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A Micro-GA Embedded PSO Feature Selection

Approach to Intelligent Facial Emotion Recognition
Kamlesh Mistry, Li Zhang, Member, IEEE, Siew Chin Neoh, Chee Peng Lim, and Ben Fielding

Abstract—This paper proposes a facial expression recognition
system using evolutionary particle swarm optimization (PSO)-
based feature optimization. The system first employs modified
local binary patterns, which conduct horizontal and vertical
neighborhood pixel comparison, to generate a discriminative ini-
tial facial representation. Then, a PSO variant embedded with
the concept of a micro genetic algorithm (mGA), called mGA-
embedded PSO, is proposed to perform feature optimization. It
incorporates a nonreplaceable memory, a small-population sec-
ondary swarm, a new velocity updating strategy, a subdimension-
based in-depth local facial feature search, and a cooperation
of local exploitation and global exploration search mechanism
to mitigate the premature convergence problem of conventional
PSO. Multiple classifiers are used for recognizing seven facial
expressions. Based on a comprehensive study using within- and
cross-domain images from the extended Cohn Kanade and MMI
benchmark databases, respectively, the empirical results indi-
cate that our proposed system outperforms other state-of-the-art
PSO variants, conventional PSO, classical GA, and other related
facial expression recognition models reported in the literature by
a significant margin.

Index Terms—Ensemble classifier, facial expression recogni-
tion, feature selection, particle swarm optimization (PSO).

I. INTRODUCTION

F
ACIAL emotion recognition has opened up a new era for

human–computer interaction, and has provided benefits

to a wide range of computer vision applications, such as

healthcare, surveillance, event detection, personalized learn-

ing, and robotics [1]–[7]. Robust emotion classification relies

heavily on effective facial representation. However, it is still

a challenging task for identifying significant discriminative

facial features that could represent the characteristics of each
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Fig. 1. System architecture. (a) Feature extraction. (b) Feature optimization
using the proposed PSO variant. (c) Classification.

emotion because of the subtlety and variability of facial

expressions.

This paper aims to deal with such challenges to produce

effective and optimized discriminative facial representations to

benefit real-time facial expression recognition. In comparison

with other feature selection methods, evolutionary computa-

tional (EC) algorithms show powerful global search capabil-

ities, and have been widely accepted as efficient techniques

for feature selection [8]. Among different EC algorithms, the

particle swarm optimization (PSO) algorithm is motivated by

the flocking behaviors of birds, and has been extensively

used for feature optimization with the benefits of a low-

computational cost and a fast convergence speed. However,

conventional PSO tends to converge prematurely and, there-

fore, be trapped in local optima [8]. As a result, in this paper,

a PSO variant embedded with the concept of a micro genetic

algorithm (mGA) is proposed. Known as mGA-embedded

PSO, the proposed algorithm incorporates a nonreplaceable

memory, a small-population secondary swarm, a new velocity

updating strategy, a subdimension-based regional facial fea-

ture search strategy, and a cooperation of local exploitation

and global exploration search strategy to overcome both pre-

mature convergence and local optimum problems encountered

by conventional PSO.

The proposed facial emotion recognition system consists

of three steps: 1) feature extraction; 2) feature optimiza-

tion; and 3) emotion recognition. Fig. 1 illustrates the sys-

tem architecture. First of all, we use modified local binary

patterns (LBPs), i.e., horizontal and vertical neighborhood

comparison LBP, to extract the initial facial representa-

tion. Then, the proposed mGA-embedded PSO algorithm

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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is used to identify the most discriminative and signifi-

cant features for differentiating distinct facial expressions.

Diverse classifiers (e.g., single and ensemble models) are

applied to recognize seven emotions: 1) happiness; 2) sad-

ness; 3) anger; 4) fear; 5) surprise; 6) disgust; and 7) neu-

tral. The system is evaluated with two facial expression

databases, i.e., the extended Cohn Kanade (CK+) [9] and

MMI [10]. State-of-the-art PSO variants, conventional PSO,

and classical genetic algorithm (GA) are used to com-

pare with the proposed mGA-embedded PSO algorithm

in feature optimization. The empirical results indicate that

the proposed system outperforms state-of-the-art optimiza-

tion methods and other related facial expression recognition

research reported in the literature by a significant mar-

gin. The main contributions of this paper are summarized

as follows.

1) A modified LBP operator that conducts horizontal and

vertical neighborhood pixel comparison is proposed, in

order to overcome the drawbacks of original LBP by

retrieving the missing contrast information embedded in

the neighborhood to generate the initial discriminative

facial representation.

2) A novel mGA-embedded PSO algorithm is proposed for

feature optimization, in order to mitigate the premature

convergence and local optimum problems of conven-

tional PSO. It provides great flexibility to allow the

feature selection process to not only separate facial fea-

tures into specific areas for in-depth local search but also

combine facial features for overall global search.

3) The proposed algorithm includes a new velocity updat-

ing strategy by employing the personal average experi-

ence to generate the individual best, pbest, and Gaussian

mutation to produce the global best, gbest, in order to

increase swarm diversity.

4) The proposed algorithm also applies the diversity main-

tenance strategy of mGA to keep the original swarm

in a nonreplaceable memory [11], which remains intact

during the lifetime of the algorithm, in order to reduce

the probability of premature convergence.

5) In order to speed up evolution for convergence, the small

population size concept of mGA is used to generate

a secondary swarm with five particles. The secondary

swarm consists of the swarm leader and four follower

particles from the nonreplaceable memory with the low-

est or highest correlation with the leader to increase

local exploitation and global exploration. These local

and global search mechanisms work in a collabora-

tive manner to guide the search toward global optima.

A subdimension-based search strategy is also conducted,

in order to identify optimal features for each facial

region.

6) Our proposed system is evaluated with CK+ and MMI

databases. It outperforms state-of-the-art LBP and PSO

variants, and other facial expression recognition methods

reported in the literature significantly.

This paper is organized as follows. We discuss the related

work in Section II. Section III introduces the proposed

LBP variant for feature extraction and the mGA-embedded

PSO algorithm for feature optimization. A comprehensive

evaluation study is presented in Section IV. The conclusions

and suggestions for future work are presented in Section V.

II. RELATED WORK

In this section, we discuss state-of-the-art research on tex-

ture extraction, PSO-based feature optimization and facial

expression recognition.

A. Feature Extraction Techniques

A number of LBP variants are available to increase its

robustness and discriminative power. As an example, dominant

LBP (DLBP) is able to retrieve the most frequently occurred

patterns of LBP to improve its texture descriptive capability.

According to [12], uniform patterns in LBP can lead to a loss

of information with respect to complex shapes despite their

effectiveness in capturing fundamental patterns in an input

image. Therefore, instead of purely using uniform patterns,

DLBP calculates the occurrence frequencies of all the pat-

terns extracted by LBP. These patterns are subsequently ranked

based on the occurrence frequencies to enable the extraction

of dominating patterns in texture images.

Completed LBP (CLBP) [13] employs three key compo-

nents, i.e., CLBP-center, CLBP-sign, and CLBP-magnitude, to

extract the image’s local gray level and the sign and magni-

tude features of local difference, respectively. The final CLBP

histogram is formed by fusing these three components. In com-

parison with LBP which only considers the sign component,

CLBP takes the magnitude component and intensity of the

central pixel into account for formulating the additional dis-

criminative power. It produces superior texture classification

accuracy than those from other state-of-the-art LBP algo-

rithms. Center-symmetric LBP (CS-LBP) [14] aims to solve

the lengthy histogram problem of LBP. In order to produce

more compact binary patterns, CS-LBP purely employs the

center-symmetric pairs of pixels for comparison. Therefore,

compared with LBP, it enables a significant reduction in

dimensionality while capturing better gradient information.

Local derivative pattern (LDP) [15] is a high-order local

pattern descriptor, which encodes directional pattern features

based on local derivative variations. In comparison with LBP

(as a nondirectional first-order local pattern operator), LDP

encodes more detailed discriminative information by calculat-

ing higher-order directional derivatives. It effectively extracts

spatial relationships in a local region. LBP, on the other hand,

only defines the relationships between the central point and

its neighbors. In LDP, the first-order derivatives from four

different directions, i.e., 0◦, 45◦, 90◦, and 135◦, are calcu-

lated. A set of 16 spatial relationship templates is defined for

derivative direction comparisons with each template assigned

a value of “0” or “1” based on whether it is a “mono-

tonically increasing/deceasing” or a “turning point” pattern.

The four first-order derivatives are then concatenated to form

the second-order LDP. The nth-order LDP, therefore, encodes

the (n−1)th-order derivative direction variations. Higher-order

LDP possesses superior capabilities in providing detailed dis-

criminative features, but at the cost of an increasing level
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of noise. Another novel texture descriptor, local phase quan-

tization (LPQ) [16] deals with image blurring based on

quantized phase of the discrete Fourier transform computed

in local neighborhoods. The LPQ operator is tolerant to cen-

trally symmetric blur including motion, out of focus, and

atmospheric turbulence blur. It is developed based on the blur

invariance characteristics of the Fourier phase spectrum. In

LPQ, four Fourier coefficients are used to sample the phase

component of the frequency at four discrete points for each

individual pixel position. The resulting vector is then further

processed by separating each value into the real and imag-

inary parts to generate an 8-D vector. Decorrelation is also

conducted using a whitening transform to ensure statistical

independence of the samples. A simple scalar quantizer is sub-

sequently used to obtain the 8-bit binary code for each pixel

position representing a blur insensitive, Fourier phase informa-

tion of the pixel location. These codes are then converted into

a histogram for image classification. Overall, LPQ is superior

to LBP and Gabor filter bank-based methods in dealing with

image blurring.

B. PSO Variants and Feature Selection Techniques

There are many PSO variants in the literature to over-

come the local optimum problem of conventional PSO [17].

Mahmoodabadi et al. [18] proposed a PSO variant known

as high exploration PSO (HEPSO). In HEPSO, PSO is inte-

grated with a multicrossover mechanism of the GA and

the food source finding operator of bee colony optimization

for updating the particle velocity and position, respectively.

Evaluated with well-known benchmark functions, HEPSO has

shown superiority over other PSO variants. Li et al. [19]

proposed another hybrid PSO algorithm with the integra-

tion of fuzzy reasoning and a weighted particle to guide the

swarm. The weighted particle is used to adjust the search

direction, whereas other parameters such as the attraction

factor and inertia weight controlled by fuzzy reasoning are

used to adjust local exploitation and global exploration to

guide the search. The proposed model was tested with ten

benchmark functions, and was further applied to nonlinear

neural network (NN)-based modeling. Jordehi [20] proposed

an enhanced leader PSO model known as ELPSO. ELPSO

employs Gaussian, Cauchy, opposition-based, and differential

evolution (DE)-based mutation to increase the diversity of the

swarm leader.

PSO variants have also been extensively used for fea-

ture selection. Zhang et al. [21] extended the conventional

bare bones PSO (BPSO) to feature selection problems with

binary variables. Known as binary BPSO, a reinforced mem-

ory strategy is used to update pbest of each particle to retain

swarm diversity, whereas a uniform combination technique

is applied to increase local and global search capabilities of

the algorithm. In binary BPSO, the influence of the uniform

combination is strengthened as the occurrence of stagnated

iterations of the algorithm increases. Wang et al. [22] proposed

a parameter-free Gaussian bare-bones DE algorithm (GBDE).

GBDE employs Gaussian distribution as the mutation strat-

egy and a self-adaptive scheme for crossover probability

adjusting. GBDE has been further enhanced by integrating

with DE/best/1 (another mutation strategy) to achieve a fast

convergence rate. The enhanced model outperforms several

DE variants and bare-bones algorithms. Chuang et al. [23]

proposed chaotic binary PSO (CBPSO) for feature selection.

It combines two chaotic maps, i.e., logistic and tent maps, with

BPSO to determine the inertia weight, in order to overcome

the local optima problem. The results indicate that CBPSO

in combination with a tent map is able to produce the best

performance.

Xue et al. [8] proposed two PSO-based multiobjec-

tive feature selection algorithms, i.e., nondominated sort-

ing PSO (NSPSO) and crowding, mutation, and dominance

PSO (CMDPSO), to generate a Pareto front of nondominated

solutions. NSPSO integrates the concept of nondominated sort-

ing with PSO, while CMDPSO embeds PSO with the strate-

gies of crowding, mutation, and dominance. Both algorithms

apply a crowding distance to the nondominated solutions for

maintaining the selected gbest diversity for each particle.

Specifically, CMDPSO employs an external archive to store

the nondominated solutions and a binary tournament selec-

tion to generate gbest for each particle based on the crowding

distance. It also uses the mutation operation to diversify

the search. Evaluated with 12 datasets, CMDPSO outper-

forms NSPSO and other multiobjective algorithms, including

nondominated sorting GA II (NSGAII).

C. Face and Facial Emotion Recognition

Krisshna et al. [24] developed a face recognition system

with a method called threshold-based binary PSO feature

selection (ThBPSO). ThBPSO conducts multiruns of conven-

tional BPSO and stores gbest identified from each run. Then,

a threshold is used to identify the importance of each dimen-

sion of the global best solutions. A feature is selected and

considered as important if the total number of selections of this

feature in the past runs is more than the predefined threshold.

The system was tested with seven benchmark datasets, and

showed superior performance over other state-of-the-art meth-

ods. Liu et al. [25] proposed a deep learning architecture, i.e.,

action units inspired deep networks (AUDNs), for learning

facial expression features. AUDN consists of three sequen-

tial processes: 1) a convolutional layer and a max-pooling

layer to learn the micro-action-pattern (MAP) representation;

2) feature grouping to integrate correlated MAPs to produce

mid-level semantics; and 3) a multilayer learning process to

construct subnetworks for higher-level representations.

Zavaschi et al. [26] proposed a novel facial expression

recognition system with the integration of ensemble classifiers

trained on both Gabor and LBP features. A set of 73 base

support vector machine (SVM) classifiers was generated by

varying parameter settings of Gabor filters and LBP. NSGAII

was used to identify the most optimal ensemble structures

whose fitness function focused on the minimization of both

error rate and number of selected base classifiers in the ensem-

ble. Diao et al. [27] proposed an adaptive ensemble reduction

technique by applying the heuristic harmony search (HS) algo-

rithm. HS identified an optimal ensemble size while preserving

or increasing ensemble diversity and classification accuracy.
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Zeng et al. [28] proposed a one-class classification system

using KERNEL whitening and support vector data description

to distinguish spontaneous emotional expressions from outlier

nonemotional expressions. Meng and Bianchi-Berthouze [3]

developed a multistage framework to explore continuous

emotion recognition from naturalistic facial and vocal expres-

sions where temporal relationships between consecutive levels

of a given affective dimension were modeled using hid-

den Markov model (HMM). In terms of automatic mul-

timodal emotion recognition, Zeng et al. [29] conducted

spontaneous emotion detection from audio–visual modalities

using AdaBoost multistream HMM. Soleymani et al. [30]

performed continuous emotion recognition from electroen-

cephalogram (EEG) signals and facial expressions. The power

spectral density from EEG signals and facial landmarks were

employed to represent multimodal emotional inputs. Diverse

regression models such as recurrent NNs and continuous con-

ditional random fields were used for emotion regression of the

valence dimension.

Eleftheriadis et al. [31] proposed a discriminative shared

Gaussian process latent variable model for multiview and

view-invariant classification of facial expression. A discrimina-

tive manifold was derived based on learning of multiple views

of a facial expression. Emotion classification was conducted

using both expression manifold and view-invariant or multi-

view information. Their work compared favorably with other

related state-of-the-art developments. Happy and Routray [32]

proposed a facial expression recognition system with the con-

sideration of texture features of selected salient facial patches.

Active facial patches associated with emotional expressions

were initially extracted, which were then further analyzed to

obtain discriminative salient facial features for distinguishing

between each pair of emotion classes. A facial landmark detec-

tion technique to enable more accurate localization of facial

patches with less computational costs was also proposed. The

system employed the one-against-one classification method for

emotion recognition.

III. PROPOSED FACIAL EXPRESSION

RECOGNITION SYSTEM

A. Facial Feature Extraction Using the Proposed LBP

In this paper, in order to improve the discriminative abilities

of LBP, we propose horizontal and vertical neighborhood pixel

comparison LBP (hvnLBP). It is integrated with the Gabor

filter for producing the discriminative facial representation.

There are four steps in the feature extraction process:

1) preprocessing for illumination changes and noise invari-

ance; 2) face detection; 3) Gabor magnitude image generation;

and 4) the proposed hvnLBP-based textural description. First

of all, we apply histogram equalization and bilateral filter to

compensate illumination variations and reduce noise in the

input image, respectively. We then use a Haar-cascade face

detector to detect faces. A 2-D Gabor filter is also applied

to produce magnitude pictures. Finally, the proposed hvnLBP

operator is used to generate the textural description of facial

images.

As a well-known texture descriptor, LBP [33] employs a cir-

cular neighborhood for feature extraction. This original LBP

operator performs a comparison purely between the central

pixel and the eight surrounding neighborhood pixels, therefore

likely to lose the contrast information among the neighbor-

hood pixels. To solve this problem, we propose hvnLBP

to capture missing contrast information among the neigh-

borhood pixels. Instead of comparing with the central pixel

as in original LBP, hvnLBP employs horizontal and verti-

cal neighborhood pixels for direct comparison to produce the

resulting textural descriptions. As an example, we employ

P = {p0, p1, p2, p3, p4, p5, p6, p7} to represent the eight neigh-

borhood pixels in LBP, as shown in Fig. 2. In either vertical or

horizontal comparison, the values of the vertical or horizon-

tal neighboring pixels are compared with one another. A 1

is assigned to the pixel with the highest value and a 0 is

assigned to the remaining pixels. This horizontal and verti-

cal comparison process can be conducted in any order, i.e.,

horizontal comparison followed by vertical comparison, or

vice versa. Moreover, in both vertical and horizontal com-

parisons, we do not include the center pixel for comparison.

Referring to Fig. 2, as an example, for horizontal comparison,

we first compare the pixel sets of {p0, p1, p2}, {p7, p3}, and

{p6, p5, p4}. Subsequently, we conduct the vertical comparison

with the pixel sets of {p0, p7, p6}, {p1, p5}, and {p2, p3, p4}.

If a pixel has conflicting outputs in the horizontal and vertical

comparisons (e.g., the highest value in the horizontal compar-

ison but not in the vertical comparison, or vice versa), then

the highest value (i.e., 1) is used as the final output, since

the pixel is regarded as important, which contains valuable

contrast information in the dimension that generates the high-

est value. The mathematical representation of this proposed

hvnLBPp,r operator is illustrated as follows:

hvnLBPp,r = {S(max(l0, l1, l2)), S(max(l7, l3)),

S(max(l6, l5, l4)), S(max(l0, l7, l6)),

S(max(l1, l5)), S(max(l2, l3, l4))} (1)

where p is the number of neighborhood pixels, and r is the

radius. li represents the ith neighborhood of pixel l while S

denotes the comparison operation, as follows:

S
(

max
(

lj, lk, lm
))

=

{

1 if maximum

0 if non_maximum
(2)

where lj, lk, and lm represent the neighborhood pixels in a row

or column. Note that lk is removed if it is the center pixel.

An example output of the proposed hvnLBPp,r operator is

provided in Fig. 2, where p = 8 and r = 1. In this paper, we

use a window size of 75×75 pixels to represent a detected face

image. Therefore, by applying the proposed hvnLBP operator,

we obtain 25 × 25 (i.e., 625) subregions with the size of each

subregion being 3 × 3.

Overall, in comparison with the original LBP operator, the

experimental results indicate that hvnLBP is more capable of

capturing discriminative contrast information such as corners

and edges among neighborhoods to inform subsequent PSO-

based feature selection and facial expression analysis.
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Fig. 2. Example output of the proposed hvnLBP operator in comparison
with that of the original LBP.

B. Proposed PSO Algorithm for Feature Optimization

To identify the discriminative characteristics of each expres-

sion, we propose a PSO variant embedded with the concept

of mGA for feature optimization, called the mGA-embedded

PSO algorithm. This proposed PSO algorithm mitigates the

premature convergence problem of conventional PSO, and

shows superior capabilities of discriminative feature selection.

The proposed mGA-embedded PSO algorithm employs per-

sonal average experience and Gaussian mutation for velocity

updating. Furthermore, it integrates the diversity maintenance

strategy of mGA to keep the original swarm in a nonreplace-

able memory, which remains intact during the lifecycle of the

algorithm to increase swarm diversity. Inherited from the con-

cept of mGA, a secondary swarm with a small population size

of five particles is employed. The swarm comprises a leader

and four follower particles with the highest or lowest correla-

tion to the leader from the nonreplaceable memory to increase

local and global search capabilities and avoid premature

convergence. Moreover, the algorithm separates facial fea-

tures into specific areas for in-depth local subdimension-based

search. Overall, the local exploitation and global exploration

search strategies of the algorithm work cooperatively to lead

the search process to the global optima. Algorithm 1 illus-

trates the pseudo code of the proposed mGA-embedded PSO

algorithm, while Fig. 3 shows the flowchart of the algorithm.

1) Update of pbest and gbest: In conventional PSO,

each solution is represented as a particle in the swarm.

Particles move in the search space by following the swarm

leader in order to find the optimal solutions. Each parti-

cle has a position in the search space represented as xi =

(xi1, xi2, . . . , xiD), whereas it also has a velocity represented

as vi = (vi1, vi2, . . . , viD), with D denoting the dimensionality

of the search space. Each particle has a memory of its best

experience whose position is represented as pbest. The swarm

leader represents the best experience of the overall swarm,

whose position is represented as gbest. The position, xt+1
id , and

velocity, vt+1
id , of each particle are updated using the following

equations [34]:

xt+1
id = xt

id + vt+1
id (3)

vt+1
id = w ∗ vt

id + c1 ∗ r1 ∗
(

pid − xt
id

)

+ c2 ∗ r2 ∗
(

pgd − xt
id

)

(4)

where t and d indicate the tth iteration and dth dimension in

the search space, respectively. An inertia weight, w, is used

Fig. 3. Flowchart of the proposed PSO algorithm.

to embed iteration influence of the previous velocity. Note

that r1 and r2 represent random values within the range

of [0, 1] whereas c1 and c2 are the acceleration constants.
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Furthermore, pid and pgd indicate elements of pbest and gbest

in the dth dimension. In this paper, we modify the veloc-

ity updating formula (4) by introducing the averaging search

strategy for computing pid and Gaussian mutation for comput-

ing pgd. Specifically, the averaging search strategy takes the

personal average experience into account, instead of the con-

ventional personal best experience. The average experience is

obtained by averaging the positions found from previous iter-

ations of each individual particle for generating pbest. This

enables the algorithm to better look into the search space in-

between to increase local exploitation. Furthermore, instead

of using the position of the global best experience directly,

Gaussian distribution operation is applied to the swarm leader

to generate gbest. This mutation technique enables the genera-

tion of offspring further away from its parent to increase global

exploration. Therefore, the revised velocity updating strategy

possesses more capability of sustaining search diversity. The

updated formulas are provided as follows:

vt+1
id = w ∗ vt

id + c1 ∗ r1 ∗
(

p′
id − xt

id

)

+ c2 ∗ r2 ∗

(

p′
gd − xt

id

)

(5)

p′
id =

∑

Xid

t
(6)

p′
gd = pgd +

(

xd
max − xd

min

)

× φ(o, h) (7)

where p′
id and p′

gd represent the updated pbest and gbest

in the dth dimension using personal average experience and

Gaussian distribution, respectively, as defined in (6) and (7).

Moreover, in (7), φ(o, h) indicates the Gaussian distribution

and o represents the mean of the distribution with h as the stan-

dard deviation which decreases linearly during the execution.

Note that xd
max and xd

min indicate the upper and lower bounds

of the decision vector in the dth dimension, respectively,

d = 1, 2, . . . , D.

As indicted in Algorithm 1, we first initialize the orig-

inal swarm with 30 particles. The modified PSO operation

with the proposed velocity updating formula is applied to the

initial swarm. It iterates ten times at the beginning of the

algorithm to find the best leader. We use a small number

of iterations (i.e., 10) for this initial PSO search to acceler-

ate convergence and allow benefits from subsequent search

strategies to take place. This mainly aims to find the best

balance between computational costs and performance. The

following setting (obtained from experimental trials) is applied

to this modified PSO operation, i.e., maximum velocity =

0.6, inertia weight = 0.78, population size = 30, acceleration

constant c1 = c2 = 1.2, and maximum generations = 500.

Moreover, (8) is used to define the fitness evaluation for each

particle, C, which consists of two criteria, i.e., classification

performance and the number of selected features. Since we

apply the proposed PSO algorithm to each emotion category

separately, in an attempt to identify the discriminative features

for each distinct expression, the classification accuracy score

in (8) indicates accuracy of each individual expression, rather

than combined accuracy across all emotion categories. This

helps avoid bias toward specific emotion categories during

optimization (see the related discussion in Section IV)

fitness(C) = wa ∗ accuracyC + wf ∗ (number_featuresC)−1

(8)

where wa and wf are two predefined weights for classification

accuracy and the number of selected features, respectively,

with wa = 1 − wf . In addition, parameters wa and wf indicate

the relative importance of classification performance and the

number of selected features, respectively. In this paper, since

the classification performance is considered to be more impor-

tant than the number of selected features, wa assumes a higher

value than wf , i.e., wa = 0.9 and wf = 0.1.

2) Construction of Secondary Swarm Embedded With the

Concept of mGA: Besides the velocity updating mechanism,

the proposed PSO algorithm integrates the concepts of mGA

and a secondary swarm, as well as the cooperation of local

exploitation and global exploration search strategies to bal-

ance between convergence speed and swarm diversity. In

summary, the proposed algorithm employs the diversity main-

tenance strategy of mGA using a nonreplaceable memory. This

nonreplaceable memory comprises the initialized swarm to

sustain search diversity. Motivated by the small population size

concept of mGA, a secondary swarm with five particles com-

prising the swarm leader and four follower particles from the

nonreplaceable memory with the highest or lowest correlation

with the leader is constructed to increase local exploitation

and global exploration. A subdimension-based search in the

secondary swarm is also conducted, in order to identify the

discriminative regional facial features. Moreover, the local

exploitation and global exploration search strategies of the

secondary swarm work in a collaborative manner to avoid

stagnation and overcome premature convergence. The details

of these strategies are as follows.

mGA is a small-population GA with a reinitialization mech-

anism. It was initially proposed by Goldberg [35], whose

theories suggested that a small population was sufficient

enough to achieve convergence regardless of the chromo-

some length. mGA usually employs a population of 3–6

chromosomes and shows great capability of solving nonlin-

ear optimization problems [36]. Instead of using the mutation

operation as in classical GA, mGA employs a restart strategy

to maintain genetic diversity in the population.

The mGA model is proven to be more capable of avoiding

premature convergence and reaching the optimal search region

than the classical GA [37]. Because of its impressive perfor-

mance and fast convergence speed, mGA has been widely used

to deal with single-objective and multiobjective optimization

problems [38]. Furthermore, Coello and Pulido [11] proposed

a multiobjective mGA with two memories, i.e., population

memory and external memory. The population memory con-

sists of replaceable and nonreplaceable aspects. The nonre-

placeable fragment of the memory remains intact during the

entire lifetime of the algorithm, in order to bring sufficient

diversity to the algorithm, whereas the replaceable portion

of the memory is used for conventional evolution where

the solutions are kept updated in the subsequent evolution-

ary cycles. The multiobjective mGA shows efficient search
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Algorithm 1 Pseudo-Code of mGA-Embedded PSO

1 Start
2 Initialize a primary swarm (e.g. 30 particles);
3 Copy the initialized swarm into a non-replaceable Memory;
4 For each particle in the primary swarm do //perform modified

PSO operator
5 {
6 Evaluate each particle using the defined fitness function;
7 Compute the average fitness value of previous runs (if

available) for each particle in the primary swarm;
8 Perform the proposed Averaging Search operation (Eqn. (6))

to generate pbest for each individual particle;
9 Apply the Gaussian mutation operation to the swarm leader

to produce gbest (Eqn. (7));
10 Update the velocity and position of each particle;
11 Update the best particle gbest in the primary swarm;
12 Until (iterations==10)
13 }
14 Generate a Secondary Swarm
15 {
16 Select the best particle gbest from primary swarm as the leader

of the Secondary Swarm;
17 Select 4 particles that have the highest correlation with the

leader from the non-replaceable Memory, which contains the
original particle swarm, as the followers in the Secondary
Swarm; //this is for local exploitation and a high correlation
means very similar particles.

18 }
19 Divide each particle in the Secondary Swarm into five feature

subsections with each subsection consisting of partial dimensions
which indicates a specific facial region (e.g. eye, eyebrow, mouth
etc);

20 For each feature subsection representing each facial region do
// i.e. the corresponding partial dimensions of each particle in
the Secondary Swarm

21 {
22 Apply operations of line 6-10;
23 Update the best solution for the corresponding feature sub-

section;
24 Until (stagnation detected);
25 }
26 Replace the particles in the Secondary Swarm
27 {
28 Combine the dimensions of each best solution for each fea-

ture subsection to replace the swarm leader in the Secondary
Swarm if this newly generated combined leader has a better
fitness value;

29 Select 4 particles in the non-replaceable Memory of the orig-
inal swarm that have the lowest correlation with the above
swarm leader to replace other particles in the Secondary
Swarm; //this is for global exploration, and the lowest cor-
relation means particles with high variations to the leader

30 }
31 While (Overall termination criteria are not achieved)
32 {
33 Repeat lines 19-25;
34 Repeat lines 26-30, but change from lowest correlation to

highest correlation in a vice versa manner;
35 }
36 End
37 Return the most optimal solution;
38 End

diversity, and requires less computational cost compared with

other algorithms such as Pareto archived evolutionary strategy.

This paper borrows the multiobjective mGA concept with

the replaceable and nonreplaceable memories to update the

swarm leader (replaceable portion) and preserve diversity of

the initialized swarm (nonreplaceable portion), respectively.

After initializing the swarm with 30 randomly generated par-

ticles at the beginning of the algorithm (see Algorithm 1),

this original swarm is stored in the nonreplaceable memory,

which remains intact during the lifetime of the algorithm,

in order to reward swarm diversity when stagnation occurs.

To balance between swarm diversity and convergence speed,

a secondary swarm embedded with the small population con-

cept of mGA is constructed. It has a typical population size

of five, and consists of a swarm leader and four follower

particles from the nonreplaceable memory. As illustrated in

Algorithm 1, the followers are chosen based on two types

of correlation relationships with the leader: 1) the lowest and

2) the highest correlations. Particles with the lowest correla-

tion provide higher variations in the swarm to enable global

exploration whereas particles with the highest correlation bring

more similarity in the swarm where local exploitation can

be observed. Moreover, we define the correlation relationship

between particles using (9) and (10) [39]. Since the extracted

features using hvnLBP are in the binary format and can be

converted into histogram easily, we use the histogram corre-

lation comparison method, as shown in (9) and (10) [39], to

identify particles with highest/lowest correlation to the leader

corr
(

H1,H2

)

=

∑

I

(

H1(I) − H′
1

)(

H2(I) − H′
2

)

√

∑

I

(

H1(I) − H′
1

)2 ∑

I

(

H2(I) − H′
2

)2
(9)

where

H′
k =

1

N

∑

I

Hk(I) (k = 1, 2) (10)

where corr indicates the correlation relationship between two

particles with H1 and H2 representing the histograms for the

swarm leader and a follower particle, respectively. H′
k indi-

cates the mean of the histogram for the kth particle (k = 1, 2),

whereas N represents the number of histogram bins and I indi-

cates the intensity range present in the histogram. Equation (9)

produces an output in the range of [0, 1], with 0 and 1

representing the lowest and highest correlations, respectively.

As shown in Algorithm 1 and Fig. 3, first of all, after

identifying the swarm leader by the previous modified PSO

process, four follower particles from the nonreplaceable mem-

ory with the highest correlation with the leader are recruited

to the secondary swarm. The aim of extracting the follower

particles from the nonreplaceable memory, instead of using

the particles from the main swarm, is to avoid diversity loss

as the particles in the main swarm tend to be converged and

become identical after ten iterations. Moreover, these follower

particles with the highest correlation with the leader pro-

vide certain degree of position proximity in the secondary

swarm, therefore enabling local exploitation of the search

space. Subsequently, we divide each particle in the secondary

swarm into five feature subsections, with each subsection

representing each facial region to enable an in-depth local

search to identify its discriminative features. This in-depth

local optimal facial feature search is discussed in detail in

Section III-B2a. This section-based local facial feature search
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reveals a new swarm leader whose fitness value is compared

with that of the previous leader, in order to elect a new leader

for the next iteration.

After employing particles with the highest correlation with

the leader as followers to conduct an in-depth local optimal

facial feature search, the secondary swarm recruits a new set of

four particles with the lowest correlation with the leader from

the nonreplaceable memory to replace the existing follower

particles. Since the new set of follower particles with the low-

est correlation recruited from the original swarm inject high

variation to the secondary swarm, it boosts the swarm diversity

significantly to increase global exploration and avoid prema-

ture convergence. Subsequently, the newly updated diversified

secondary swarm is also used to conduct a local facial feature

search (see Section III-B2a) to identify a new swarm leader.

In this way, particles with the highest or lowest correla-

tion with the swarm leader from the nonreplaceable memory

are recruited alternately in the secondary swarm to increase

local exploitation and global exploration. Moreover, when

local exploitation in the subdimension search using particles

with the highest correlation with the leader stagnates, our PSO

algorithm employs follower particles with the lowest correla-

tion with the leader from nonreplaceable memory to increase

swarm diversity and drive the search out of local optimum

trap. On the other hand, when global exploration in the sub-

dimension search using particles with the lowest correlation

with the leader fails to generate a fitter leader, it recruits fol-

lower particles with the highest correlation to the leader from

nonreplaceable memory to avoid stagnation and enable local

exploitation. Therefore, the local and global search mecha-

nisms embedded in the secondary swarm work cooperatively

to mitigate premature convergence and lead the search toward

the global optima.

a) In-depth local optimal feature search: As discussed

earlier, after particles with the highest or lowest correlation

with the leader are recruited in the secondary swarm, we

divide each particle in the secondary swarm into five feature

sections with each section consisting of partial dimensions

which indicates a specific facial region (e.g., eye, eyebrow,

nose, mouth, and cheek). For each facial region, we apply

the above modified PSO operation with the updated velocity

updating formula defined in Section III-B to conduct an in-

depth local search and to identify its optimal discriminative

features. These optimal local solutions are then concatenated

to generate a new swarm leader, which is used to replace the

previous leader if it has a better fitness value.

The overall optimization process of our algorithm iterates

until: 1) the number of evolution reaches 500 and 2) the fit-

ness value does not show obvious improvement during the

last 50 generations. The proposed PSO-based feature selection

is conducted for each emotion category separately to iden-

tify discriminative features for each expression. The generated

optimal feature subset of each expression by our PSO algo-

rithm is shown in Fig. 4, with a detailed analysis provided

in Section IV. Empirical results indicate that our algorithm

outperforms other PSO variants and conventional methods sig-

nificantly in terms of the search toward global optimum and

discriminative feature selection.

Fig. 4. Selected optimal features and their distribution for each expression
using the proposed mGA-embedded PSO algorithm (rows 1–3: CK+ images
and rows 4–6: MMI images).

C. Emotion Recognition

In this paper, we conduct a study of seven-class facial

emotion recognition using the features automatically gener-

ated by the mGA-embedded PSO. NN with backpropagation,

a multiclass SVM [40], and ensemble classifiers are used for

classification. The detailed setting of the classifiers is intro-

duced, as follows. In this paper, the trial-and-error method

is conducted to identify the optimal NN structure, whereas

a grid-search method is applied to find the optimal parameters

of the multiclass SVM with the RBF kernel. After several tri-

als, the NN is equipped with one input layer with 25–40 nodes

indicating the optimized features obtained from the proposed

PSO algorithm, one hidden layer, and one output layer with

seven nodes, respectively, representing seven expressions. For

the grid search of optimal settings for the multiclass SVM with

the RBF kernel, we use exponentially growing sequences and

search the ranges of [2−5 −215], [2−10 −25], and [2−8 −2−1],

respectively, for a soft-margin constant, C, a kernel parameter,

gamma (γ ), and an epsilon (ε) in the loss function since the

combination of these three parameters plays very important

roles in affecting the SVM’s performance. We also employ

tenfold cross validation to identify the best combination of

these parameters to avoid over-fitting. The identified optimal

setting in the training stage is then applied to the subsequent

experiments in the test stage.

Besides these single model classifiers, we also employ

ensemble classifiers for expression recognition in order to

improve accuracy. We use weighted majority voting for

the construction of ensembles because of its impressive

performance and suitability for undertaking small datasets

(<1000) in this paper. We construct two ensembles with

NN and multiclass SVM as the base model, respectively.

Also the NN-based and SVM-based ensembles use three base
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models, respectively. The optimal settings identified earlier for

NN and SVM are applied for building each base model.

The ensemble classifiers are constructed using an AdaBoost

process so that the performance of the three base models

within each ensemble classifier is complementary to each

other [5], [41]. The training process of each ensemble clas-

sifier focuses on misclassified instances. As an example, the

weights of misclassified instances by the first base model

are increased so that they are more likely to be selected

for training the second base model. A similar case is also

applied to the construction of the third base model, which

employs the instances misclassified by the second base model

for training. Therefore, each ensemble classifier is constructed

with a number of base models that are complementary to

each other [5], [41]. Weighted majority voting is applied to

combine the outputs from the three base models to gener-

ate the final output for each ensemble. The empirical results

indicate that the constructed ensembles outperform NN/SVM-

based emotion recognition for both within and across database

evaluations.

IV. EVALUATION

In this paper, both CK+ and MMI are employed for evalua-

tion. A set of 250 images from CK+ is used for training while

175 images extracted from CK+ and MMI, respectively, are

employed for testing.

A. Comparison of Feature Extraction Techniques

First of all, a series of experiments is conducted to com-

pare the proposed hvnLBP operator with other state-of-the-art

texture descriptors including CLBP, DLBP, CS-LBP, LDP, and

LPQ. The Gabor filter is integrated with each texture descrip-

tor algorithm for feature extraction. Low-level raw features

extracted by each descriptor are directly used for emotion clas-

sification without any feature optimization. When ensemble

classifiers are applied, all algorithms achieve the best perfor-

mance. Table I shows the evaluation results of all descriptors

integrated with ensembles with each ensemble trained with

features extracted by each texture descriptor. Both second- and

third-order LDPs are implemented. The results of the second-

order LDP are presented in Table I, since it achieves the best

performance.

The empirical results in Table I indicate that hvnLBP pos-

sesses more discriminative capabilities and outperforms all the

selected state-of-the-art LBP variants, LPQ, and conventional

LBP significantly for both within and cross database evalu-

ations. When the SVM-based ensemble classifier is applied,

all algorithms achieve the best accuracy rates, and hvnLBP

outperforms LBP, DLBP, LPQ, CLBP, CS-LBP, and LDP

by 12.93%, 12.65%, 12.33%, 11.06%, 9.24%, and 3.82%,

respectively, for within-database evaluation and by 12.79%,

11.9%, 12.04%, 10.36%, 8.47%, and 2.18%, respectively, for

cross-database evaluation.

Built upon the LBP methodology, DLBP and CLBP rely

on the comparison between the center point and its neighbors

but ignore the differences among neighborhood pixels them-

selves. Therefore, they show limitations in identifying different

TABLE I
COMPARISON BETWEEN THE hvnLBP OPERATOR AND

OTHER TEXTURE DESCRIPTORS

local structures embedded in the neighboring pixels. CS-LBP

employs center-symmetric pixel pairs for comparison, in order

to extract local discriminative information. However, it over-

looks other local differences among horizontal and vertical

pixels. An example that demonstrates the difference among

the proposed hvnLBP operator, LBP, and CS-LBP is pro-

vided, as follows. Given two patterns (50, 80, 85, 70, 50,

45, 55, 53, center-60) and (100, 230, 240, 230, 100, 50, 120,

160, center-200), although the local structures of both patterns

are different, LBP generates the same binary code, 01110000,

for both patterns. CS-LBP produces 11111000 for both pat-

terns too. However, hvnLBP is able to generate two distinctive

binary codes for these patterns, i.e., 01110010 for the former

and 01110011 for the latter, indicating the two different local

structures.

LPQ with decorrelation is implemented in our experiment.

LPQ shows great robustness to blurred images by employing

local phase information calculated using a short-term Fourier

transform for each pixel position. However, it has higher com-

putational complexity, and is expensive for online applications

in comparison with hvnLBP. In addition, the window size

is one of the important parameters in LPQ. A smaller win-

dow is able to capture detailed texture information, but other

unimportant patterns caused by illumination changes and noise

factors are extracted as well. On the contrary, a larger win-

dow sometimes is not able to extract sufficient discriminative

information, therefore decreasing the performances for sharp

images [16].

Among all the comparable descriptors, the second-order

LDP achieves the best accuracy rate, which extracts more

detailed high-order local pattern information. However, the

empirical results indicate that sometimes it also extracts over-

detailed patterns which contain more noise in comparison with

hvnLBP. Moreover, the second-order LDP also generates high-

dimensional features with a high-computational cost, which

makes it less suitable for real-time applications. Another lim-

itation of using LDP is the requirement of identifying the

optimal order of LDP that is suitable for a specific database

although the third-order LDP outperformed all the other order

LDPs in [15] for face recognition tasks.

In comparison with the abovementioned comparable meth-

ods, the proposed hvnLBP operator effectively extracts spatial
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TABLE II
AVERAGE CLASSIFICATION PERFORMANCE USING THE SELECTED

OPTIMIZATION ALGORITHMS INTEGRATED WITH DIVERSE

CLASSIFIERS OVER 30 RUNS, RESPECTIVELY,
WITHIN DATABASE EVALUATION

relationships in a local region by conducting multiple direct

horizontal and vertical neighborhood comparisons with an effi-

cient computational cost. From the empirical study, it shows

superior capabilities of preserving distinctiveness and differen-

tiating different local structures embedded in the neighboring

pixels for low contrast images.

B. Comparison of Feature Selection Techniques

To evaluate the proposed mGA-embedded PSO algorithm

for feature selection, we have implemented state-of-the-art

methods for comparison, i.e., ELPSO [20], a PSO variant

for multimodal function optimization (MFOPSO) [42], binary

BPSO (BBPSO) [21], ThBPSO [24], HEPSO [18], conven-

tional PSO, and classical GA. The features extracted by

hvnLBP are further processed by each feature optimiza-

tion algorithm for dimensionality reduction. NN, SVM, and

NN-based and SVM-based ensembles are applied to recognize

seven emotions using automatically generated features based

on each feature optimization technique.

Owing to the stochastic property of the proposed PSO

algorithm and other compared methods, we have performed

30 runs for each method integrated with each classifier for

within and cross database evaluations, respectively. First of all,

we conduct the within-database evaluation by applying 250

and 175 images from CK+ for training and testing, respec-

tively. Table II shows the average classification performance

of 30 runs for all optimization algorithms in combination with

diverse classifiers. The best results are obtained for each fea-

ture selection model when SVM-based ensemble is applied.

The proposed mGA-embedded PSO algorithm achieves an

average accuracy rate of 100% for seven emotions, and out-

performs seven other algorithms by 2.6% (BBPSO), 2.7%

(MFOPSO), 4.7% (ELPSO), 5.6% (HEPSO), 7.4% (ThBPSO),

14.7% (PSO), and 20.2% (GA), respectively. Moreover, our

algorithm extracts a comparatively smaller set of features

(25–40) with more efficient computational costs.

We have also conducted the cross-database evaluation with

a training set of 250 images from CK+ and a test set of

175 images from MMI. Table III summarizes the average

accuracy rates for all the selected models integrated with

different classifiers over 30 runs for the cross-database evalu-

ation. The best performances are yielded by the SVM-based

ensemble for all feature selection methods. The proposed PSO

Fig. 5. Boxplot diagram for the distribution of average recognition results
for each optimization algorithm + SVM-based ensemble over 30 runs for
cross-database evaluation.

algorithm extracts the smallest number of features, achieves

an average accuracy rate of 94.66% for seven emotions,

and outperforms seven other methods by 6.35% (BBPSO),

6.57% (MFOPSO), 7.21% (ELPSO), 9.49% (HEPSO), 12.28%

(ThBPSO), 17.89% (PSO), and 18.35% (GA), respectively.

In Fig. 5, the boxplot diagrams clearly demonstrate the dis-

tribution of the classification results over 30 runs of all the

feature selection methods in combination with the SVM-based

ensemble for the cross-database evaluation.

As can be seen in Fig. 5, the results of all 30 runs of the

proposed PSO algorithm outperform those of all other state-of-

the-art PSO variants, conventional PSO, and classical GA by

a significant margin. For example, all the results of 30 runs of

our algorithm except for one outlier (with the lower whisker

at 91.29%) are higher than the maximum results of all the

following methods, i.e., 91.14% for MFOPSO, 90.57% for

ELPSO, 88% for HEPSO, 86.57% for ThBPSO, 79.57% for

PSO, and 80% for classic GA. Furthermore, at least 75% of

the results of our algorithm (with the first quartile of 93.71%)

are higher than the maximum result, i.e., 92.57% from

BBPSO. Among all the selected state-of-the-art PSO variants,

BBPSO, MFOPSO, and ELPSO achieve comparatively better

performances than HEPSO and ThBPSO, i.e., with at least

25% of the results of these three PSO variants higher than the

maximum result (88%) of HEPSO and at least 75% of the

results of these three PSO variants higher than the maximum

result (86.57%) of ThBPSO. In comparison with these three

best PSO variants, i.e., BBPSO, MFOPSO, and ELPSO, the

median value of our algorithm (94.71%) is higher than the

median scores of BBPSO (88.29%), MFOPSO (88.29%), and

ELPSO (87.43%) by 6.42%, 6.42%, and 7.28%, respectively.

Besides outperforming these three best PSO variants, all the

results of our algorithm are within a smaller variation range

of [91.29%, 97.86%], as compared with those from BBPSO

having a larger variation of [85.57%, 92.57%]. Moreover, the

lowest result of our PSO algorithm (i.e., the lower whisker at

91.29%) outperforms the maximum results of HEPSO (88%),

ThBPSO (86.57%), classical GA (80%), and PSO (79.57%)

by 3.29%, 4.72%, 11.29%, and 11.72%, respectively.

Furthermore, the average classification results of each

expression over the 30 runs for each optimization method with

the SVM-based ensemble classifier for the cross-database eval-

uation are depicted in Fig. 6(a). Fig. 6(b)–(h) indicates the
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Fig. 6. (a) Overall comparison of our system with other methods. (b)–(h) Boxplot diagrams for the distribution of classification results for each emotion
category for each optimization algorithm + SVM-based ensemble over 30 runs for cross-database evaluation.

detailed boxplot diagrams for the distribution of the detailed

classification results over 30 runs for each emotion category.

As indicated in Fig. 6(a)–(h), the proposed PSO algorithm

achieves superior performance and outperforms all the other

compared methods for each emotion significantly. With respect

to the fear and sadness emotion categories, 75% of the clas-

sification results of our model are higher than the maximum

results of all seven methods, whereas at least 50% of the results

of our algorithm are also higher than the maximum results

of all other methods for the anger, happiness, surprise, and

neutral emotion classes. Meanwhile, for the disgust emotion,

the results of our algorithm over 30 runs indicate the over-

all smallest variation of [89%, 97%], as compared with other

larger variations of the other results, e.g., [78%, 97%] for

BBPSO, MFOPSO, and ELPSO, respectively. The proposed

diversity maintenance strategies of our PSO algorithm con-

tribute to its superior performance over other state-of-the-art

and conventional methods.

An analysis pertaining to the theoretical contribution of

the proposed algorithm is as follows. We compare our PSO

algorithm with the three advanced PSO variants, i.e., BBPSO,

MFOPSO, and ELPSO, theoretically.
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TABLE III
AVERAGE CLASSIFICATION PERFORMANCE USING THE SELECTED

OPTIMIZATION ALGORITHMS INTEGRATED WITH DIVERSE

CLASSIFIERS OVER 30 RUNS, RESPECTIVELY,
FOR CROSS-DATABASE EVALUATION

BBPSO [21] employs a reinforced memory strategy for

updating pbest for each particle and a uniform combination

technique to replace subdimensions of each particle using

a random number with the corresponding elements of a ran-

domly selected pbestk from a set of stored pbests to avoid

stagnation. It increases the execution of a uniform combina-

tion with respect to increased stagnant iterations. However,

since the uniform combination operation is only applied to

the subelements of swarm particles and simulates the effects

of crossover and mutation operations of the GA, the generated

offspring could be significantly similar (i.e., with a high corre-

lation) to the parent particles. Therefore, their search strategy

focuses more on local exploitation. In contrast, our PSO vari-

ant applies follower particles which have the highest or lowest

correlation with the leader to diversify the search and increase

both local and global search capabilities, in an attempt to avoid

stagnation. Therefore, it shows a superior performance than

that of BBPSO.

MFOPSO [42] divides the original swarm into several

subswarms to increase search diversity. It is capable of deal-

ing with multimodal function optimization. However, when

the search fails to generate fitter leaders in the subswarms,

MFOPSO does not include any diversity maintenance or jump-

out mutation strategy to diversify the search in the subswarms,

in order to avoid premature convergence.

The same explanation applies to ELPSO [20]. It employs

Gaussian, Cauchy, opposition-based, and DE-based mutation

strategies to increase the exploration capability of the swarm

leader. However, ELPSO only attempts to improve the leader

when stagnation occurs, and no improvement strategy is

applied to the follower particles to retain population diver-

sity. In comparison with MFOPSO and ELPSO, our PSO

algorithm utilizes the diversity maintenance mechanism of

mGA and keeps a nonreplaceable memory to maintain swarm

diversity. It not only applies Gaussian mutation to the swarm

leader to enable long jumps in the primary swarm but also

employs particles with the highest or lowest correlation with

the swarm leader from the nonreplaceable memory to retain

population diversity and increase local exploitation and global

exploration. Most importantly, these local and global search

strategies of the secondary swarm work collaboratively to

lead the search toward the global optimum. Therefore, it

outperforms MFOPSO and ELPSO significantly in terms of

TABLE IV
COMPARISON WITH RELATED RESEARCH ON THE CK+ DATABASE

TABLE V
COMPARISON WITH RELATED DEVELOPMENTS ON THE MMI DATABASE

achieving the global optimum and enabling discriminative

feature selection.

A comparison between our proposed PSO algorithm and

other recent state-of-the-art facial expression recognition meth-

ods has been conducted. Tables IV and V show the comparison

among different methods using the CK+ and MMI databases,

respectively. As shown in Table IV, for the evaluation using

CK+, which proposed both direct similarity and Pareto-based

optimization for facial feature selection, Neoh et al. [41]

achieve the best performance. The Pareto-based feature selec-

tion emphasizes both intraclass and interclass variations and

achieves the highest accuracy rate. However, although related

strategies are adopted in their fitness functions to prevent

information loss, inspection of their results indicate that the

algorithms produce a comparatively small subset of 13–39 fea-

tures and, sometimes, could overlook certain important fea-

tures pertaining to certain emotion categories (e.g., widened

eyes for surprise, mouth stretch for fear, etc.) in compari-

son with our proposed algorithm. As illustrated in Fig. 4,

the feature subregions extracted by our PSO algorithm indi-

cate the most significant texture distortions around the eyes,

eyebrows, and the mouth associated with each distinct expres-

sion. The key facial muscular actions defined in facial action

coding system (FACS) [47] associated with each expression

can be clearly seen in the optimized features revealed by
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our algorithm. E.g., for anger, significant features indicating

brow lower, eyelid, and lip tightener are produced by our PSO

algorithm, whereas the subregions indicating the significance

of lip corner puller and cheek raising are revealed for the happy

expression. Feature distribution pertaining to sadness clearly

indicates the implication of the inner brow raiser and lip corner

depressor whereas eyebrow raiser, widened eyes, and mouth

open are demonstrated in the selected subregions for surprise,

etc. Overall, the features identified by our PSO algorithm rep-

resent the characteristics of each emotion significantly and

map closely to the action units given in FACS.

We also conduct the cross-database evaluation to further

assess the scalability of the proposed PSO algorithm using the

MMI database. Table V shows a comparison with other related

methods. Fang et al. [45] employed MMI for both training

and testing, whereas other methods including this paper used

CK+ for training and MMI for testing. Results indicate our

algorithm shows great scalability and extracts the most dis-

criminative features of each expression for the cross-domain

evaluation. It outperforms all related methods by a significant

margin of approximately 20%–37%.

V. CONCLUSION

In this paper, we have proposed a facial expression

recognition system with hvnLBP based feature extraction,

mGA-embedded PSO-based feature optimization and diverse

classifier based expression recognition. The proposed hvnLBP

operator performs horizontal and vertical neighborhood pixel

comparison to retrieve the initial discriminative facial features.

It outperforms state-of-the-art LBP variants, LPQ, and conven-

tional LBP significantly for texture classification. Moreover,

a new PSO algorithm, i.e., mGA-embedded PSO, has been

proposed to mitigate the premature convergence problem of

conventional PSO in terms of feature optimization. The mGA-

embedded PSO algorithm incorporates personal average expe-

rience and Gaussian mutation for velocity updating as well as

employs the diversity maintenance strategy of mGA by keep-

ing the original swarm in a nonreplaceable memory, which

remains intact during the lifecycle of the algorithm to increase

swarm diversity. Furthermore, it also maintains a secondary

swarm with a small population size of five to host the swarm

leader and four follower particles with the highest/lowest cor-

relation with the leader from the nonreplaceable memory to

increase local and global search capabilities. The algorithm

subsequently separates facial features into specific areas for

in-depth local subdimension based search. Overall, the local

exploitation and global exploration search mechanisms of the

algorithm work cooperatively to guide the search toward the

global optimal solutions. The empirical results indicate that

our PSO algorithm outperforms other state-of-the-art PSO

variants and conventional PSO and GA for optimal feature

selection significantly. Integrated with the SVM-based ensem-

ble, our algorithm achieves the best average accuracy of 100%

over 30 runs for the within (CK+) database evaluation and

94.66% accuracy for the cross-domain (MMI) evaluation. On

an average of 30 runs, it outperforms seven optimization algo-

rithms by 2.6% (BBPSO), 2.7% (MFOPSO), 4.7% (ELPSO),

5.6% (HEPSO), 7.4% (ThBPSO), 14.7% (PSO), and

20.2% (GA), respectively, for the within-domain evaluation

using CK+, and by 6.35% (BBPSO), 6.57% (MFOPSO),

7.21% (ELPSO), 9.49% (HEPSO), 12.28% (ThBPSO),

17.89% (PSO), and 18.35% (GA), respectively, for the cross-

domain evaluation using MMI. The empirical results also

indicate that our proposed PSO algorithm outperforms other

related facial expression recognition methods reported in the

literature by a significant margin.

We have identified the following directions for further

improvements. Diverse search strategies such as the firefly

algorithm and cuckoo search can be explored for search diver-

sity of the overall swarm and for subdimension exploration.

Multiobjective evolutionary algorithms can also be explored

to further equip the current algorithm to deal with real-world

challenging optimization problems containing multiple crite-

ria. Motivated by Zavaschi et al. [26] and Diao et al. [27],

ensemble construction using base models trained on diverse

features provided by LBP variants and LPQ will be explored

to further improve performance. We also aim to integrate the

proposed PSO algorithm into a humanoid robot to enable it to

deal with challenging real-world spontaneous human behavior

interpretation and robot interaction tasks.
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