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Abstract

Background: Epidemiological studies have suggested that the encounter with commensal microorganisms during

the neonatal period is essential for normal development of the host immune system. Basic research involving

gnotobiotic mice has demonstrated that colonization at the age of 5 weeks is too late to reconstitute normal

immune function. In this study, we examined the transcriptome profiles of the large intestine (LI), small intestine

(SI), liver (LIV), and spleen (SPL) of 3 bacterial colonization models—specific pathogen-free mice (SPF), ex-germ-free

mice with bacterial reconstitution at the time of delivery (0WexGF), and ex-germ-free mice with bacterial

reconstitution at 5 weeks of age (5WexGF)—and compared them with those of germ-free (GF) mice.

Results: Hundreds of genes were affected in all tissues in each of the colonized models; however, a gene set

enrichment analysis method, MetaGene Profiler (MGP), demonstrated that the specific changes of Gene Ontology

(GO) categories occurred predominantly in 0WexGF LI, SPF SI, and 5WexGF SPL, respectively. MGP analysis on signal

pathways revealed prominent changes in toll-like receptor (TLR)- and type 1 interferon (IFN)-signaling in LI of

0WexGF and SPF mice, but not 5WexGF mice, while 5WexGF mice showed specific changes in chemokine

signaling. RT-PCR analysis of TLR-related genes showed that the expression of interferon regulatory factor 3 (Irf3), a

crucial rate-limiting transcription factor in the induction of type 1 IFN, prominently decreased in 0WexGF and SPF

mice but not in 5WexGF and GF mice.

Conclusion: The present study provides important new information regarding the molecular mechanisms of the

so-called "hygiene hypothesis".
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Background

The so-called "hygiene hypothesis" suggests that reduced

exposure of children to microbes is associated with

increased prevalence of common allergies in developed

countries [1-3]. At birth, the gastrointestinal tract is ster-

ile and the neonatal immune response is characterized

by a polarized T helper 2 (Th2) cytokine profile [4,5].

During gut colonization by commensal microorganisms,

the gut immune system is constantly challenged by a

myriad of bacterial and food antigens. Gut colonization

apparently plays a major role in driving the initial Th2-

skewed immune response toward a more finely balanced

Th1/Th2 response, by boosting counterregulatory Th1

immune responses [6]. Numerous studies using animal

models have suggested the possible involvement of

immunoregulatory lymphocytes, e.g., regulatory T cells

(Treg) and/or interleukin-10 (IL-10) producing B cells

and cytokines (IL-10 and transforming growth factor-β)
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in intestinal homeostasis, which are driven by the intes-

tinal bacterial burden [7-9]

Many epidemiological studies suggest that there is

an inverse relationship between infections in early

childhood and the subsequent development of allergic

diseases [10,11]. Therapy with broad-spectrum antibio-

tics is frequently performed in pediatric practice and

children receiving this therapy within their first year of

life are particularly prone to develop allergic diseases

later in life [12-14]. Studies in animal models, such as

GF animals, have also suggested that microbiota play a

critical role in normal development of the immune

system [15]. Oyama et al. [16] reported that antibiotic

use during infancy in mice promotes a shift in the

Th1/Th2 balance toward Th2-dominant immunity.

Further, they demonstrated that GF mice do not de-

velop oral tolerance, which was restored by microbial

reconstitution in neonatal (3-week-old) mice but not

in older mice [17]. Impairment of immune tolerance

has been shown to augment disease in various models

of allergy and/or autoimmunity, including diabetes

onset in NOD mice [18,19], collagen-induced arthritis

[20,21], and experimental colitis [22]. Taken together,

these findings provide new perspectives on the patho-

genesis and recurrence of these diseases [15,23,24]

In the present study, to elucidate the impact of

microbes on the immune system during the neonatal

period, we performed microarray analysis of LI, SI,

LIV, and SPL of mice with or without enteric micro-

biota, and of GF mice reconstituted with microbiota at

different ages.

In order to extract useful information from the

massive amount of gene expression data obtained by

microarray assay, we employed a gene set enrichment

analysis approach in the present study. This type of ana-

lysis uses predetermined aggregations of genes (alterna-

tively called gene sets, metagenes, gene modules, etc.)

rather than individual genes to assess for coordinated

expression in the samples. Single gene analysis may miss

important effects on signaling because cellular processes

often affect sets of genes acting in concert, with moder-

ate effects on the strength of expression. Subtle but

orchestrated changes of internally-related genes have

often been found to be more important than a dramatic

increase/decrease of a single gene. Therefore, it may be

important to evaluate the statistical significance of

changes in a gene aggregate or gene set, rather than in

an individual gene. Since Subramanian et al.. [25] ini-

tially proposed “Gene Set Enrichment Analysis (GSEA)”,

a number of algorithms optimized for this type of ana-

lysis have been developed [26-33], and in the present

study, we employed “MetaGene Profiler (MGP)” devel-

oped by Gupta et al. [34]. Unlike most existing methods,

the main characteristic of MGP is that it evaluates

statistical data for a set of genes independently from data

of other gene sets. Because of the advantage of the ana-

lysis, it is logical to compare the results of tests for the

same set of genes observed under different conditions,

such as case–control experiments with multiple cases

and time-course experiments, because the statistical evi-

dence is evaluated using the same standard. MGP was

therefore suitable for the present study, which required

multiple cross comparisons of the same samples [35].

This study is part of a research project using GF and

SPF mice of the IQI strain, which has been established

as an inbred strain from ICR mice at the Central Insti-

tute for Experimental Animals (Kawasaki, Japan). We

previously reported some of the results of microarray

analyses conducted for the project. These studies indi-

cated that 1) activation of the IFN-α system in LI differs

significantly between GF and SPF mice [36], and 2) there

is a striking commonality in transcriptome profiles be-

tween GF LI and SI, while the profiles of SPF LI and SI

share almost nothing in common [37]. The present

study, despite the use of different cohorts of animals,

different versions of GeneChip arrays, and completely

different strategies and algorithms for bioinformatics

analysis from previous studies, has given support to our

earlier findings. Furthermore, we demonstrated that the

lack of neonatal encounter with commensal microor-

ganisms may result in profound alteration of certain

signaling pathways including TLRs, Rac 1, and type-1

IFN, which cannot be restored by later exposure to

microbiota. These findings may provide important

insights into the molecular events underlying the inter-

action between neonatal immune systems and com-

mensal microbiota.

Results

Generation of gnotobiotic mice and targets of microarray

analysis

In the present study we prepared 4 groups of mice with

different status of enteric flora: GF, SPF, 0WexGF, and

5WexGF (Figure 1). Bacterial reconstitution was exe-

cuted not by oral administration of fecal suspension but

by cohabitation of pregnant GF mice with female SPF

mice of the same age, because 1) contact with microor-

ganisms via a wide variety of parenteral routes such as

birth canal, skin, eyes, ears, nostrils, airway, urinary

tract, and vagina are also critically important for the es-

tablishment of relevant microbial flora, which differ pro-

foundly among these anatomical sites, and 2) it is

impossible to administer bacterial suspension orally to

neonatal mice immediately after delivery.

Using GF and SPF mice of the same strain, we have

analyzed the gene expression profiles of LI and SI in pre-

vious studies [36,37]. In the present study, we have

extended the target of transcriptome analyses to the SPL
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and LIV in addition to the intestines. SPL is a key part

of body’s immune system and, therefore, comparison of

the gene expression profiles of SPL and intestines may

help to elucidate the cross-talk between intestinal local

immunity and general immunity. The gene expression

profile of LIV enzymes, especially those of steroid and

xenobiotic metabolism, has been shown to be pro-

foundly affected by intestinal microflora via nutrients

and metabolites transported through portal vein [38].

Further, translocation of bacteria-derived substances, e.g.,

lipopolysaccharide to the LIV, is also known to have a

great impact on the host immune system.

GO analysis: overview and gene clustering

Firstly, we have summarized the biological impact of en-

teric microbiota on host organs by MGP analysis on GO

(http://www.geneontology.org/) categories. Figure 2 shows

Venn diagrams of the numbers of differentially expressed

genes and overrepresented GO categories of Biological

Process (BP). Results from 3 comparisons (SPF vs. GF,

0WexGF vs. GF, and 5WexGF vs. GF) revealed alteration

of an extremely large number of genes (probe sets) in the

SI of SPF mice compared with those of 0WexGF and

5WexGF mice. There were approximately 22 to 36 com-

monly regulated probe sets in the LI, SI, LIV, and SPL

among the 3 colonization models. At least 300 probe sets

were listed in each group in the LI, SI, and SPL; however,

no or only a small number of GO categories were overre-

presented in most cases with the exception of LI in

0WexGF mice, SI in SPF mice, and SPL in 5WexGF mice.

The overrepresented GO categories are listed in Table 1

(LI of 0WexGF), Table 2 (SI of SPF) and Table 3 (SPL of

5WexGF). Specific alteration of genes for antigen presen-

tation in LI of 0exGF mice, and for energy cycle and ner-

vous development in SI of SPF mice, were identified from

these tables.

The results of unsupervised hierarchical cluster ana-

lysis of gene expression patterns are shown in Figure 3,

Figure 4, Figure 5 and Figure 6. The clusters denoting

overrepresented GO categories included immune system

development/B cell activation/hematopoiesis (in LI) and

metabolic process/lipid metabolic process (in SI).

Analysis of signal pathway

Next, in order to gain information regarding the mo-

lecular events evoked by enteric microbiota, we applied

Figure 1 Overview of the experimental procedure for bacterial reconstitution. During the experiment, all mice (including SPF mice) were

housed in a Trexler-type flexible film isolator in a standard germ-free state. For generation of 0WexGF (mice, i.e., GF mice with bacterial

reconstitution at the time of delivery), pregnant GF mice were housed with SPF female mice 1 day before delivery and only male pups were

retrieved after weaning. To generate 5WexGF mice (i.e., GF mice with bacterial reconstitution at 5 weeks old), since 5 weeks, GF male mice began

to cohabit with SPF female mice of the same age. Male mice in all groups were sacrificed at 9 weeks of age.
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the gene set enrichment analysis program MGP to the

signal pathway database of TRANTHPATH. Figure 7,

Figure 8, and Figure 9 show the signal pathways overre-

presented in LI, SI and SPL. TLR, Rac1, and IFN-α sig-

naling were commonly overrepresented in the LI of SPF

and 0WexGF mice (note that “dsRNA/TLR3” pathways

are closely interconnected with the pathways for IFN-α

production) and epidermal growth factor (EGF) and

nerve growth factor (NGF) signaling were common in

the LI of 0WexGF and 5WexGF mice. There was low

commonality between 5WexGF and SPF. In 5WexGF

mice, specific alteration of gene expression for chemo-

taxis was indicated. The lists for SI differed from those

of LI in SPF and 0WexGF mice (Figure 8). However, sur-

prisingly, the list for SI seemed essentially the same as

that of LI in 5WexGF mice (Figure 7 and Figure 8). In

all 3 groups, the profiles of SI were characterized by

large scale alteration of EGF, platelet-derived growth fac-

tor (PDGF) and NGF/neurotrophin signaling. Overre-

presentation of TLR pathway and Rac1 signaling was

observed in 0WexGF SI but not in SPF SI. In SPL, only

a few overrepresented signal pathways passed the statis-

tical criteria (q< 0.001), but overrepresentation of TLR

pathway and Rac1 signaling in 0WexGF mice and apop-

tosis pathway signaling in 5WexGF mice was noted. No

pathways reached statistical significance of q< 0.001 in

LIV.

Investigation of TLR signaling by quantitative RT-PCR

Gene set enrichment analysis provides useful informa-

tion about the statistical significance of changes in the

expression of gene sets. However, the analysis does not

provide information on the degree and direction of

change of expression for any particular gene. Further-

more, it is unlikely that any existing database would in-

clude all of the signaling pathways involved in complex

physiological and pathophysiological events. For exam-

ples, "TLR pathway" in the TRANTPATH database

seemed to contain relatively little information on TLR7

and TLR9. Therefore, in order to obtain more informa-

tion regarding differences in TLR signaling, we investi-

gated the expression of various TLR-related genes by

real time RT-PCR analysis in LI of the 4 groups of mice.

The results are summarized in Figure 10 in terms of the

difference of gene expression compared with SPF mice.

The status of enteric microbiota (absence, presence, and

Figure 2 Venn diagram showing differential expression of genes in the LI, SI, LIV, and SPL of 0WexGF vs. GF, 5WexGF vs. GF, and SPF

vs. GF mice. Upper row: The numbers of probe sets differentially expressed (p< 0.05). A total of 1498 probes sets were differentially expressed in

the LI, 2711 in the SI, 274 in the LIV, and 1805 in the SPL. The greatest number of differentially-expressed probe sets (2188) was observed for SPF

mouse SI. Only 22 ~ 36 probe sets were specifically co-regulated in all 3 comparisons in each tissue. Bottom row: The numbers of the GO BP

categories having integrated p values of less than 0.05 are shown. In the LI, of the 38 overrepresented categories, 31 were specific for 0WexGF

mice. In the SI, 202 of the 204 categories were specific for SPF mice. In the SPL, 160 of the 170 categories were specific for 5WexGF mice. No GO

BP categories were overrepresented in the LIV.

Yamamoto et al. BMC Genomics 2012, 13:335 Page 4 of 15

http://www.biomedcentral.com/1471-2164/13/335



introduction at different times) influenced various TLR-

related genes in diverse ways. The most prominent and

specific changes were seen in TLR7/9 (enteric micro-

biota, irrespective of colonization protocols, strongly

decreased TLR7/9 expression) and IRF3 (expression was

very low in SPF and 0WexGF mice and high in GF and

5WexGF mice).

Discussion

In our previous study [36], using GF and SPF IQI mice

and the old version of Affimetrix GeneChip (MG-

U74Av2), we compared gene expression profiles of LI in

GF and SPF mice. A list of genes most affected by the

presence of enteric microbiota was generated by the

simple Welch's t-statistic and enumeration in the order

corresponding to the fold-change. The list clearly indi-

cated that the expression of genes related to the induc-

tion and production of type 1 IFN, such as Irf3, Irf7,

Isgf3g, Ifit1 and G1p2 (ISG15), was markedly decreased

in SPF mice compared with GF mice. In situ

hybridization and immunohistochemistry indicated that

these IFN-related genes were expressed mainly in lamina

proprial CD11b+ cells. In another study [37], using a

synthetic IFN inducer and an herbal medicine that

enhances IFN production, we demonstrated that the dif-

ference in the steady-state expression level of these IFN-

related genes was correlated with the difference in the

timing of IFN-α release triggered by the inducer. In the

present study, we used the same mouse strain but a dif-

ferent version of GeneChip (Mouse Expression 430A)

and employed a completely different strategy and algo-

rithm for bioinformatic analysis. In place of single gene

analysis, we have adopted a gene set enrichment analysis

with the primary aim of identifying the most affected

gene sets in terms of statistical significance. The prede-

termined gene sets of categories, cascades and pathways

have been furnished from public (GO) and commercial

(TRANTHPATH) databases. The results indicated that,

Table 1 Top 25 GO categories overrepresented in LI of 0WexGF mice compared with GF mice

GOID Term Number of Probes p_int

GO:0042254 ribosome biogenesis and assembly 92 < 1.0E-18

GO:0019886 antigen processing and presentation of exogenous peptide antigen via MHC class II 14 6.18E-08

GO:0048511 rhythmic process 19 1.16E-07

GO:0006954 inflammatory response 48 6.79E-07

GO:0030300 regulation of cholesterol absorption 5 1.09E-06

GO:0006610 ribosomal protein import into nucleus 10 1.61E-06

GO:0042157 lipoprotein metabolic process 8 2.00E-06

GO:0001558 regulation of cell growth 64 2.63E-06

GO:0007166 cell surface receptor linked signal transduction 50 2.68E-06

GO:0050766 positive regulation of phagocytosis 10 3.64E-06

GO:0060048 cardiac muscle contraction 11 5.07E-06

GO:0007417 central nervous system development 17 6.65E-06

GO:0007413 axonal fasciculation 8 1.32E-05

GO:0006911 phagocytosis, engulfment 7 1.52E-05

GO:0006310 DNA recombination 27 1.54E-05

GO:0002504 antigen processing and presentation of peptide or polysaccharide antigen via MHC class II 6 2.46E-05

GO:0006950 response to stress 30 2.84E-05

GO:0000165 MAPKKK cascade 21 3.24E-05

GO:0007585 respiratory gaseous exchange 12 3.92E-05

GO:0006816 calcium ion transport 44 4.33E-05

GO:0042593 glucose homeostasis 18 5.19E-05

GO:0006414 translational elongation 14 5.69E-05

GO:0030901 midbrain development 8 6.54E-05

GO:0045582 positive regulation of T cell differentiation 6 7.88E-05

GO:0007229 integrin-mediated signaling pathway 36 8.14E-05

MGP analysis was performed on GO BP categories which contains 4 ~ 99 genes (“Number of Probes”). The categories were sorted according to the integrated p

value (p_int) and the top 25 are represented. The categories related to antigen presentation are noted (e.g., “antigen processing and presentation of exogenous

peptide antigen via MHC class II”, “inflammatory response”, “positive regulation of phagocytosis”, “phagocytosis, engulfment”, “antigen processing and

presentation of peptide or polysaccharide antigen via MHC class II” and “positive regulation of T cell differentiation”).
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Figure 3 Hierarchical cluster analysis of the 1498 differentially-expressed genes in the LI. Expression was increased or decreased at a

significance level of p< 0.05. Gene tree (Pearson correlation: left tree) shows correlated groups of genes and their expression patterns across all

individual samples (top axis). The 5 groups highlight the separation of the gene clusters. MGP analysis was performed for each cluster and the

top 1~ 3 GO categories (BP, MF, or/and CC) were listed. Colors show the range of expression from blue (decreased expression) to yellow

(increased expression).

Figure 4 Hierarchical cluster analysis of the 2711 differentially-expressed genes in the SI. Expression was increased or decreased at a

significance level of p< 0.05. Gene tree (Pearson correlation: left tree) shows correlated groups of genes and their expression patterns across all

individual samples (top axis). The 6 groups highlight the separation of the gene clusters. MGP analysis was performed for each cluster and the

top 1~ 3 GO categories (BP, MF, or/and CC) were listed. Colors show the range of expression from blue (decreased expression) to yellow

(increased expression).
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Figure 5 Hierarchical cluster analysis of the 274 differentially expressed genes in the LIV. Expression was increased or decreased at a

significance level of p< 0.05. Gene tree (Pearson correlation: left tree) shows correlated groups of genes and their expression patterns across all

individual samples (top axis). The 1 group highlights the separation of the gene clusters. MGP analysis was performed for each cluster and the

top 1~ 3 GO categories (BP, MF, or/and CC) were listed. Colors show the range of expression from blue (decreased expression) to yellow

(increased expression).

Figure 6 Hierarchical cluster analysis of the 1805 differentially expressed genes in the SPL. Expression was increased or decreased at a

significance level of p< 0.05. Gene tree (Pearson correlation: left tree) shows correlated groups of genes and their expression patterns across all

individual samples (bottom axis). The 3 groups highlight the separation of the gene clusters. MGP analysis was performed for each cluster and

the top 1~ 3 GO categories (BP, MF, or/and CC) were listed. Colors show the range of expression from blue (decreased expression) to yellow

(increased expression).
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together with TLR signaling and Rac1 signaling, the sig-

naling cascade for the production of type 1 IFN was

most prominently affected in SPF and 0WexGF mice.

Further, in good accordance with our previous paper

[37], the changes in gene expression profiles were dis-

similar between SI and LI of SPF mice, while those in

GF mice showed substantial commonality between SI

and LI.

The gene expression profile of SPF mice was similar to

that of 0WexGF, particularly in LI, but not to that of

5WexGF mice. The main differences were observed in

TLR, Rac1, and IFN-α signaling. TLRs play an important

role in the recognition of microbes by host sentinel cells

that contribute to subsequent innate and adaptive im-

mune responses [39]. TLRs recognize molecular patterns

specific for microbes to eliminate pathogens and engen-

der commensal colonization of symbiotic bacteria [40].

Therefore, the difference in TLR signaling may contrib-

ute to the altered immune function of 5WexGF mice.

Similarly, 5WexGF mice may have unique characteristics

with respect to the IFN-α response, which is critically

important not only for protection against infection by

virus and certain microorganism, but also for control of

autoimmune responses. Only in 5WexGF intestines,

both SI and LI, large scale alteration of chemokine sig-

naling was observed. In response to microbial stimuli,

fetal intestinal epithelial cells release chemokines very

rapidly, and this response may be a prerequisite for in-

testinal tolerance to commensal bacteria [41]. Acute

chemokine release in response to microbial activation

was subsequently maintained for several days in GF

mice, but did not occur in mice harboring conventional

microbiota due to tolerance acquisition at birth [42]. To

clarify how the observed changes in the expression

Figure 7 Signal pathways overrepresented in LI of 0WexGF, 5WexGF and SPF mice compared to GF mice. MGP analysis was performed

using signal pathways and chains in the TRANTHPATH database. The pathways/chains were sorted according to the integrated p-value (q) and

those with q< 0.001 have been represented. Some pathways/chains were classified by their biological contexts and colored as represented in

the figure.
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profile of chemokine signaling in 5WexGF mice relates

to the failure to acquire immune tolerance, it may be ne-

cessary to examine chemokine production in epithelial

cells isolated from 5WexGF intestines. Our findings col-

lectively suggest that the encounter with environmental

microbiota during the specific time interval within the

neonatal period is critically important for the develop-

ment of normal immune system responsiveness to

microorganisms, both commensal and infectious.

Previous transcriptomics studies focusing on the role

of commensal bacteria [43-46] differ from the present

study with respect to animal species (mice vs. rats vs.

piglets), tissues (epithelium/epithelial cells vs. whole

intestines), ages at the time of sampling (pups vs. pu-

berty vs. adult), means of manipulation of microbiota

(conventionalization vs. monoassociation vs. antibiotic

eradication of bacteria), microarray platforms, and statis-

tical methodologies. However, the results of these studies

are similar to ours in several respects such as prominent

alteration of the expression profiles for antigen presenta-

tion, xenobiotic systems, and IFN signaling. To shed

additional light on the "hygiene hypothesis", a careful

Figure 8 Signal pathways overrepresented in SI of 0WexGF, 5WexGF and SPF mice compared with GF mice. MGP analysis was performed

using signal pathways and chains in the TRANTHPATH database. The pathways/chains were sorted according to the integrated p-value (q) and

those with q< 0.001 have been represented. Some pathways/chains were classified by their biological contexts and colored as represented in

the figure.
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comparison of our results with those of Schumann et al.

[43] would be particularly valuable because in the latter

study, enteric bacteria were eradicated by antibiotic

treatment of neonatal rats from postnatal day 7 to 21. In

the study by Schumann and colleagues, in addition to

significant down-regulation of antigen presentation sys-

tems, expression of paneth cell products such as α-

defensins, matrylsin, and type IIA phospholipase A2

decreased and expression of mast cell proteases

increased as a result of a drastic reduction in enteric

bacteria evoked by antibiotics. Similar changes were

observed in the SI of GF mice compared with the other

3 colonization models in the present study (data not

shown). Furthermore, Schumann et al.. have also found

that eradication of enteric bacteria had a greater effect,

in terms of the number of affected probe sets, in SI than

in the colon. Clustering analysis of the affected probe

sets in the study revealed only a few functional categor-

ies; i.e., endocytosis and vesicle-mediated transport in

the proximal SI, immune response in the distal SI, and

ion transport processes in the colon. The present ana-

lysis based on MGP identified expression changes for

many functional categories, including proton transport

and vesicle-mediated transport in the SI (Table 2) and

immune responses in the LI (Table 1). In spite of the ex-

tensive differences in species, experimental settings,

microarray platforms, and approaches to statistical ana-

lysis, a detailed comparative examination of these two

transcriptome data sets might provide new insights into

the impact of commensal microbiota colonization during

the neonatal period.

Conclusions

In summary, the gene expression profiles of mice with

bacterial colonization at different times suggest that the

encounter with environmental commensal microbiota

during the specific time interval within neonatal period

is essential for normal development of the immune sys-

tem, especially of the LI. Microbiota-mediated develop-

ment of regulatory circuits of TLRs and type I IFN seem

to play a particularly important role. Rectification of

chemokine expression might also be involved in

microbiota-related immunological dysregulation because

expression of chemokines was activated specifically in

mice colonized at pre-pubertal ages. The present study

provides important insights for clarification and refine-

ment of the so-called "hygiene hypothesis".

Methods
Animals

All animal experiments were performed in Central Insti-

tute of Experimental Animals (CIEA; Kanagawa, Japan).

IQI/Jic mice were kept under SPF and GF mice were

housed in a Trexler-type flexible film isolator in a stand-

ard germ-free state and screened on a weekly basis for

germ-free status by sterile feces sampling and culturing

on MRS-agar plates under aerobic and anaerobic condi-

tions. Mice were housed in an air-conditioned room

(temperature 24 ± 1 °C) with a controlled light/dark cycle

(light on between 6:30 AM and 7:00 PM). Sterile food

and water were available ad libitum. The mice were ran-

domly divided into 4 groups; 10 male mice were

included in each group. GF, SPF, 0WexGF, and 5WexGF

mice (Figure 1). For generation of 0WexGF mice, preg-

nant GF mice were housed with SPF female mice 1 day

before delivery and only male pups were retrieved after

weaning. To generate 5WexGF mice, 5-week-old GF

male mice were housed with SPF female mice. Mice in

all groups were sacrificed at 9 weeks of age. All animal

procedures were approved by the institution's ethical

committee for care and use of laboratory animals in

research.

Figure 9 Signal pathways overrepresented in SPL of 0WexGF, 5WexGF and SPF mice compared with GF mice. MGP analysis was

performed using signal pathways and chains in the TRANTHPATH database. The pathways/chains were sorted according to the integrated p-

value (q) and those with q< 0.001 have been represented. Some pathways/chains were classified by their biological contexts and colored as

represented in the figure.
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Figure 10 (See legend on next page.)
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RNA extraction from mouse tissue

Mice were sacrificed and the LI, SI, LIV, and SPL were

harvested for preparation of total RNA. Each frozen sam-

ple was homogenized in 1 ml/0.1 g tissue of TRI Reagent

(Sigma-Aldrich Japan, Tokyo, Japan) with a Polytron tis-

sue homogenizer (Kinematica, Littau-Lucerne, Switzer-

land) and incubated for 10 minutes at RT. Chloroform

(0.2 ml/1 ml TRI Reagent) was added to the samples and

the suspensions were centrifuged at 13,200× g for 15 min

at 4 °C. The water phase was transferred to a new tube

and the RNA was prepared using a conventional isopro-

panol/ethanol precipitate technique.

Microarray analysis

Total RNA extracted from mice (n = 3 per each group)

were re-purified using RNeasy spin columns (Qiagen,

Valencia, CA) according to the manufacturer's instruc-

tions. All samples were monitored using an Agilent

(See figure on previous page.)

Figure 10 Summary of the results of RT-PCR of TLR-related genes in LI. The molecules involved in TLR signaling are shown in two clusters:

one leads to the induction of proinflammatory cytokines in an NFκB-dependent manner, and the other leads to the production of type 1 IFN in

an NFκB-independent manner. Expression levels are represented by columns indicating the relative value of each group normalized to the

maximum value in the four groups. Number represents fold-change to the expression level in SPF. Brown, GF; ocher, 0WexGF; light green,

5WexGF; dark green, SPF. Differences compared with SPF mice were analyzed by Dunnet test. * p< 0.05.

Table 2 Top 25 GO categories overrepresented in SI of SPF mice compared to GF mice

GOID Term Number of Probes p_int

GO:0015992 proton transport 67 < 1.0E-18

GO:0015986 ATP synthesis coupled proton transport 44 < 1.0E-18

GO:0006099 tricarboxylic acid cycle 39 < 1.0E-18

GO:0016192 vesicle-mediated transport 95 < 1.0E-18

GO:0006631 fatty acid metabolic process 63 < 1.0E-18

GO:0045454 cell redox homeostasis 46 1.11E-16

GO:0006754 ATP biosynthetic process 40 2.78E-15

GO:0006096 Glycolysis 56 5.32E-13

GO:0016481 negative regulation of transcription 68 1.05E-12

GO:0042254 ribosome biogenesis and assembly 96 2.27E-11

GO:0009987 cellular process 85 2.41E-11

GO:0001501 skeletal development 27 3.77E-11

GO:0006461 protein complex assembly 52 3.84E-11

GO:0021799 cerebral cortex radially oriented migration 5 5.23E-11

GO:0021813 cell-cell adhesion involved in neuronal-glial interactions
involved in cerebral cortex glial-mediated radial cell migration

5 5.23E-11

GO:0021589 cerebellum structural organization 5 5.23E-11

GO:0021942 radial glia guided migration of Purkinje cell 5 5.23E-11

GO:0000160 two-component signal transduction system (phosphorelay) 31 6.78E-11

GO:0008654 phospholipid biosynthetic process 41 1.00E-10

GO:0007031 peroxisome organization and biogenesis 20 4.44E-10

GO:0007399 nervous system development 96 7.76E-10

GO:0044267 cellular protein metabolic process 26 1.06E-09

GO:0006396 RNA processing 75 1.15E-09

GO:0007162 negative regulation of cell adhesion 11 2.04E-09

GO:0007266 Rho protein signal transduction 38 2.27E-09

GO:0007229 integrin-mediated signaling pathway 36 8.14E-05

MGP analysis was performed on GO BP categories which contains 4 ~ 99 genes (“Number of Probes”). The categories were sorted according to the integrated p

value (p_int) and top 25 are represented. The categories related to energy cycle are noted (e.g., “proton transport”, “tricarboxylic acid cycle”, “ATP biosynthetic

process”, and “Glycolysis”).
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Bioanalyzer (Agilent Biotechnologies, Boeblingen, Ger-

many) and consistently demonstrated high-quality RNA

(28 S/18 S ratio, ~2). The labeled cRNA prepared from

200 ng total RNA by in vitro transcription (Enzo Bio-

chem, New York, NY) was fragmented, hybridized to a

Mouse Expression 430 array (Affymetrix, Santa Clara,

CA) using an Affymetrix fluidics station, and scanned

with an Affymetrix scanner, according to the Affymetrix

protocol. Data were uploaded to the Center for Infor-

mation Biology Gene Expression Database (CIBEX,

http://cibex.nig.ac.jp/index.jsp) and are available under

accession ID CBX256. Data were analyzed using the

Affymetrix Microarray Suite [37] v.5.0 with all of the

parameters set at default values (a global normalization

was applied). Probe sets that had 2 or 3 absent A MAS

detection calls per group (3 samples) in all groups were

excluded. Therefore, genes that had more than 2

present calls in any one of the groups were included in

the analysis. Probe annotations were obtained from the

Affymetrix NetAffx Analysis Center. Functional and sig-

nal pathway annotation of transcripts was based on

Gene Ontology [47] and TRANSPATH [48] term

assignments, respectively.

Data clustering

Hierarchical clustering of subsets of genes was

performed using clustering and analysis software

(Cluster 3.0; http://bonsai.hgc.jp/~mdehoon/software/

cluster/software.htm). The Pearson correlation coeffi-

cient (r) was chosen to compute distances between ex-

pression vectors (d= 1-r), and the complete linkage

clustering algorithm was used to build the hierarchical

tree.

MetaGene Profiler (MGP)

MGP has been developed to evaluate the significance of

predefined sets of genes from transcriptome data (http://

metagp.ism.ac.jp/) [34]. The method, which employs a

Table 3 Top 25 GO categories overrepresented in SPL of 5WexGF mice compared with GF mice

GOID Term Number of Probes p_int

GO:0007507 heart development 91 1.98E-13

GO:0006952 defense response 63 4.39E-12

GO:0016192 vesicle-mediated transport 76 3.47E-11

GO:0015992 proton transport 64 1.69E-09

GO:0001764 neuron migration 32 2.46E-09

GO:0007283 Spermatogenesis 94 2.65E-09

GO:0006816 calcium ion transport 41 3.52E-09

GO:0030036 actin cytoskeleton organization and biogenesis 52 3.81E-09

GO:0042127 regulation of cell proliferation 46 8.17E-09

GO:0016055 Wnt receptor signaling pathway 61 1.16E-08

GO:0007010 cytoskeleton organization and biogenesis 43 1.52E-08

GO:0016337 cell-cell adhesion 33 2.30E-08

GO:0018108 peptidyl-tyrosine phosphorylation 25 2.51E-08

GO:0008610 lipid biosynthetic process 76 2.69E-08

GO:0009987 cellular process 78 3.52E-08

GO:0006954 inflammatory response 48 4.44E-08

GO:0006874 cellular calcium ion homeostasis 23 6.93E-08

GO:0007166 cell surface receptor linked signal transduction 54 9.30E-08

GO:0005975 carbohydrate metabolic process 81 1.01E-07

GO:0016311 Dephosphorylation 61 1.76E-07

GO:0042981 regulation of apoptosis 83 2.21E-07

GO:0007420 brain development 30 3.64E-07

GO:0006935 Chemotaxis 45 4.40E-07

GO:0001701 in utero embryonic development 55 5.95E-07

GO:0009408 response to heat 26 8.93E-07

MGP analysis was performed on GO BP categories which contains 4 ~ 99 genes (“Number of Probes”). The categories were sorted according to the integrated p

value (p_int) and top 25 are represented.
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meta-analysis technique, accumulates statistical evidence

from a set of genes in order to build a more powerful

test than can be achieved by analyzing individual genes.

In the present study, we first predefined the group of

genes for each GO term: all 3 categories, i.e., BP, cellular

component (CC), and molecular function (MF), were

used. More than 20,000 gene sets were annotated by GO

terms. We also used gene sets defined by pathways in

the TRANSPATH database. To obtain the p-values for

individual genes, Welch’s t test was performed. The indi-

vidual p-values of the genes included in the gene set

were integrated to obtain the integrated p-value for the

gene set, as described previously (http://metagp.ism.ac.

jp/). A gene set containing too small a number of genes

is, in principle, unsuitable for evaluation of overrepre-

sented gene sets. Preliminary examination suggested that

GO terms containing more than 100 genes provided

relatively little information because these terms repre-

sent too broad a concept to give a foothold for further

biological investigation. Therefore MGP analysis was

applied to gene sets consisting of 4–99 genes.

Quantitative real time RT-PCR

For RT-PCR, total RNA was extracted as described

above (n = 6 per group). The cDNA samples were

synthesized using an Improm-IITM Reverse Transcript-

ase kit (Promega Corporation, Madison, Wl) according

to the manufacturer’s instructions. Briefly, 5 μl of RNA

(50 ng) and primer were added to 15 μl of reverse tran-

scription reaction mix (Improm-IITM Reverse Tran-

scriptase system). Annealing was performed by placing

the tubes in a controlled-temperature heat block equili-

brated at 25 °C and incubated for 5 minutes. Extension

was performed in a controlled-temperature heat block at

42 °C for up to 1 hour. The extension temperature was

optimized between 37 °C and 55 °C. Real time RT-PCR

was performed using the TaqManW Gold RT-PCR Kit

(Applied Biosystems, Foster City, CA) according to the

manufacturer’s instructions. An ABI Prism 7900HT (Ap-

plied Biosystems) was used with the following thermal

cycling conditions: 1 cycle at 50 °C for 2 min, 1 cycle at

95 °C for 10 min, 40 cycles each at 95 °C for 15 sec and

60 °C for 1 min. Data were normalized against Irf1

[36,37].

Statistical analyses

PCR data were calculated as the mean values and are

represented in Figure 10 by columns indicating the rela-

tive value of each group, which was normalized to the

maximum value in the 4 groups. Differences in mean

values among groups were analyzed by Dunnet test and

were considered significant at p< 0.05. The statistical

methods used for the microarray analysis are described

above.
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