at other units
for this purpose. We note here that while this is quite easy at the
HMM state level (and at the word level, in the case of isolated word
recognition), it is no longer straightforward at any intermediate sub-
word unit level (simply using the standard one-pass dynamic pro-
gramming approach). Rather, the system can either use an approach
based on the 2-level dynamic time warping algorithm, or else an
adaptation of HMM decomposition [8] (initially introduced to de-
compose the speech signal into a speech part and a noisy part). In the
framework of sub-band-based speech recognition, a similar HMM
decomposition formalism can be used to do multi-dimensional time
warping and recombination of the frequency sub-bands. However,
as opposed to standard HMM decomposition, it is not the same input
signal that is fed into the different HMM models but different band
limited versions of the original speech signal.

Although Fletcher’s recombination criterion [1] suggests an attrac-
tive optimum (since zero error in any band yields zero error over-
all), we are not aware of any statistical formalism for achieving this.
Thus, we decided to define the log-likelihood of a full-band acoustic
vector X given a word (sentence) model M as

log P (XjM) = max
J;Mj

JX

j=1

log P (Xj jM
j
) (1)

where Xj represents the j-th segment of X and M j the model as-
sociated with Xj during dynamic time wrapping. Depending on
the recombination level, M j could be a HMM state model, a word
model, a phone model or any other subword unit model. For each
segment, the statistical recombination of the frequency sub-bands is
performed according to

log P (Xj jM
j
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j

k
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where Xjk is the band-limited sequence of acoustic parameters as-
sociated with the k-th frequency band, M j

k
is the model associated

withXjk , andwk’s are the recombination parameters. P (XjkjM
j

k
)

thus represents the likelihood of a partial (frequency limited and time
limited) sequence Xjk given model M j

k
and these can be computed

with standard HMM or hybrid HMM/ANN systems.

In the work reported here, only HMM/ANN systems have been con-
sidered and two different recombination functions f(�) have been

tested:
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where MLPwk
represents a multilayer perceptron (MLP) parame-

trized in terms of wk’s and with log P (XjkjM
j

k
); 8k, at its input.

In this paper, all the parameters of the sub-band HMMs as well as
the wk’s were estimated on the basis of the segmentation obtained
from a regular full-band Viterbi alignment.

3. RECOMBINATION STRATEGIES

Three different strategies have been considered for estimating the re-
combination parameters wk0s [3]:

1. Normalized phoneme-level recognition rates in each frequency
band.

Normalized phoneme-level recognition rates inside each fre-
quency band are then used as weighting factors in (3). These
weighting factors represent the relative amount of information
(normalized to sum to 1) present in each frequency band for
each speech unit class.

These weights are computed on the clean training data set only
and are not adapted to the test data. As later reported in Table 1,
it is quite striking that this strategy alone already yields good
robustness to narrowband noise.

2. Normalized S/N ratios in each frequency band.

As usually done for spectral subtraction [7], the S/N ratio in
each frequency sub-band is estimated on the basis of the sub-
band energy histogram. However, unlike the case of spectral
subtraction, these histograms are used to compute the relative
reliability of each frequency sub-band. The estimated S/N ra-
tios, normalized to sum up to 1, are then used as wk’s in (3).

3. Multilayer perceptron.

Since it is often argued that the recombination mechanism
should be nonlinear, we also tested the use of one MLP to
recombine the K partial log-likelihoods log P (XjkjM

j

k
) ac-

cording to (4). In this case, if S represents the number of
speech units (used for temporal recombination, i.e., HMM
states, phones, syllables or words), the MLP contains K � S

input units and S output units and is trained to estimate poste-
rior probabilities of each speech units given the log-likelihoods
of all sub-bands and all speech units.

4. EXPERIMENTS

4.1. 1st Experiment: Potentiality

In a first experiment, we used 3-state HMM/ANN phone models, 18
critical bands for the full-band system, and three sub-bands (span-
ning [0-1058], [941-2212], and [1994-4000] Hz) for the three sub-
band HMM/ANN recognizers. Note that the overlap is only due to



FB No-W Acc-W SNR-W MLP

clean 3.6% 3.7% 3.7% 3.2% 2.7%
noisy 25.5% 9.2% 6.7% 6.3% —

Table 1: Error rates on isolated word recognition (108 German
words, telephone speech) and noise was additive white noise in the
1st frequency band, 10dB SNR. Critical band energies were used
as features. “FB” refers to regular full-band recognizer; “No-W”
refers to sub-band recombination at state level without any weight-
ing; “Acc-W”= state recombination with weights proportional to
phonetic sub-band accuracy; “SNR-W”= state recombination with
weights proportional to automatically estimated sub-band SNR. The
column “MLP” refers to sub-band recombination at word level us-
ing an MLP.

the critical band filter characteristics. Each band roughly encom-
passes one formant. The database consisted of 108 German isolated
command words, telephone speech, with 15 speakers in the test set.

The features used for each recognizer were critical band energies
complemented by their first temporal derivatives, and 9 frames of
contextual information were used at the input of the ANNs. State
level and word level recombinations were tested. In the case of word
level merging, an MLP with 108 (words)� 3 (bands) input units and
108 output units was trained on normalized log-likelihoods from the
clean training data.

Resulting error rates are reported in Table 1. Recognition perfor-
mance of the different recombination strategies are compared with
the full-band approach, in case of clean speech and noisy speech (ad-
ditive white noise in the 1st sub-band, 10dB SNR). For clean speech
we have been able to achieve results that were at least as good as the
conventional full-band recognizer (though for this size test set the
differences are not statistically significant at p < :05).

When one of the frequency bands is contaminated by selective noise,
the multi-band recognizer yields much more graceful degradation
than the broad-band recognizer. The best results have been achieved
using weights derived from S/N estimates. However, we have ob-
served that even without any knowledge about the S/N ratio in
sub-bands [using equal weighting (“No-W”) or sub-band accuracy
weighting (“Acc-W”)] the sub-band recognizer still yields much bet-
ter results than the conventional full-band recognizer.

4.2. 2nd Experiment: Acoustic Features and
Number of Bands

In this experiment, we compared the performance of the approach in
terms of:

1. Number of sub-bands.

As opposed to the previous case, we used only 15 critical
bands. We experimented with three bands (spanning [0-948],
[867-1935], and [1790-4000] Hz), four bands (spanning [0-
901], [797-1661], [1493-2547] and [2298-4000] Hz) and six
bands (spanning [0-495], [438-778], [707-1144], [1051-1631],
[1506-2292] and [2121-4000] Hz). See Table 2.

FB 3 bands 4 bands 6 bands
CBE 3.4% 1.6% 2.0% 2.2%
CMS 1.3% 0.9% 0.5% —

Table 2: Error rates on isolated word recognition (13 American
English words, telephone speech). Features were either critical
band energies (CBE) or lpc-cepstral features (CMS) independently
computed for each sub-band and followed by cepstral mean subtrac-
tion. “FB” refers to regular full-band recognizer. For the 3, 4 and
6 sub-band-based systems, state log-likelihoods recombination was
performed by an MLP.

2. Acoustic features.

Three sets of features were considered. The first one was com-
posed of 15 critical band energies (CBE) while the second set
used lpc-cepstral features (CMS) independently computed for
each sub-band and followed by cepstral mean subtraction. See
Table 2.

The third set was dedicated to recognition under broad band
noise. Since it was observed in earlier experiments (not re-
ported here) that the multi-band approach alone was less ef-
ficient than other noise cancellation techniques such as spec-
tral subtraction [7] or J-RASTA [6] in the case of wideband
noise, it was decided to test the multi-band approach on J-
RASTA features. We thus used lpc-cepstral features indepen-
dently computed for each band limited critical band energies
previously processed with the J-RASTA. In this study, a full-
band recognizer and a 4-band recognizer, both trained on clean
speech, were tested on speech with added car noise (10dB
SNR). See Table 3.

We used 1-state HMM/ANN phone models. The database consisted
of 13 isolated American English digits and control words (telephone
speech — 4 � 50 speakers in a jack-knifed test). Recombination of
the state log-likelihoods was performed by an MLP (trained on clean
speech). For example, in the case of four bands, the MLP had an
input vector of 45 (phones) � 4 (sub-bands) log-likelihoods and 45
outputs.

Table 2 compares the error rates on clean speech for CBE and CMS,
and for different numbers of sub-bands. These results show that:
(1) sub-band modelling yields better recognition performance when
compared to a standard full-band approach and (2) all pole mod-
elling of cepstral vectors improve the performance of the full-band
system (of course, this was already known!) but also the perfor-
mance of the sub-band approach. Table 2 also suggests an opti-
mum at 4 (or perhaps 5) independent frequency bands. These results
are however still too preliminary to draw any definite conclusions
regarding the optimal design of the sub-bands (spans and possible
overlaps), which certainly needs to be further investigated.

In the case of noisy speech, as reported in Table 3, the sub-band ap-
proach, combined with J-RASTA processing, yields better recogni-
tion performance compared to the full-band J-RASTA recognizer.
In other work, not reported here, we observed that the sub-band ap-
proach also yields much better robustness to narrowband noise when
compared to standard speech recognition approaches with noise can-



FB 4 bands
J �RASTA 12.1% 9.1%

Table 3: Error rates on isolated word recognition (13 American
English words) of telephone speech + additive car noise (10dB
SNR). Training on clean speech only. “J-RASTA” refers to lpc-
cepstral features independently computed for each band limited crit-
ical band energies previously processed with the J-RASTA noise can-
cellation technique. Recombination was performed at the state level
using an MLP.

State Phone Syllable
CMS 2.6% 2.6% 2.3%

Table 4: Error rates on isolated word recognition (108 German
words), lpc-cepstral features computed on 15 critical band energies.
Recombination of the three sub-bands was performed at the state
level, at the phone level and at the syllable level without any weight-
ing (“No-W” in Table 1).

cellation capabilities.

4.3. Recombination Level

In all the previous experiments, recombination was performed at the
HMM state level (except for the MLP column of Table 1, where re-
combination was done at the word level).

Preliminary experiments have however been carried out to compare
other recombination levels. We used the German database described
in Section 4.12 and 3 sub-bands (spanning [0-948], [867-1935],
and [1790-4000] Hz) described by CMS features (obtained from
15 CBE). Recombination at the state, phoneme and syllable levels
were compared. For each of the 41 phones, a 3-state HMM/ANN
model was used, and the syllable models were defined as straigh-
forward concatenation of phone models. As shown in Table 4, the
best results achieved so far have been obtained by relaxing the syn-
chrony of the frequency bands inside syllables. However, error rates
for the three merging schemes are not significantly different and we
still need to investigate this further.

5. CONCLUSIONS

In this paper, we presented the basis of our sub-band-based speech
recognition system and preliminary experimental results. We be-
lieve that these results are quite striking and also particularly promis-
ing. These results have also been achieved with very little tuning and
at an early stage of development for the method. Among other fac-
tors, we still have to consider:

� Definition of frequency bands: So far, we have used 3, 4 or 6
frequency bands. The best results were obtained with 4 bands.
However, the possible overlap of these bands still need to be

2Containing 22 mono-syllabic words, 41 bi-syllabic words, 21 tri-
syllabic words and 24 words containing more than three syllables.

optimized. The issue of number of sub-band is further dis-
cussed in [5].

� Recombination criterion: So far we have mainly tested a like-
lihood based recombination.

� Weighting scheme: Other techniques able to estimate online
the reliability of each frequency sub-band relatively to the oth-
ers and taking larger time information into account should be
investigated.

� Training scheme: Embedded Viterbi training of the band lim-
ited recognizers.

� Recombination level: Clearly the experiments reported here
were not conclusive with regard to the preferred unit for re-
combination. We intend to consider both the levels explored
here as well as other plausible units. The differences between
the efficacy of different levels may become clearer as we ex-
plore the use of these techniques on tasks with greater temporal
variability (e.g., for natural continuous speech).
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