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ABSTRACT The microbiome influences health and disease through complex networks of host genetics, genomics, microbes, and

environment. Identifying the mechanisms of these interactions has remained challenging. Systems genetics in laboratory mice (Mus

musculus) enables data-driven discovery of biological network components and mechanisms of host–microbial interactions underlying

disease phenotypes. To examine the interplay among the whole host genome, transcriptome, and microbiome, we mapped QTL and

correlated the abundance of cecal messenger RNA, luminal microflora, physiology, and behavior in a highly diverse Collaborative Cross

breeding population. One such relationship, regulated by a variant on chromosome 7, was the association of Odoribacter (Bacter-

oidales) abundance and sleep phenotypes. In a test of this association in the BKS.Cg-Dock7m +/+ Leprdb/J mouse model of obesity and

diabetes, known to have abnormal sleep and colonization by Odoribacter, treatment with antibiotics altered sleep in a genotype-

dependent fashion. The many other relationships extracted from this study can be used to interrogate other diseases, microbes, and

mechanisms.

KEYWORDS sleep; genetics; genomics; bioinformatics; behavior

THE human microbiome has been implicated as an impor-

tant factor in health and disease (Wen et al. 2008); how-

ever, themechanisms bywhich it influences human physiology

are largely unknown. Experiments that manipulate specific

genetic, molecular, and microbial components of the mi-

crobe–host interface are essential for the dissection of these

mechanisms (Vijay-Kumar et al. 2010), but the identification

of targets for experimental manipulation remains a significant

challenge. However, both microbial community composition

and its effects on host health are modulated by host character-

istics that exhibit heritable variation (Benson et al. 2010;

Campbell et al. 2012; McKnite et al. 2012; Snijders et al.

2016), providing the opportunity to use population systems

genetic strategies to identify genetic variants and associated

traits to serve as entry points for investigating key functional

pathways at the microbe–host interface (Willing et al. 2010;

McKnite et al. 2012; Knights et al. 2014).

Studies of the gut microbiome have produced convincing

evidence for a microbial influence over many host traits
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including human gastrointestinal disorders (Willing et al.

2010; Knights et al. 2014; Machiels et al. 2014), metabolic

traits, diabetes (Wen et al. 2008; Vijay-Kumar et al. 2010),

and obesity (McKnite et al. 2012; Carlisle et al. 2013; Parks et al.

2013). Perhaps more surprising is the influence of gut micro-

biota and the metabolites they produce on the brain (Bravo

et al. 2011; Lewin et al. 2011; Carter 2013; Valles-Colomer

et al. 2019) and circadian behaviors such as sleep (Leone et al.

2015). Despite the importance of thesemicrobial influences, the

mechanisms of many of these interactions remain unknown.

There have been many well-documented relationships

between host genetic variation, intestinal flora composition,

and disease reported in human genetic analyses (Deloris

Alexander et al. 2006; Khachatryan et al. 2008; Turnbaugh

et al. 2009; Goodrich et al. 2014; Jacobs and Braun 2014;

Knights et al. 2014). Because mice and humans harbor sim-

ilar microbiota at high taxonomic levels (Ley et al. 2008;

Krych et al. 2013), systems genetic analysis in laboratory

mice can be an effective tool for discovering the mechanisms

of host–microbe interactions in a large-scale, data-driven

manner. This quantitative genetic approach provides ameans

of holistic assessment of the relationships between hosts, mi-

crobes, and diseases through the use of population genetic

variation, one of the greatest determinants of microbial com-

munity composition in mice (Deloris Alexander et al. 2006;

Campbell et al. 2012). The study of natural genetic variation

(Campbell et al. 2012) and engineeredmutations (Turnbaugh

et al. 2006; Spor et al. 2011) also enables deep dissection of

the biology of the microbiome, and discovery of host genetic

loci that regulate microbial abundance (Benson et al. 2010;

McKnite et al. 2012). The transcriptome of the cecum pro-

vides insight into the host microenvironment by quantifying

the relative abundances of transcripts encoding host path-

ways involved in metabolic responses, the production and

presentation of cell-surface antigens, and constituents of

the immune system, such as the gut-associated lymphoid tis-

sue, among other host processes that both shape and respond

to gut microbiota.

The Collaborative Cross (CC) mouse population,

(Churchill et al. 2004; Chesler et al. 2008) constructed from

the cross of eight diverse inbred progenitor strains, was

designed for high-precision (Philip et al. 2011) and high-

diversity systems genetic analysis. The host genetic variation

among this population results in diverse microbiome compo-

sitions (Campbell et al. 2012), and physiological and behav-

ioral phenotypes. This population has been used to identify

QTL regulating the abundance of fecal microbes (Snijders

et al. 2016). Here, we use host transcriptomic, in addition

to genetics andmicrobiome, analysis to find host mechanisms

related to disease. Genetic correlations among these char-

acteristics are used to construct systems genetic networks

(Figure 1). Interrogation of these networks at the level of

transcripts, microbes, and phenotypes enables the study of

mechanisms of microbiota influence on health and disease by

identifying causal mechanisms responsible for phenotypic

correlations.

Here, we integrate data for host genotype, disease-related

phenotypes, gut microbiome composition, and associated gut

gene expression to develop a systems genetic network for the

gut–microbiome interaction and its effects on host health.

Specifically, we performed an integrative analysis leveraging

cecal messenger RNA (mRNA) levels, luminal microbiome,

physiology, and behavior from over 100 incipient strains of

the CC population. Through the analysis of relationships

among these measurements, we apply systems genetic anal-

ysis to identify a microbe involved in sleep disorders.

Materials and Methods

Mice

The breeding of the CC at Oak Ridge National Laboratory

(ORNL) has been described previously (Chesler et al. 2008).

Mice from each of the eight inbred progenitor strains consist-

ing of five common inbred strains (A/J, C57BL/6J, 129S1/

SvImJ, NOD/LtJ, and NZO/HILtJ) and three wild-derived

inbred strains (CAST/EiJ, PWK/PhJ, andWSB/EiJ) were ran-

domly assigned to one of a roughly balanced set of breeding

schemes, which dictated the order in which strains were

crossed. The strains were crossed pairwise to create a G1

generation, and these were crossed pairwise to make the

four-way G2 generation, then crossed again to make the

G2:F1 generation. The G2:F1s were crossed and the progeny

randomly assigned to one of three mating pairs, of which one

was randomly chosen as the priority pair to contribute to the

next generation. If this mating was nonproductive, the off-

spring of the next ranked pair were used. To prevent die-out

at advanced generations, backcrossing was also used in rare

instances. A line was considered lost if no progeny were born

after several breeding attempts using these strategies. Pheno-

typing and genotyping were performed in at least one breed-

ing pair per line from generations G2:F5–G2:F8 for QTL

analysis; most genotyped mice came from the G2:F5 genera-

tion, which we estimate to be 75% inbred (Philip et al. 2011).

All micewere housed at theWilliam L. and Liane B. Russell

Center for Comparative and Functional Genomics at ORNL.

All animal protocols were reviewed and approved by the

ORNL Institutional Animal Care and Use Committee

(#0367; approval). They were maintained in separate cages

either individually or with same-sex siblings, subjected to a

light:dark cycle of (14:10), and allowed ad libitum access to

the standard rodent chow (#5053; irradiated Purina Diet).

Water was delivered via an automatic watering system chlo-

rinated to 3–5 ppm. Cages contained Harlan Softcob bed-

ding, with one nestlet enrichment device in each cage. Of

the 650 CC lines initiated, 414 lines with at least a single

male or female survived to the G2:F5 generation. Litters were

weaned at �3 weeks of age into breeding pairs, until they

entered the phenotyping protocol. Details of the CC Breeding

population can be found in Philip et al. (2011).

BKS.Cg-Dock7m +/+ Leprdb/J mice (referred to here as

db/db mice) were obtained from the Jackson Laboratory
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production colony, and used for the sleep and Odoribacter

abundance experiments at The Jackson Laboratory. All ani-

mal protocols were reviewed and approved by The Jackson

Laboratory Institutional Animal Care and Use Committee

(#010007; approval).

Phenotyping

When grandprogeny were born, members of the CC breeding

population were subjected to high-throughput analysis

broadly reflecting behavior, morphology, and physiology

(Philip et al. 2011). Phenotypes included wildness, activity

monitoring in open field, light/dark box, piezo sleep, hot

plate, tail-clip, blood chemistry and cell counts, and fasting

glucose. Dissection metrics of body weight and length, organ

and fat pad weights, and bone composition were used. All CC

phenotyping data and protocols are publicly available at

the Mouse Phenome Database (phenome.jax.org; accession

Chesler3).

Dissection

Adult mice were euthanized with carbon dioxide and the

cecum dissected. The number of animals varied such that

for microbial abundance, 108 male and 108 female unique

strainswere used, and for genotyping 102male and99 female

mice were used. Cecal contents were manually extruded and

snap frozen. Each strain of mice was separately housed from

theother strains, preventinganycohousing cagingeffects.The

cecumtissuewasextensivelyflushedwith cold saline toget rid

of residual fecal matter and snap frozen in RNAlater. All snap-

frozen samples were stored at 280�.

Extraction of microbial genomic DNA

DNAwas extracted and the 16S ribosomal RNA (rRNA) gene

amplified fromcecumcontents usingaprotocolmodified from

that of Ley et al. (2008), as previously described (Campbell

et al. 2012). Approximately 100 mg of cecum contents was

added to a 2-ml screw-capped tube containing 1 g of silica/

zirconia beads (0.1 mm; BioSpec Products, Bartlesville, OK),

500 ml of phenol:chloroform:isoamyl alcohol (25:24:1), and

210 ml of 20% SDS. Headspace was filled with cold DNA

extraction buffer (200 mM Tris at pH 8, 200 mM NaCl, and

20 mM EDTA). Bead tubes were attached to a vortex adapter

(MO BIO, Carlsbad, CA) and shaken horizontally at high

speed for 10min. The aqueous phase was washed three times

with phenol:chloroform:isoamyl alcohol (25:24:1) in phase

gel lock tubes (QIAGEN, Valencia, CA). Nucleic acids were

precipitated with 1 vol ammonium acetate (7.5 M) and 2 vol

isopropanol, and incubation at 220� for $ 1 hr. Precipi-

tated nucleic acids were concentrated by centrifugation at

15,000 3 g for 15 min then dissolved in TE buffer. RNase A

digestion (100 U) was performed for 30 min at 37�. Genomic

DNA (gDNA) was precipitated with 0.1 vol sodium acetate

(3 M, pH 5.5) and 3 vol ethanol, and incubation at 220�

for $ 1 hr. Again, DNA was concentrated by centrifugation

at 15,0003 g for 15min, and pellets were washed twice with

70% ethanol, air dried, and dissolved in PCR-grade water.

Mock extractions without cecum contents were used as neg-

ative controls.

Preparation and pyrosequencing of the small subunit
rRNA gene amplicon libraries in CC mice

Amplicon libraries of both V1–2 and V4 regions of the 16S

small subunit (SSU) rRNA gene were obtained using proto-

cols we described previously (Campbell et al. 2012). Ampli-

fication of the V1–2 region was performed in 50-ml reactions

composed of 10X polymerase buffer (Invitrogen, Carlsbad,

CA), 200 mM each dNTP, 3 mM MgSO4, 300 nM of forward

primer (MWG Operon, Huntsville, AL), 300 nM reverse

primer mix (MWG Operon), 1 U of Platinum Taq DNA Poly-

merase High Fidelity enzyme (Invitrogen), and 100 ng of

gDNA. We used a modification of the 27F primer (Frank

et al. 2008) fused to 6-nt multiplexing tags and to the 454-

FLX sequencing primer A (59-GCCTCCCTCGCGCCATCAG

xxxxxxGTTTGATCMTGGCTCAG-39), where the x region rep-

resents the multiplexing tag and the SSU rRNA primer is bold.

A single reverse primer (59- GCCTTGCCAGCCCGCTCAGC

TGCTGCCTYCCGTA-39) modified from Weisburg et al. (1991)

was also used. Each amplification began with a denatura-

tion step of 94� for 2 min followed by 25 amplification cycles

of 94� for 20 sec, 53� for 30 sec, and 68� for 45 sec. A final

extension at 68� for 3 min followed the amplification cycles.

All amplicons were visualized on agarose gels for quality and

subsequently purified from amplification reactions using

Agencourt AMPure reagents (Beckman Coulter, Danvers,

MA). A final check of amplicon quality and quantity was

performed on an Agilent (Santa Clara, CA) Bioanalyzer using

DNA 1000 reagents. Sequencing was performed on a 454-

FLX instrument (Roche, Indianapolis, IN) following the man-

ufacturer’s recommendations. Amplicon libraries V4 regions

of 16S SSU rRNA genewere obtained using barcoded primers

and sequenced using a 454-FLX instrument (Roche), using

40 samples per plate.

Operational taxonomic unit-based sequence analysis

We utilized a taxonomy-independent analysis approach that

classifies the sequences into operational taxonomic units

(OTUs) based on sequence similarity (genetic distance), to

avoid skewing the results with taxonomic relationships

(Schloss and Handelsman 2004). High-throughput sequenc-

ing reads from the CC samples were clustered in the same

analysis as the previously reported progenitor samples

(Campbell et al. 2012). Reads were processed using the

AmpliconNoise pipeline of Quince et al. (2011). The raw

reads were filtered and trimmed using the underlying signal

intensities or flowgrams generated by the 454 pyrosequencer.

The first uncertain signal in each flowgram was found, i.e.,

one with a value between 0.5 and 0.7, and the read truncated

at this point. If this flow occurred prior to the 360th posi-

tion in the 800 positions of the FLX Titanium read then it

was discarded. In addition, all reads were truncated at the

720th flow. The flowgrams were then denoised using the

PyroNoise step of the AmpliconNoise pipeline (Quince et al.
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2009), which removes homopolymer errors. The flowgrams

were then translated into sequences and further clustered by

SeqNoise to eliminate PCR point errors, prior to chimera

identification with Perseus. The filtered, denoised, and chimera-

checked sequences were then clustered using a hierarchical

clustering algorithm with average linkage and OTUs con-

structed at 3% sequence difference across all samples. Data

were also analyzed with respect to taxonomic affiliation of

the SSU rRNA gene fragments using the Ribosomal Database

Project (RDP) Classifier set at an 80% confidence threshold.

Counts of individual sequence hits to each annotated se-

quence cluster were obtained, providing a quantitativemetric

of relativemicrobial abundances at taxonomical classification

levels that are comparable across human and mouse. Simi-

larity of microbial profiles within and across mouse strains

was evaluated, and host-specific microbial sequence clusters

were identified.

Heritability of microbial abundance

Intraclass correlation coefficients, which are used to estimate

broad-sense heritability, were obtained from variance com-

ponents attributable to progenitor mouse strain and residual

error, based on data from a previous study in these strains

(Campbell et al. 2012). The variance components were esti-

mated using a linear mixed model including strain as a ran-

dom effect. The strain intraclass correlation coefficients were

calculated separately for females and males. The R/lme4

(http://www.r-project.org, R 3.1.2) package was used for

these calculations (Supplemental Material, Table S1).

Genotyping

A custom array using the Illumina iSelect platform for the

Infinium system was developed for SNP genotyping as pre-

viously reported (Philip et al. 2011). Briefly, this array was

based upon a subset of the 11,969 SNPs from the NIEHS-

Perlegen SNP combined panel (Yang et al. 2007). The set

was designed to discriminate all eight founder haplotypes

and was optimized so that, for any SNP on the array, the

maximum density of informative markers was used.

mRNA preparation

Eachdissected cecumwasfilledwith a solutionof 1.5mMKCl,

96 mM NaCl, 27 mM sodium citrate, 8 mM KH2PO4, and

5.6 mMNa2HPO4 (pH 7.3) and incubated at 37�, after which

the intestines were rinsed and filled with phosphate-buffered

saline, 1.5 mM EDTA, and 0.5 mM dithiothreitol and incu-

bated at 37� in a conical centrifuge tube. After an incubation

time of 15 min, the tube was centrifuged at 900 3 g. The

resulting pellet was rinsed three times in phosphate-buffered

saline (centrifuged at 9003 g for 5 min after each rinse). The

resulting cell pellet was suspended in TRIzol (Invitrogen)

and RNA was purified by column chromatography, as speci-

fied by the manufacturer’s protocol. Purified total RNA was

fluorescently labeled with riboGreen (Invitrogen) and quan-

titated using a Spectamax Gemini XPS spectrofluorometer

(Molecular Devices). RNA was then prepared for assay by

dilution to 50 ng/ml in RNase-free water and transferred to

a clean 1.5-ml assay tube.

Whole-genome murine gene expression microarrays

All assay methods conformed to the exact protocol listed in

the Whole-Genome Gene Expression Assay Manual. Diluted

RNA (11 ml, �500 ng) was converted to biotinylated com-

plementary RNA (cRNA) using the Illumina TotalPrep RNA

Amplification Kit (Ambion). First, single-stranded cDNA was

synthesized from the total RNA using the T7 Oligo (dT)

primer, then converted to double-stranded cDNA using a

combination of DNA polymerase and RNase H. Second, the

cDNA was transcribed to biotinylated cRNA using the T7

enzyme and biotin-labeled NTPs. The resulting cRNA was

column purified, quantitated, and diluted to 150 ng/ml in

RNase-free water. The sample was then applied to a Bead-

Chip (Illumina Mouse WG-6 v2 BeadChip) and hybridized

overnight at 58� to allow the cRNA to anneal to the oligonu-

cleotides corresponding to their specific gene. The BeadChips

were then washed, blocked with E1, and fluorescently la-

beled with streptavidin-Cy3. BeadChips were dried by spin-

ning at 300 rpm for 4 min in a benchtop centrifuge and

imaged using the Illumina BeadArray Reader. Image data

obtained from the BeadArray Reader were analyzed using

BeadStudio version 3.0.19 with Gene Expression module

3.0.14. Rank invariant normalization was used with no back-

ground subtraction. We filtered the probes that targeted

polymorphic sequences due to the bias introduced by micro-

array probe-target variation in genetic studies and the high

density of mouse polymorphisms in the CC. The probes on the

Illumina Mouse WG-6v2.0 BeadChip were tested by compar-

ing the sequenced genomes from the Wellcome Sanger In-

stitute (https://www.sanger.ac.uk/) (Yalcin et al. 2012) to

determine if they contained a SNP between the strains. In

total, 8972 probes were removed due to SNPs in one of the

eight strains, and 36,308 probes remained for subsequent

QTL mapping and genetic correlation analysis.

Expression QTL mapping

For genetic mapping of gene expression, particularly cis-

expression QTL (eQTL), large effects are detectable when the

theoretical minor allele frequency (0.125 of the sample) is

found in $20 mice (Valdar et al. 2006). To map the tran-

scripts as individual traits, a SAS 9.1 (SAS Institute Inc., Cary,

NC) heritability calculation was performed and probes/traits

with heritability estimate (H2) , 0.30 were removed. This

resulted in 1990 probes/traits to bemapped. Mapping of QTL

was performed using a modified version of the DOQTL R

package (Gatti et al. 2014). All genome scans were per-

formed using the scanone() function in the DOQTL package

with allele calls as input. A random effect was included to

account for kinship effect. The q-values were calculated for

each QTL to obtain multiple testing-adjusted P-values. An

alternate model that used the CC mouse haplotypes and

existing sequence data from the Sanger Mouse Genomes

Project, and other sources, to infer individual mouse
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genotypes at all loci was used (Gatti et al. 2014). This enabled

the application of genome-wide association to precisely iden-

tify those SNPs that predict phenotypic variation. The SNP

association also improves precision, because the association

is inferred directly at all polymorphic loci throughout the ge-

nome, rather than at specific typed SNPs, which may tag haplo-

types with considerable numbers of linked polymorphisms.

This latter approach improves statistical power because a sin-

gle-SNP effect is estimated (one degree of freedom test) in con-

trast to the eight haplotype-specific effects that were used first.

Mapping QTL for microbial abundance

In a genetic mapping and correlation study, genetic varia-

tion is randomized across the genome in the heterogeneous

population, and each genotype is represented by multiple

(�1/8) individuals and segregates against a genetically ran-

domized background. In this study, eachmouse line resides in

a distinct cage, further randomizing genetic and housing ef-

fects. Due to the large numbers of absent microbial OTU’s in

individual mice, OTUs that were not present in $10% of the

mice were removed, to ensure adequate power to detect cor-

relations among traits and microbes. Application of this fil-

tering step resulted in 846 OTUs in the incipient CC microbes

data set. Each OTU was rank-Z-transformed and subjected to

a genome-wide one-dimensional scan. The same methods

were applied for the microbial QTL mapping as the eQTLs.

The maximum LOD ratio of each OTU was recorded. Since

the data were rank-Z-transformed, the first OTUwas permuted

and scanned 10,000 times to obtain genome-wide significance

thresholds per trait. To account for the problem of multiple

testing across the OTU’s, LOD scores were converted to an

empirical P-value by calculating the proportion of permuted

LOD scores found to be greater than the observed LOD score.

Correlating OTU to behavior

Using previously reported phenotypes in the CC breeding

population (Philip et al. 2011) we sought to correlate these

with the microbial abundance of mice of the same line. We

considered mice at generation G2:F5 and beyond. We per-

formed missing value imputation for the behavioral pheno-

types by replacing the missing values in G2:F5 with the next

available value in the same breeding line, but with a higher

generation. For example, if the phenotypic value for a certain

mouse at G2:F5 was missing, we replaced this value by the

value measured at G2:F6 or the value at G2:F7 if the value at

G2:F6 was missing. Next, we removed all behavioral mea-

sures and OTUs containing only missing values or entirely

zeros because these variables do not contribute to the genetic

correlation analysis. Therewere a total of 205 animals in both

data sets with 123 phenotypicmeasures and 13,618OTUs.We

computed the Kendall rank correlation coefficient (Kendall’s

t coefficient) for the behavioral phenotypes with OTUs using

the cor.test() function in the R statistical framework (http://

www.r-project.org/). Kendall’s t is a nonparametric statistic

that estimates the ordinal associations between two mea-

sures. The sign of the Kendall’s t coefficient determines the

direction of the relationship, while the magnitude of the cor-

relation coefficient provides a measure of the strength of the

relationship between behavioral phenotype and microbial

abundance. Because of the sparse nature of the data, we

handled the missing values by deleting all the cases with

missing values. We hypothesized that there was no relation-

ship between the behavioral phenotypes and the OTUs. The

alternative was that there was a relationship in at least one

behavioral phenotype and one of the OTUs. To investigate

the relationship between the phenotypes and the OTUs, we

performed the Student’s t-test implemented in the cor.test()

function in R to test the hypothesis stated above. To account

for the problem ofmultiple hypothesis testing, we applied the

false discovery rate (FDR) adjustment implemented by the

qvalue() function in the qvalue [R package version 1.38.0

(Storey et al. 2004)] package in R.

Antibiotic treatment

All animal protocols were reviewed and approved by The Jackson

Laboratory Institutional Animal Care and Use Committee

(#010007; approval). Mice from a standard Specific Pathogen

Free (SPF) colony were administered sulfatrim (19.75 mg/liter

sulfamethoxazole+ 3.95mg/liter trimethoprim) and ampicillin

(1 g/liter of ampicillin sodium salts, pharmaceutical grade) in

their drinkingwater continuously from8weeks of age (Wu et al.

2010). The antibiotic exposure began in the breeding colony

and continued into the testing phase. Triomatings of thesemice

were set up (db/+3 db/+) and the pups and lactating dames

from these matings were given antibiotic water or control water

continuously on a weekly basis. Sweetener (Equal) was added

to the antibiotic and control water (2.5 g/liter). Male and

female mice were used; sex was not significantly different

and was collapsed across analysis. For sleep phenotyping,

BKS.Cg-Dock7m +/+ Leprdb/J mice (referred to here as db/db

mice)wereused. Control db/dbn=5, and+/+ordb/+n=20.

Antibiotic-treated db/dbmice n=24, and db/+or+/+ n=70.

Preparation and sequencing of SSU rRNA gene amplicon
libraries in mutant and treated mice

gDNAwas extracted from all the samples using the PowerSoil

DNA Isolation Kit. V1–3 regions of the 16S rRNA gene were

amplified [27 F (59-AGAGTTTGATCCTGGCTCAG-39) and

534R (59- ATTACCGCGGCTGCTGG-39)], barcoded, and se-

quenced on the Miseq 23 300 bp sequencing platform. Data

processing, including barcode removal, paired end assembly,

quality trimming, and chimera screening were performed

using a workflow scripted in Python (File S2). OTUs were

generated using the Usearch package (version 8.0.1517), us-

ing the parameters indicated in this script. Taxonomical clas-

sification was based on RDP classifier 2.10, training set 11.

Sleep phenotyping

Eachmousewasplaced in itsownchamberatopapiezoelectric

sensor for noninvasive sleep–wake scoring using PiezoSleep

1.0 (Signal Solutions, Lexington, KY) for 5-day sleep analysis

(Flores et al. 2007; Donohue et al. 2008). The tester was always
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blind to genotype. The mice were randomly assigned to treat-

ment or control groups where practical, and themice had access

to food and water ad libitum while in the chamber. The room

was maintained on a 12:12-hr light:dark cycle. Mice were

placed in the chambers between 9 and 10 AM on day 1, andwere

removed on day 5 at the same time. The data acquisition com-

puter, food, and water were checked daily; otherwise, the mice

remained undisturbed. Measures recorded and analyzed con-

sisted of activity onset, time of peak activity, sleep bout length,

and total sleep time. Themeasure “% time sleep”was calculated

for each hour and the 72 hr in the middle of testing, and was

used for comparisons between groups. Statistical analyses were

conducted using JMP 11 (SAS Institute). The best model is:

%  Sleep ¼ b0 Treatmentþ b1 Genotype

þ b2ðTreatment3GenotypeÞþ e

where e is random error. The b-parameters were estimated by

ordinary least squares and the type III sum of squares was

considered for e in the ANOVA model. In all cases, the full

model was fit and reduced by dropping nonsignificant inter-

actions followed by main effects.

To quantify the cyclic patterns in the sleep–wake behavior,

a Fourier decomposition of the sleep percentage time series

was computed to identify occurrences of, 24-hr sleep–wake

cycles. Whereas the absolute gradient sum quantifies transi-

tions between sleep–wake-dominated epochs, it does not dis-

tinguish between a single rapid change and many smaller

ones over the period of interest. The Fourier amplitude is

proportional to the cyclic changes between sleep- and wake-

dominated epochs. Therefore, the maximum Fourier ampli-

tude corresponding to cyclic activity with periods between

4 and 7 hr, e.g., if no significant cyclic activity is present, is

small (typically , 6). The full linear model was applied as

above as well as a post hoc Tukey honest significant difference

test for pairs of differences.

Graphical modeling

Bayesian networks (BNs) are a subclass of directed probabi-

listic graphical models that were used to model the relation-

ships between genotype and phenotype (Koller and Friedman

2009). Briefly, BNs depict the direct and indirect relationships

between nodes in the network, and there is a direct relation-

ship between the network topology and the joint distribution. Let

X and Q be random variables representing the phenotypes and

genotypes at SNP markers. Our objective was to learn the struc-

ture of the BN, which is an nondeterministic polynomial time

(NP)-hard problem (Chickering et al. 2004). The local models

were described using homogenous conditional Gaussian distri-

butions, which allow for a mixture of discrete (genotypes) and

continuous (phenotypes) variables (Lauritzen et al. 1989). We

adopted the simplifying assumptions that SNPs are indepen-

dent (unconnected) and that genotype precedes phenotype in

the network structure. Briefly, the conditional distribution for

a phenotype, Y ¼ Xj, with discrete parent Qi, with genotype

states g, and continuous parents Xiði 6¼ jÞ can be expressed as:

PðY jQi ¼ g;Xi ¼ xiÞ ¼ N
�

aðgÞ þ bðgÞTxi; gðgÞ
�

where the mean is a regression that depends on both the

genotype states and continuous parent phenotypes, but the

variance depends only on the genotype states. For count

variables, the local models were described using a Poisson

regression. The posterior distribution is given as:

P ðG jDÞ a P ðD jGÞ P ðGÞ

where PðGÞ is the prior on the graph and PðDjGÞ is the likeli-

hood. We used a noninformative energy prior embedded in a

Gibbs distribution with hyperparamater t ¼ 0:01: A Markov

ChainMonte Carlo (MCMC)model was implemented to sam-

ple an ensemble of 1000 network structures from the poste-

rior distribution (Hageman et al. 2011); the acceptance rate

was 24%. Sex was considered a covariate for each local

model. To preserve the data, samples with missing data were

only eliminated from the affected local models and not from the

global network. Model averaging was performed over the top

40 graphs, ranked by posterior probability, in the ensemble.

Data availability

The microbial abundance of the progenitor strains is available

at the Mouse Phenome Database [accession Chesler5 (RRID:-

nif-0000-03160)]. The gene expression microarray data are

deposited at the Gene ExpressionOmnibus [(GEO:GSE96924)

RRID:SCR_004584]. The genotypes and microbial abun-

dances from the CC are available through the qtlarchive

(RRID:nlx_151757) accession Bubier2, and the MsSeq of

db/db animals at the National Center for Biotechnology

Information Short Read Archive (SRA) [(PRJNA561132)

RRID:SCR_004891]. All the QTL are deposited at the Mouse

Genome Informatics database (RRID:nif-0000-00096) under

accessions 5559705, 5559708, 5559710-5, 5559719-22, and

5559724-8. Figure S1, cecal microbial profile across mouse

samples. FigureS2, eQTLmapof cecumtranscripts inCCmice.

Figure S3A, microbes and sleep, and Figure S3B, antibiotic

treatment and sleep. Figure S4, sleep phenotyping summary

plot of sleep data fromdb/db antibiotic experiment. Table S1,

founder strain intraclass correlations, sequences, and genus

mapping based on the RDP. Table S2, heritability and eQTLs.

Table S3, piezo sleep data from the db antibiotic study. Table

S4, post hoc comparison of mean sleep fast Fourier transform

(FFT) peak amplitude. Table S5, statistical analysis of sleep

plots from Figure S4. File S1, denoised fasta sequences split

by individual mice. File S2, commented command line for the

MiSeq data analysis. Supplemental material available at fig-

share: https://doi.org/10.25386/genetics.11441550.

Results

Microbial community composition of incipient CC mice

The median broad-sense heritability of microbial abundance

estimated by intraclass correlation in the CC founder strains

data from Campbell et al. (2012) for each OTU (Table S1)
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was 0.170, with 339 OTUs having a H2 . 0.3, indicating

sufficiently heritable abundance for genetic mapping. We

determined the cecal microbial community composition of

206 CC mice of both sexes and 102 breeding lines using

454 pyrosequencing of amplicon libraries of the V4 region

of the 16S SSU rRNA gene, revealing 13,632 OTUs. These

samples were analyzed concurrently with the founder strains

(Campbell et al. 2012) to obtain a single set of OTUs for both

populations. Taxonomic analysis of all sequences using the

RDP naïve Bayesian rRNA classifier (Cole et al. 2009, 2014)

indicated bacterial diversity similar to that of previously ob-

served communities (Campbell et al. 2012); Firmicutes com-

prised 89% of the microbial community and Bacteroidetes

(9%) were the second most abundant phylum (Figure S1).

In our previous study of replicate mice from the eight CC

progenitor strains, we detected more phyla in the founders,

but we show here that there are similar predominating phyla

(Campbell et al. 2012) in the CC.

Microbial abundance QTL

We performed QTL mapping to identify host genetic loci

accounting for heritable variation in microbial abundance.

There were 18 statistically significant (q , 0.05) microbial

abundance (Micab) QTL (Table 1) among the mapped micro-

bial OTU abundances. The 1.5 LOD C.I.s for the significant

QTL range from 2 to 24 Mb in size, with an average size of

7.5 Mb. The size is consistent with previous mapping studies

in the CC breeding and inbreed populations (Philip et al.

2011; Snijders et al. 2016), and substantially smaller than

conventional experimental crosses. This interval size, cou-

pled with the extensive genomic data becoming available

for the CC founder population, enables refinement of the

QTL down to the level of genes and variants in some cases.

eQTL in the CC cecum

To characterize the host intestinal state, we profiled mouse

mRNA abundance in the cecal tissue surrounding the micro-

bial sample. Transcript abundance estimates were generated

for 36,308 microarray probes, representing 27,149 genes.

Heritability of transcript abundance exceeded H2 = 0.3 for

1990 probes in the founder populations. QTL analysis was

performed to identify host genomic regions harboring allelic

variants that influence the abundance of each probe, result-

ing in the detection of statistically significant QTL (q, 0.05)

for 1641 probes, corresponding to 1513 genes (Table S2). Of

these, 950 loci (57.9%) were cis-eQTL (Figure S2), which

contain polymorphisms that are proximal to transcript-

coding regions. Such loci are useful in identifying expression

regulatory mechanisms in the effects of genetic variation on

complex traits.

Genetic correlation of microbial abundance to disease-
related traits reveals a microbe associated with sleep

Correlation of disease-related traits with underlying biomo-

lecular and microbial characteristics across individuals pro-

vides a powerful means to identify previously unknown

mechanisms of disease. A total of 122 disease-related behav-

ioral and physiological phenotypes were correlated with the

Figure 1 (A) The systems genetic model and gut microbiomics. Genetic variation in a host population together with the environment interact to affect

intestinal gene expression in the host, microbial abundance, and disease-related traits in the host. There is significant bidirectional interplay among the

microbiome, host gene expression, and disease-related phenotypes; however, the effect of host genotype is unidirectional, and therefore causal. (B) The

analysis and decision steps used in this study of the relationship of the microbiome, cecal transcriptome, phenotype, and genotypes of Collaborative

Cross mice, and then the analysis used in the validation experiment.
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abundance of each OTU using Kendall’s t, revealing 45 trait–

microbe correlations (comparison-wise P , 0.05), 26 of

which exceeded the multiple testing FDR threshold (q ,

0.05) (Storey 2002) (Table 2). Of the trait–microbe pairs,

41 contained sleep phenotypes that showed signifi-

cant comparison-wise Kendall’s t correlations with 10 dif-

ferent microbes, 22 of which had q , 0.05. Among these,

OTU 273 Odoribacter (order Bacteroidales, family

Table 1 Significant QTL for microbial abundance in the cecum of incipient CC mice

MGI QTL

symbol QTL name Chr

Peak LOD

score Peak marker

Position Mm

9 (bp) 1.5 LOD interval P-value Size (Mb)

Gene Weaver

GSID

Micab1 Microbial abundance of

Clostridiales Ruminococ-

caceae Oscillibacter 1

1 8.20 rs32084678 13,279,810 rs6275656 rs31653681 0.0033 6.34 217070

Micab2 Microbial abundance of Bac-

teroidales Porphyromona-

daceae Paludibacter 2

3 8.23 rs31103355 108,854,325 rs31431100 rs37044521 0.0029 4.09 217071

Micab3 Microbial abundance of

Clostridiales Lachnospira-

ceae Marvinbryantia 3

3 8.13 rs30089246 37,569,141 rs30552223 rs30158956 0.0037 2.03 217072

Micab4 Microbial abundance of

Clostridiales Lachnospira-

ceae Roseburia 4

4 9.57 rs32690134 136,028,098 rs27619452 rs3685172 0.0005 9.45 217077

Micab5 Microbial abundance of Cor-

iobacteriales Coriobacter-

iaceae Enterorhabdus 5

5 8.84 rs6377391 119,128,609 rs29633871 rs6354701 0.0009 4.65 217078

Micab6 Microbial abundance of

Clostridiales Lachnospira-

ceae Sporobacterium 6

5 8.42 rs8265964 138,359,981 rs32246505 rs32318125 0.002 4.00 217079

Micab7 Microbial abundance of Bac-

teroidales Porphyromona-

daceae Odoribacter 7

7 8.84 rs31494696 77,651,351 rs33107817 rs6373775 0.0009 3.53 217080

Micab8 Microbial abundance of

Clostridiales Ruminococ-

caceae Lactonifactor 8

7 8.88 rs47611520 47,761,932 rs3661776 rs6176297 0.0009 13.55 217081

Micab9 Microbial abundance of Bac-

teroidales Porphyromona-

daceae Odoribacter 9

7 8.60 rs31494696 77,651,351 rs33107817 rs6373775 0.0013 4.00 217082

Micab10 Microbial abundance of

Clostridiales Lachnospira-

ceae Anaerostipes 10

8 9.61 rs32936112 47,123,375 rs6281843 rs31252778 0.0003 14.36 217083

Micab11 Microbial abundance of

Clostridiales Incertae

Sedis XIV Blautia 11

8 9.49 rs33429737 31,919,239 rs6399870 rs50110045 0.0005 5.19 217084

Micab12 Microbial abundance of

Clostridiales Clostridia-

ceae Caminicella 12

9 8.29 rs30372085 80,440,479 rs30432532 rs33695839 0.0029 7.37 217092

Micab13 Microbial abundance of Ery-

sipelotrichales Erysipelo-

trichaceae Turicibacter 13

10 8.87 rs29327022 88,018,183 rs6338556 rs6265280 0.0009 24.62 217093

Micab14 Microbial abundance of

Bacteroidales Bacteroida-

ceae Bacteroides 14

11 8.14 rs26971743 58,783,410 rs6314621 rs26972849 0.0036 6.30 217094

Micab15 Microbial abundance of

Clostridiales Lachnospira-

ceae Syntrophococcus 15

15 9.47 rs6388530 93,634,974 rs31931586 rs49819430 0.0005 10.43 217095

Micab16 Microbial abundance of Bac-

teroidales Porphyromona-

daceae Tannerella 16

19 8.10 rs30320578 47,732,625 rs36280504 rs30760881 0.004 6.39 217096

Micab17 Microbial abundance of

Clostridiales Ruminococ-

caceae Hydrogenoanaer-

obacterium 17

X 8.50 rs6292190 155,749,346 rs29276152 rs29306363 0.0017 5.59 217097

Micab18 Microbial abundance of

Clostridiales Lachnospira-

ceae Lachnobacterium 18

X 8.20 rs6213950 163,790,061 rs8255374 rs31682358 0.0033 3.01 217098

Chr, chromosome; GSID, Gene Set ID; LOD, logarithm of the odds; MGI, Mouse Genome Informatics.
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Porphyromonadaceae) was the bacterium consistently

correlated with the largest number of phenotypes (21 com-

parison-wise, 13 family-wise adjusted). Twelve of the family-

wise significant correlations were with sleep phenotypes

(Table 2 and Figure S3A).

Genetic regulation of the abundance of Odoribacter

The QTL Micab7 on chromosome 7 is associated with the

relative abundance of Odoribacter. The QTL is 3.53 Mb in size

and contains 42 genes (Table 1). The allelic effects for each of

the eight founder strain haplotypes are such that the NZO

(New Zealand Obese) allele is associated with increased

abundance (Figure 2, A–C). This is significant because the

NZO founder strain is obese and prone to a diabetes pheno-

type, and previous studies of gut microbiota in obesity- and

diabetes-prone mice revealed that Odoribacter, Prevotella,

and Rikenella have been found in the microbiota of diabetic

db/db (BKS.Cg-Dock7m +/+ Leprdb/J) mice, and are absent

among db/+, +/+ littermates (Geurts et al. 2011). The

db/db mice have also been shown to have abnormal sleep

patterns in the form of altered sleep–wake regulation

(Laposky et al. 2008).

We hypothesized that Odoribacter, Lepr, and sleep are

connected through a common mechanism. Specifically, if the

mechanism controlling altered sleep phenotype and the pres-

ence of Odoribacter in Lepr mutant db/db mice is the same

mechanism that underlies the correlation of Odoribacter

abundance and sleep in the CC mice, then we suspect that

there is overlap between one or more of the QTL positional

candidates and the Lepr pathway, and that the perturbation of

the gut microbiota of db/dbmice should affect sleep patterns.

To investigate whether there is overlap of Micab7 QTL

positional candidate genes and Lepr, we performed Ingenuity

Pathway Analysis (IPA) on the 42 positional candidates, to-

gether with the gene Lepr. The most likely pathway from this

database (Fisher’s exact test P , 10214) contained the posi-

tional candidate genes Nr2f2 and Igf1r interacting with Lepr

through Vegf (Figure 2D).

Causal graphical models for phenotype–genotype net-

works (Rockman 2008) were used to infer the direct and

indirect associations among the results of the IPA, including

Lepr, Vegfa, Vegfb, Vegfc, the two positional candidates Nr2f2

and Igf1r, the leptin pathway, and sleep. The network model

included the cecal expression of the gene transcripts together

with the abundance of Odoribacter, two sleep traits, and the

genotypes of the CC mice at the QTL. BNs are described by

directed acyclic graphs (DAGs), which can be efficiently

decomposed and translated into the joint distribution of var-

iables in the model (Koller and Friedman 2009). Conditional

Gaussian distributions were used to model the relationships

between genotype and phenotype, and the network structure

was learned using an MCMC sampling scheme (Hageman

et al. 2011) and averaging over the top structures (Hoeting

et al. 1999). The graphical model was represented as a DAG,

which could be efficiently decomposed and translated into

the joint distribution of variables in the model. If a QTL was

associated with the regulation of the Vegf pathway, we would

expect to see evidence of a network edge between the geno-

type and at least one of the two positional candidates, the

downstream Lepr genes, and the phenotype. Furthermore,

this analysis can determine which positional candidate is

most likely influenced by the causal variant. In aggregate

summaries of the top 40 graphs, a repeatable relationship

among the QTL, the positional candidate Igf1r, Odoribacter,

and sleep was observed (Figure 2E). This relationship was

observed in the majority of graphs. Therefore there is a plau-

sible interaction among the QTL, Igf1r abundance, the leptin

pathway, Odoribacter, and sleep.

Broad-spectrum antibiotic treatment alters sleep
patterns in Leprdb/Leprdb mice

We then evaluated whether the presence of Odoribacter in

Leprdbmice could explain the altered sleep behavior reported

in these mice. To eliminate Odoribacter, mice were given an-

tibiotic treatment continuously from conception. As expected

(Savage and Dubos 1968), this broad-spectrum treatment

resulted in increased fecal contents of the cecum observed

at dissection in both genotypes (Figure S3B); however, it also

resulted in a genotype-specific effect on sleep architecture.

The percent sleep time for the antibiotic-treated db/db mice

over a 72-hr period showed a genotype 3 treatment interac-

tion in a repeated measure multivariate ANOVA: time 3

genotype3 treatment F(71,45) = 2.1199, P= 0.0040 (Figure

3, A–D), with post hoc contrast analysis showing significant

(P , 0.001) differences between control db/db and all three

other groups. The widely used sleep summary measure-

ments, such as % time sleep in the light and dark phases,

did not adequately capture the complexity of the differences

between the control db and control wild-type strains, without

or with antibiotics, as they did not reflect temporal patterns

(rhythms) (Figure S4 and Table S5). There were genotype-

specific differences between % sleep on day 1, day 2, day 3,

and day 5 and in daily averages, which were not affected by

treatment. Treatment appears to have had the greatest effect

in a genotype-specific manner in the night (1, 2, 3, 4, and

average), increasing the sleep time of db/db mice signifi-

cantly. A Fourier amplitude analysis was performed using

the FFT algorithm to identify cyclic patterns in sleep behavior.

The amplitude of the Fourier spectrum reflects how domi-

nant or consistent the cyclic pattern is at each frequency

(cycles/hr) over the time period analyzed. All groups showed

the most dominant peak at a period of 24 hr (�0.042 cycles/

hr) as expected. However, distinctions were seen in the peaks

at higher frequencies (subcycles). In particular, strong differ-

ences were seen in the amplitudes between 0.14 and 0.25

cycles/hr (corresponding to periods ranging from 4 to 7 hr

and highlighted by the vertical broken lines in Figure 3, A–D).

Bout lengths will not necessarily impact these patterns. The

peak heights quantify the presence of other (typically

shorter) cycles relative to the main circadian cycle. Figure

3E shows the maximum amplitudes in the highlighted range

for each mouse in the experimental groups. These show a
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significant genotype 3 treatment effect (F(3,120) = 12.2193,

P, 0.0001), and an individual least squares means Student’s

t-test showed significant differences between control db/db

mice and all three other groups (Table S4).

V4 sequencing of cecal contents from db/db mice showed

seven microbial taxonomic units that were absent in the an-

tibiotic-treated db/db case and elevated in the water vehicle

(aspartame) control db/db, including two from the family

containing Odoribacter (Figure 3F; SRA: PRJNA561132).

Thus, the differential abundance of these seven microbial

taxa, including Odoribacter abundance, is associated with ge-

notype-specific effects of antibiotics on sleep architecture. It is

possible that effects on other microbes, or other genotype-

specific antibiotic effects, are responsible for the db/db-specific

sleep pattern restoration; however, the systems genetic

causal network analysis suggests that variation in

Odoribacter abundance is the likely regulator of sleep

architecture.

Discussion

Using systems genetics and integrative functional genomics in

the CC population, we traversed biological networks of ge-

notypes, gene expression, microbes, and disease-related phe-

notypes to identify a host–microbe mechanism underlying

sleep-related phenotypes. The high allelic variation and

precision of the incipient CC mouse population allowed us

to map loci that control the abundance of 18 particular

Table 2 Correlations of disease-related phenotypes to microbial abundance

Phenotype Kendall’s t P-value q-value Microbe (order, family, genus)

Peak activity time from dark onset averaged over

all baseline days (hr)

0.29 5.12E-06 0.036 Clostridiales Lachnospiraceae Acetitomaculum

Peak activity time from dark onset averaged over

all baseline days (hr)

20.29 7.44E-06 0.049 Bacteroidales Bacteroidaceae Bacteroides

Peak activity time from dark onset after sleep

deprivation (hr)

20.31 2.27E-06 0.017 Bacteroidales Bacteroidaceae Bacteroides

Average percentage of sleep time over all baseline

days (%)

20.30 5.24E-06 0.036 Bacteroidales Porphyromonadaceae Barnesiella

Glucose concentration (mmol/liter) 0.31 2.98E-06 0.022 Clostridiales Lachnospiraceae Coprococcus

Peak activity time from dark onset averaged over

all baseline days (hr)

0.27 5.37E-06 0.037 Clostridiales Lachnospiraceae Coprococcus

Activity onset averaged over all baseline days (hr) 0.32 5.52E-07 0.008 Lactobacillales Lactobacillaceae Lactobacillus

Average of continuous sleep length over dark

cycle in 4 full days (sec)

0.31 8.36E-07 0.009 Lactobacillales Lactobacillaceae Lactobacillus

Average of continuous sleep length over dark

cycle for all baseline days (sec)

0.32 5.89E-07 0.008 Lactobacillales Lactobacillaceae Lactobacillus

Peak activity time from dark onset averaged over

all baseline days (hr)

0.29 4.77E-06 0.034 Lactobacillales Lactobacillaceae Lactobacillus

Tail clip latency (sec) 0.31 1.02E-06 0.010 Lactobacillales Lactobacillaceae Lactobacillus

Creatinine concentration (mmol/liter) 0.47 8.26E-08 0.006 Clostridiales Ruminococcaceae Lactonifactor

Activity onset averaged over all baseline days (hr) 20.29 2.55E-06 0.019 Bacteroidales Porphyromonadaceae Odoribacter

Average of continuous sleep lengths over the light

cycle in 4 full days (sec)

20.29 5.19E-06 0.036 Bacteroidales Porphyromonadaceae Odoribacter

Average of continuous sleep lengths over the light

cycle for all baseline days (sec)

20.28 5.61E-06 0.038 Bacteroidales Porphyromonadaceae Odoribacter

Average of continuous sleep lengths over the dark

cycles in 4 full days (sec)

20.31 1.13E-06 0.011 Bacteroidales Porphyromonadaceae Odoribacter

Average of continuous sleep lengths over the dark

cycle for all baseline days (sec)

20.30 1.90E-06 0.015 Bacteroidales Porphyromonadaceae Odoribacter

Average of continuous sleep lengths over 4 full

days (sec)

20.31 6.05E-07 0.008 Bacteroidales Porphyromonadaceae Odoribacter

Average of continuous sleep lengths over all

baseline days (sec)

20.30 1.41E-06 0.012 Bacteroidales Porphyromonadaceae Odoribacter

Peak activity time from dark onset averaged over

all baseline days (hr)

20.31 7.52E-07 0.009 Bacteroidales Porphyromonadaceae Odoribacter

Peak activity time from dark onset after sleep

deprivation (hr)

20.31 6.24E-07 0.008 Bacteroidales Porphyromonadaceae Odoribacter

Percentage of sleep over a 2-hr period prior to

sleep deprivation (%)

20.31 1.19E-06 0.011 Bacteroidales Porphyromonadaceae Odoribacter

Percentage of sleep time over the dark cycle of

4 full days (%)

20.32 2.80E-07 0.007 Bacteroidales Porphyromonadaceae Odoribacter

Percentage of sleep time over 4 full days (%) 20.33 1.22E-07 0.006 Bacteroidales Porphyromonadaceae Odoribacter

Tail clip latency (sec) 20.29 3.91E-06 0.028 Bacteroidales Porphyromonadaceae Odoribacter

Average percentage of sleep time over all baseline

days (%)

20.30 6.44E-06 0.043 Clostridiales Lachnospiraceae Roseburia
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microbes, which could be further decomposed using SNP

analysis, haplotype association, and gene prioritizationmeth-

ods. Intestinal transcriptome profiling resulted in the detec-

tion of �1600 significant eQTL, and multiple clusters of

transcripts andmicrobes, whose abundances are jointly mod-

ified by genetic variation. Through genetic correlation net-

work analysis, we related these systems genetic networks to

disease-related phenotypes obtained in the same population

of mice. Causal network analysis and host genetic effects

provided insight into the direction of host–microbe disease

interactions.

Allelic variants influence the structure of microbial com-

munities by creating conditions that promote or inhibit col-

onization by certain species (Spor et al. 2011). One way in

which allelic variation manifests its effects is through the di-

rect, or indirect, alteration of transcript abundance and the

host environment, thereby impacting colonization. Other

sources of variation may influence transcript abundance, in-

cluding the presence of microbiota and their metabolites,

disease states, and environmental variation. These sources

of variation, and their association with microbiota and dis-

ease, can be detected through genetic correlation and prob-

abilistic network analyses. By identifying network components

and assessing causal relationships among them through exper-

imental perturbation, it is possible to understand the mecha-

nisms of these relationships.

Genetic correlation from mouse phenotype to microbial

abundance enabled the identification of host and microbe

influences on sleep architecture. The general role of microbes

in sleep, particularly in the cytokine response to infection, is

well documented (Krueger and Toth 1994). Previous work in

rabbits (Toth and Krueger 1989) has shown that altered sleep

patterns occur in response to an infectious challenge and that

the sleep response is related to the type of infectious or-

ganism. Here, we report for the first time the relationship

between the abundance of a specific microbe and sleep.

OTU273 Odoribacter (Bacteroidales, Porphyromonadaceae)

abundance is associated with the Micab7 QTL and was cor-

related with multiple sleep phenotype measures. Genomic

network analyses revealed that the primary candidate gene

Figure 2 Odoribacter abundance in the cecum. (A) Ge-

nome scan showing a significant QTL (P , 0.01)

peak on Chr 7. Horizontal lines represent permuted

significance thresholds. From the top down: highly

significant, P , 0.01; significant, P , 0.05; highly

suggestive, P , 0.1; and suggestive, P , 0.63. (B) De-

tailed QTL map on chromosome 7. Bottom: LOD score

across Chr 7. Top: allelic effect plots of eight coeffi-

cients of the QTL mixed model representing the effect

of each CC founder haplotype on phenotype. The NZO

allele on Chr 7 is associated with increased abundance

of Odoribacter (C) Top: LOD score for SNP association

mapping in the QTL support interval (67.1–71.1). Red

points indicate SNPs with significant association to

Odoribacter abundance. Bottom: genes and noncoding

RNAs located in the QTL interval. (D) Ingenuity Pathway

Analysis of the positional candidate genes together

with Lepr show a network path through Vegf, and in-

volving either Nr2f2 or Igf1r. (E) Inferred network re-

lating sleep, microbe abundance, microbial abundance

QTL, expression correlations, and mutant mice. The net-

work is a consensus representation of the 40 most likely

Bayesian networks in an MCMC sample. Edge weights

correspond to the marginal frequency of each directed

edge in the top 40 BNs. Sleep 1 represents the sleep

trait corresponding to the average of continuous sleep

lengths over 4 full days, and Sleep 2 represents the

sleep trait activity onset on the fourth day (hr). CC,

Collaborative Cross; Chr, chromosome; MCMC, Markov

Chain Monte Carlo.
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for the QTL is Igf1r, a gene likely to function in the regulation

of sleep as the somatotropic axis, IGF-1 signaling, and sleep

are intimately related (Obal et al. 2003). Perturbation of

this pathway in the db/db Lepr mutant mouse is associated

with abnormal phenotype and an elevated abundance of

Odoribacter, albeit among other microbes. Both of these phe-

nomena can be restored to normal values through antibiotic

treatment. The observation that indigenous microbes could

affect sleep patterns suggests the potential for probiotic or

small-molecule metabolite development for the adjustment

of sleep patterns in those with clinical sleep disorders. Other

studies indicate a relationship between microbiota abun-

dance and ultradian rhythms (Thaiss et al. 2014), and mi-

crobes of the Odoribacter were among five genera that

decreased in feces in an intermittent hypoxia model of sleep

apnea (Moreno-Indias et al. 2015).

The distinct changes to the sleep architecture and rhythms

in, specifically, db/db mice in response to antibiotics are very

interesting. The FFT shows the polyphasic vs. more mono-

phasic sleep–wake pattern during the light and dark periods.

This pattern is clearly visible and distinguishable by eye (Fig-

ure 3, A–D), and is best quantified with the FFT amplitude

between 4 and 7 hr (in Figure 3E). This erratic pattern of

sleep and wake may or may not be pathological, but it is

clearly abnormal; however, we have not observed it in any

of the common inbred strains or in wild mice that we have

recently examined (Philip et al. 2011)

In these studies, we utilized systems genetic networks to

identify, model, and validate the relationships among host

genetics, genomics, microbiota, and disease. The mouse pro-

vides an efficient, well-controlled system in which to employ

this approach, although it is amenable toapplication inhuman

populations.We demonstrated that usingmouse genetics, we

can identify relationships that can be extrapolated to humans,

though well-known issues in mechanistic conservation and

direct translation must be considered. For example, despite

high conservation across human andmouse genomes, specific

biological mechanisms are not always entirely conserved,

although the functional outputs of pathways and involvement

in disease may be. Our approach to this challenge is to exploit

Figure 3 Mean and SE for the “% time sleep”

over a 5-day test, with cyclic patterns characterized

on the right by an FFT of the mean sleep percent-

age time series. (A) WT water only, (B) db/db mice

water (C), WT given antibiotics, and (D) db/db mice

given antibiotics. Genotype and antibiotic treat-

ment have a significant interaction affecting “%

Sleep” time. Night and day cycles shown with

white and black bars, respectively. The FFT ampli-

tudes of the regions of the % Sleep graphs in

white are summarized in the graphs on the right.

Percent sleep time for the antibiotic-treated db/db

mice over a 72-hr period showed a genotype 3

treatment interaction in a repeated measure mul-

tivariate ANOVA; time 3 genotype 3 treatment

F(71,45) = 2.1199, P = 0.0040 (Figure 3, A–D).

Post hoc contrast analysis revealed significant

(P , 0.001) differences between control db/db

mice and all three other groups (P , 0.001). (E)

FFT peak amplitudes for each mouse correspond-

ing to sleep percentage cycles, with periods rang-

ing from 4 to 7 hr (shown with the dotted lines)

during the final 4 days of the sleep cycle, shows

significant genotype 3 treatment interaction as

well as the db/db control being significantly differ-

ent from the other three groups. (F) Two of the

microbes present in the control db/db mice, but

absent in the db/db antibiotic-treated mice. FFT,

fast Fourier transform; WT, wild-type.
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network overlap, and to identify elements of mouse networks

that can be translated to human genetic and genomic net-

works, which we expect to function similarly but perhaps

differ in the details of specific allelic variants, genetic mech-

anisms, andparticularmicrobiota involved. Bydevelopingour

study around the holistic quantitation of both host and mi-

crobe, in contrast to typical studies of individual gene or

treatment effects on microbiota, we are able to generate

multiscale networks amenable to integration and extrap-

olation to disease mechanisms. Much remains to be done

in the functional validation of the conservation of these

mechanisms.

In all studies of the interplay between host environment,

microbiota, and disease, the causal mechanisms underlying

associations must be considered. Genetic variation influences

the host environment, creating conditions that are hospitable

or inhospitable ecological niches for gut microbiota, and can

therefore be used to anchor a causal network. Identifying the

precise causal genetic variants underlying microbial compo-

sition is a lengthyprocess that has becomemore tractablewith

deep sequencing of the CC founders, high-precision mapping

populations including the Diversity Outbred derived from the

CC, and the ability to integrate functional genomic data from

other sources including epigenetic modification, noncoding

variants, and disease associations. Although we have demon-

strated that the QTL Micab7 is associated with Odoribacter

abundance, we have not yet demonstrated whether Igf1r

variation is indeed the specific causal regulator of this phe-

notype, whether this locus is associated with abnormal

Odoribacter abundance, and whether inoculation of Lepr or

Igf1r mice with Odoribacter and its metabolites influences

sleep. These extensive experimental manipulation studies

will provide further evaluation of the causal network that

we have identified. Alternatively the metabolites involved

in this phenomenon may prove more feasible to identify

and manipulate.

By exploiting genetic heterogeneity among organisms, we

were able to extract mechanistic relationships between host,

microbe, and disease. The systems genetic strategy employed

herein provides a wealth of data resources that can be further

interrogated by investigators with an interest in specific host

genes, variants, microbes, and disease-related phenotypes.

Furthermore, the strategy we present here can be readily

deployed in other genetically diverse populations to provide

efficient, holistic assessment of microbial and host mecha-

nisms of disease. Extracting these disease-relevant mechanis-

tic networks will provide insight into the complex interplay

of host and microbe, revealing potential sources of disease

etiology and points for therapeutic intervention.
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