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PREFACE 
The following thesis describes a microfluidic chip that is able to pneumatically drive flu-

id flow without the need of a syringe pump, consistently activate zebrafish spermatozoa for the 

purpose of motility analysis, and measure the osmolality of the activated sample on-chip using 

electrical impedance measurements. The first chapter provides background information on the 

techniques used and the motivation for which this device was created. The second chapter de-

scribes the methods used to design and fabricate the device, as well as the methods used to 

carry out the experiments needed to validate the device’s functions. The results of these exper-

iments are described and discussed in this chapter as well. Chapter 2 is formatted for 

submission to the Lab on a Chip journal. The third chapter provides conclusions and recom-

mended future work for continued development and testing of lab-on-a-chip devices for aquatic 

gamete analysis. 

 

 

 

 

 

 

 

 



iv 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ........................................................................................................................ ii 

PREFACE ...................................................................................................................................................iii 

ABSTRACT ................................................................................................................................................ vi 

CHAPTER 1: BACKGROUND AND MOTIVATION .......................................................................... 1 
1.1 Zebrafish as a Biomedical Model ...................................................................................... 1 
1.2 Quality Control of Aquatic Sperm .................................................................................... 2 
1.3 Microfluidics and Microfluidic Devices .......................................................................... 6 
1.4 Mixing at the Microfluidic Scale ....................................................................................... 8 
1.5 Passive Mixers ..................................................................................................................... 9 
1.6 Instrument-Free Pumping Mechanisms in Microfluidics ........................................... 12 
1.7 Particle Tracking Velocimetry ......................................................................................... 13 
1.8 Impedance Spectroscopy ................................................................................................. 14 
1.9 Surface Modification of PDMS Microfluidic Channels ............................................... 15 
1.10 Significance ...................................................................................................................... 17 

CHAPTER 2: MICROFLUIDIC DEVICE FOR MOTILITY AND OSMOLALITY ANALYSIS OF 
ZEBRAFISH SPERM ................................................................................................................................ 18 

2.1 Objectives ........................................................................................................................... 18 
2.2 Introduction ....................................................................................................................... 18 
2.3 Device Design Considerations ........................................................................................ 20 
2.4 Materials and Methods..................................................................................................... 26 

2.4.1 Device Fabrication...................................................................................................... 26 
2.4.2 Flow Rate and Cessation Analysis ........................................................................... 28 
2.4.3 Sample Handling and Acquisition .......................................................................... 30 
2.4.4 Comparison of Microfluidic vs. Manual Activation ............................................. 30 
2.4.5 Generation of Activation Curve ............................................................................... 31 

2.5 Results and Discussion ..................................................................................................... 32 
2.5.1 Surface Modification using PEG-Silane .................................................................. 32 
2.5.2 Flow Rate and Cessation Analysis ........................................................................... 33 
2.5.3 Micromixer Selection ................................................................................................. 35 
2.5.4 Analysis of Zebrafish Sperm Activation ................................................................. 37 
2.5.5 Comparison of Manual and Microfluidic Sperm Activation ............................... 38 
2.5.6 Generation of Standard Curve for Osmolality Measurement ............................. 41 
2.5.7 Osmolality Determination of Sperm Sample ......................................................... 43 

CHAPTER 3: CONCLUSIONS AND FUTURE WORK...................................................................... 48 
3.1 Conclusions ........................................................................................................................ 48 
3.2 Future Directions .............................................................................................................. 49 

3.2.1 Device Goals and Proposed Research ..................................................................... 49 



v 

3.2.2 Proposed Plan for Large Scale Production ............................................................. 50 

REFERENCES ........................................................................................................................................... 53 

APPENDIX ................................................................................................................................................ 59 
APPENDIX A: CRYOPRESERVATION OF ZEBRAFISH SPERM .................................. 59 

APPENDIX B: STANDARD OPERATING PROCEDURES .............................................. 61 
SOP-1:Hanks’ balanced salt solution (HBSS) .................................................................. 61 
SOP-2: Use of the osmometer Osmette III™ ................................................................... 61 

APPENDIX C: BODE PLOT .................................................................................................. 65 

VITA ........................................................................................................................................................... 66 



vi 
 

ABSTRACT 
An increasing number of laboratories are evaluating sample quality via motility analysis by 
means of computer-assisted sperm analysis (CASA) after sperm activation by manual dilution 
and mixing. Even with the use of CASA, due to user variation, there is a lack of control over the 
activation process, resulting in inconsistent motility analysis. Low sample volume (~1-2μL), and 
a short motility duration (burst motility of less than 15s) add to the complexity of these difficul-
ties. The objectives of this study were to develop a microfluidic device with the capabilities to 
(1) standardize the method of activation for zebrafish sperm so that all cells in a sample are sub-
jected to the conditions needed to activate in a reproducible way, (2) reproducibly enable 
motility analysis of the activated sample within 5 s after activation without the interference of 
bulk fluid flow, and (3) facilitate the generation of activation curves by relating osmolality of the 
sample solution to percent motility at the time when motility analysis was performed. The de-
vice described here is a three-inlet microfluidic platform fabricated from polydimethylsiloxane 
(PDMS) bound to a glass substrate with a microfabricated gold floor electrode for osmolality 
detection. A passive micromixer is utilized to activate sperm samples, and a novel flow control 
system was designed to aid with the demands of sample analysis. The device demonstrated 
consistent zebrafish sperm activation and osmolality detection. The device was also able to con-
sistently reach flow cessation in under 1s, allowing for rapid analysis of the sample. This device 
represents a pivotal step in streamlining methods for consistent, rapid assessment of sperm 
quality for zebrafish and other aquatic species. The capability to rapidly activate sperm and 
consistently measure motility with CASA using the microfluidic device described herein will 
help improve the reproducibility of studies on germplasm physiology. 
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CHAPTER 1: BACKGROUND AND MOTIVATION 

1.1 Zebrafish as a Biomedical Model 
The use of model organisms in biomedical research is an essential tool for gaining criti-

cal insight into embryological development and the pathogenesis of human disease. Zebrafish, a 

robust tropical fish, has become an increasingly popular model for the study of development 

and pathology over the past two decades. These fish possess many qualities that make them an 

attractive option as a research model: most notably the ability to apply efficient invertebrate-

style genetics to vertebrate-specific questions, and the optical clarity of embryos and larvae 

which allow easy visualization of developmental processes (Lieschke and Currie 2007). These 

qualities, coupled with external fertilization, high fecundity, rapid development and high stock-

ing densities, have made zebrafish a primary model in developmental biology (Dooley and Zon 

2000). This popularity has led to the generation of thousands of mutant, transgenic, and wild-

type zebrafish lines; however maintaining all of these lines as live fish is expensive, inefficient, 

and logistically complex (Hagedorn, Ricker et al. 2009). The Zebrafish International Resource 

Center (ZIRC) (University of Oregon, Eugene, OR, http://zebrafish.org) currently houses over 

twenty six thousand lines. As a solu-

tion to these complications, cryopres-

ervation can be utilized to reduce the 

cost of maintaining myriad live 

strains, and provide the opportunities 

for lines to be shared among research 

laboratories on demand (Tiersch, Yang 

et al. 2007). 

 

FIGURE 1: Adult Zebrafish (Danio rerio). Picture was 
retrieved from the Zebrafish Model Organism Data-
base (ZFIN), University of Oregon, Eugene, OR 
97403-5274; URL: http://zfin.org/; [8 July, 2016]. 
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1.2 Quality Control of Aquatic Sperm 
The quality of a given sperm sample can be determined though the examination of sev-

eral factors including: body condition and nutrition, percent motility, motility duration, the 

mRNA profile of testicular cells, and membrane and mitochondrial integrity (Yang and Tiersch 

2009, Guerra, Valcarce et al. 2013). Current methods for evaluating zebrafish sperm quality re-

main challenging. Zebrafish sperm have a short motility duration (10-15s burst motility), and 

each fish yields a small semen volume (1-2 μL)  (Yang, Carmichael et al. 2007). As with other 

aquatic species, zebrafish sperm activate upon exposure to external environmental stimulus. As 

a freshwater fish, zebrafish sperm activate when exposed to an environment hypotonic to its 

internal osmolality. To determine the activation osmolality, a range of dilutions is used to eval-

uate the activation and motility duration as a function of osmolality. The resulting data from 

these experiments is known as the activation curve (Figure 2). In standard practice, a 300 

mOsm/kg solution of Hanks Buffered Salt So-

lution (HBSS) is used to hold and isotonically 

dilute zebrafish sperm to prevent sample acti-

vation. As the osmolality of the cell solution is 

varied from 20 to 603 mOsm/kg, there is an 

inverse correlation between sperm motility 

and osmolality in sigmoidal fashion, where 

the highest percent motility is observed at the 

lowest osmolality (Figure 2). This parameter is 

useful in determining the optimal osmolality 

that correlates to the motility duration re-

quired by the researcher to evaluate various 

sperm characteristics. The resulting data can 

FIGURE 2: (Top) Comparison of percent mo-
tility vs. osmolality (Bottom) Comparison of 
Osmolality and total motility duration of 
zebrafish sperm suspended in HBSS. Source: 
Yang et al., 2007 
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be used in protocol optimization for zebrafish as well as other aquatic species (Yang, 

Carmichael et al. 2007). 

Once activated, zebrafish sperm have only enough energy resources to swim for around 

1 min, and sample percent motility begins to drop significantly within 10 s (Wilson-Leedy and 

Ingermann 2007). This short time window poses a challenge when working with zebrafish 

sperm.  Zebrafish sperm motility analysis requires precise timing, manual activation of sperm, 

immediate analysis following activation, and careful management of sample quantity due to 

volume restrictions. Motility analysis is typically performed by activating the sample by manual 

dilution and hand mixing, and evaluating the motility by visual observation, or through the use 

of computer assisted sperm analysis (CASA) (Wilson-Leedy and Ingermann 2007, Douglas-

Hamilton, Craig et al. 2011). Manual methods reduce the control over activation, and can there-

fore result in error-prone evaluation of motility. These errors are amplified if subjective visual 

methods of motility evaluation are used. This lack of standardization decreases the ability for 

laboratories to recreate experimental results, hindering overall progress. 

Visual assessment relies on the technician to sort the sperm into different “grades” by 

observation alone.  Cells are sorted into grade a-d, with “grade a” being rapidly progressive 

(velocity ≥ 25 μm/s), “grade b” being slowly progressive, “grade c” being flagellating but non-

progressive, and “grade d” being immotile. This method was prone to large variations between 

laboratories due to the technicians inability to assess the velocity of moving sperm (Cooper and 

Yeung 2006). Semi-CASA systems perform motility analysis by first recording the sperm via a 

camera mounted onto a microscope. The video is then processed, and simple sperm tracking 

programs are used to calculate the velocity by the technician ‘clicking’ on the sperm position in 

each video frame. However, this method is still subjective since the technician chooses which 

sperm cells to track, as well as tedious and time consuming (Kime, Van Look et al. 2001). Com-

puter assisted sperm analysis (CASA) is the most objective method for sperm quality analysis, 
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FIGURE 3. Diagrammatic representation of the 
track of a sperm as analyzed by a CASA algo-
rithm. (Source: Douglas-Hamilton, Craig et al. 
2011) 

and automatically assesses sperm motility and sperm velocity (Wilson-Leedy and Ingermann 

2007, Douglas-Hamilton, Craig et al. 2011). 

Computer Assisted Sperm Analysis algorithms analyze a time window of activity at a 

predefined frequency (commonly 60Hz) during which the sperm are tracked and analyzed over 

several different parameters. These parameters include cell size, progressive velocity (VSL), av-

erage path velocity (VAP), curvilinear path velocity (VCL), and photo intensity (Figure 3). These 

parameters must be determined experimentally for a given species. The algorithm can then be 

optimized to analyze samples within the peak thresholds, i.e. maximum motility for the longest 

duration. The established parameters allow CASA to distinguish between motile and non-

motile sperm, as well as non-sperm objects in the field of view. The CASA system monitors the 

microscope viewing area for sperm motility and tracks individual cell displacement over time 

(Figure 3). A motile sperm cell can be assumed capable of its ultimate goal of fertilizing the oo-

cyte. Motility can be classified in several different ways. If a sperm cell is moving its tail, it can 

technically be considered motile. However, progressive motility is more telling of a sperm cell’s 

potential for fertilization. Progressive motility refers to the track and displacement of the sperm 

cell. A progressive cell typically moves in a straight overall path with a greater displacement 

than a non-progressive cell. 

Path data is automatically analyzed 

using the CASA system’s specific algorithm 

and is exported to data files in the project di-

rectory. The total movement of all qualifying 

cells based on set parameters is considered 

total motility, typically reported as percent 

motility. Each of these parameters is species-
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specific and must be determined by experimentally developing a profile for the species in the 

CASA software (Douglas-Hamilton, Craig et al. 2011). For zebrafish sperm, the CASA parame-

ters have been studied but standardization across the community is lacking. For example, 

software  has been developed for the analysis of fish sperm by creating a CASA plugin for the 

free National Institutes of Health software ImageJ (Wilson-Leedy and Ingermann 2007). This 

approach provides a cost-effective method to standardize software across different groups, but 

results may still vary due to different hardware. This does however indicate progress toward 

standardization as well as provide methods for further groups to integrate CASA into existing 

protocols. 

While CASA outperforms manual techniques for motility analysis, sources of error are 

still present in post-thaw motility studies on sperm. In order to gather relevant data on sperm 

motility, proper and consistent activation of sperm cells is needed. Currently, sperm samples 

are activated manually by a technician (Wilson-Leedy and Ingermann 2007). This process is 

done by pipetting sample media onto a glass slide, followed by the addition of water for dilu-

tion and sperm activation. The two fluids are then gently mixed using the pipet tip, and the 

sample motility is analyzed (Figure 4). Because sperm can begin activating as early as the onset 

of the dilution/mixing step, there is a potential ~10 s latency period before motility analysis can 

be performed. While a highly trained technician can reduce this latency period considerably, 10 

s is a generous estimate that takes into account technicians with a lack of experience using man-

FIGURE 4: A timeline of the cell activation events during manual sperm activation procedure.  
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FIGURE 5: Percent motility over time of zebrafish 
sperm activated using manual activation methods 
(Scherr, Knapp et al. 2015). (Concentration: 1x108 
cells/mL, Dilution ratio: 2:1, n=6) 

ual activation methods, i.e. newcom-

ers to the field. This time lag results 

in motility analysis potentially being 

performed after the initial burst mo-

tility has begun to decrease, causing 

potential errors in motility analysis 

and determining male reproductive 

quality. This procedure has been 

shown to be poorly reproducible by 

previous studies and produces high 

variability in results (Figure 5)(Scherr, 

Knapp et al. 2015). The initial motility 

of the sample was shown to be ~40%, with a small decrease in motility over time. The standard 

deviations at each time point were over 50%, indicating that poorly reproducible hand mixing 

resulted in latent diffusion. It is likely that this diffusion caused sperm cells to activate well after 

the initial mixing step (Figure 4). Lending to these issues are low sample volumes, and the brief 

burst motility duration of zebrafish sperm (10-15s), which creates a need for rapid sample anal-

ysis. To accommodate the physical demands of zebrafish motility analysis and standardize 

processes, the current systems could be miniaturized, streamlined, and tailored to handle small 

sample volumes. Due to its ability to handle small sample sizes and rapidly analyze samples, 

the field of microfluidics is apt to providing solutions to these hurdles. 

1.3 Microfluidics and Microfluidic Devices 
Microfluidics can be defined as the study of flows that are simple or complex, mono- or 

multiphasic, which are circulating in artificial microsystems (Tabeling 2005). Microfluidics is a 

multidisciplinary area of interest that aims to understand and apply the flow and interaction of 
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fluids that have been geometrically constrained to dimensions on the submillimeter scale. At 

this scale, power consumption is low, sample volumes are in the nano-liter, or pico-liter range, 

and the flow of fluid is strictly laminar (Whitesides 2006). The characteristic laminar flow in mi-

crochannels is indicated by a Reynolds number that is typically less than unity. The Reynolds 

number is defined as the ratio of inertial forces to viscous forces, and can be described by �� = ��/�, where V is the fluid velocity, L is the characteristic length (or diameter) of the chan-

nel, and v is the kinematic viscosity of the fluid. 

Because of its small form factor, it is possible to integrate several processes into a micro-

fluidic chip. This allows integration of several steps into one, saving time and reducing sample 

and reagent quantities. These devices have been labeled as lab-on-a-chip (LOC) or micro total 

analysis system (μTAS) (Whitesides 2006). There has been extensive investigation and applica-

tion of LOC technology to various biochemical and cell analysis techniques (Kovarik, Gach et al. 

2012). For instance, the utility of microfluidics has been demonstrated in Murine in vitro fertili-

zation (IVF) technology, where there was an increase in fertilization rate of 10-27% in 

microchannels versus center-well dishes for concentrations of sperm in the range of 2x104-8x104 

cells/mL (Suh, Zhu et al. 2006). Furthermore, microfluidic devices provide a geometrically con-

strained microenvironment that is similar to the in vivo microenvironment, creating an ideal 

setting to study the dynamics of sperm and fluid flow interactions (Beebe, Mensing et al. 2002). 

Studies following this trend have found that the geometry of the microchannel and the flow rate 

through the device are determining factors for sperm cell behavior during fertilization. It was 

demonstrated that bovine sperm tend to swim near walls and contours, and will only attempt to 

fertilize an oocyte when they have overcome the local flow rate (Lopez-Garcia, Monson et al. 

2008). A microfluidic device has also been used to sort and orient bovine, murine, and human 

sperm using hydrostatic pressure (Seo, Agca et al. 2007). Microfluidic devices have also been 

used to separate  human sperm cells from epithelial cells with the prospect of streamlining fo-
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rensic analysis in sexual assault cases (Horsman, Barker et al. 2004, Norris, Evander et al. 2009). 

To date, only two microfluidic devices have been developed specifically for the activation of 

zebrafish sperm cells for motility assessment, so this field is relatively open for exploration and 

new contributions (Park, Egnatchik et al. 2012, Scherr, Knapp et al. 2015). 

1.4 Mixing at the Microfluidic Scale 
The characteristic laminar flow in microfluidic channels creates a daunting challenge in 

terms of activating sperm samples. While the Reynolds number is typically used to describe 

flow on the microscale, it may be the least revealing about the problem at hand. A more telling 

characterization is given by the Peclet number, which describes the ratio of convective transport 

to diffusive transport. The Peclet number is defined as: �� = ���  (1) 

where U is the velocity, w is the width of the channel, and D is the diffusivity. The evaluation of 

this model for microfluidic channels typically result in Pe>1000, indicating that diffusive 

transport dominates convection in the channel (Equation 1) (Scherr 2014). This flow characteris-

tic has led researchers investigating LOC technology to develop a variety of integrated 

micromixers that fall into two categories: active and passive mixers. 

Active micromixers involve the use of an external field or force to increase perturbation 

in fluids present in a microchannel (Hessel, Lowe et al. 2005). These mixers can be effective in a 

short period but typically are more difficult to fabricate and more costly due to supporting ex-

ternal equipment. Passive micromixers contrast active mixers in that they require simple 

fabrication techniques, are usually pressure driven, are easy to integrate into existing microflu-

idic systems, and have no additional power source requirements. These mixers  typically utilize 

specialized channel geometries to increase mixing efficiency by increasing the interface surface 
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FIGURE 6: A two-inlet herringbone micromixer used for zebrafish sperm 
cell activation. (Park, Egnatchik et al. 2012) 

area as to promote further diffusion (Hardt, Drese et al. 2005). Based on the comparison above, 

this project focuses on the integration of passive micromixers into a microfluidic device. 

1.5 Passive Mixers 
Several passive micromixers have been designed to produce rapid mixing over a range 

of Reynolds numbers. These passive mixers have employed several channel geometries such as 

hydrodynamic focusing, split-and-recombine, sudden expansion and constriction, and chaotic 

advection (Hardt, Drese et al. 2005). A wide variety of passive micromixers have been devel-

oped by exploiting different mechanisms by which to force mixing at the microscale (Hessel, 

Löwe et al. 2005, Nguyen and Wu 2005). To date, two passive micromixers have been investi-

gated for the activation of zebrafish sperm and are discussed herein: the staggered herringbone 

mixer (SHM), and the sequential logarithmic mixing apparatus (SeLMA). 

The staggered herringbone mixer has become one of the most recognizable passive mix-

ers in modern microfluidics (Figure 6) (Stroock, Dertinger et al. 2002). The mixer utilizes 
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grooves in a herringbone pattern oriented on the floor or ceiling of the microfluidic channel to 

create circular secondary flow in the channel as the fluid moves downstream (Stroock, 

Dertinger et al. 2002). The primary mixing principle exploited by the SHM is chaotic advection; 

or the stretching and folding of layers of fluids, creating multiple layers and increasing interfa-

cial area and thus efficient mixing. The ability of the SHM to perform well at a wide range of 

Reynolds numbers (1 to 100) (Nguyen and Wu 2005), has contributed to its prevalent use and 

status as a performance benchmark for other mixers. The viability of using a two inlet herring-

bone mixer (Figure 6) for effective zebrafish sperm activation was investigated, and it was 

found that the sperm activation of the micromixer (56 ± 4% motility) was statistically higher 

than that of manual hand mixing (45 ± 7%) (Park, Egnatchik et al. 2012). 

The Sequential Logarithmic Mixing Apparatus, or SeLMA, is a mixer that has a loga-

rithmic based curvature (Scherr, Quitadamo et al. 2012) (Figure 7). The mixer is designed to 

integrate multiple mixing principles into one micromixer, such as induced chaotic advection 

and Dean flows, sudden constriction and expansion, and hydrodynamic focusing of the rea-

gents. SeLMA has three inlets; two sheath streams that are perpendicular to and 

hydrodynamically focus a central sample stream. The design decision for a log-based curvature 

is primarily based on a constantly changing cross sectional area of the mixer to the constriction 

point as well as a changing radius of curvature throughout the log curve. Having two different 

curvatures for each wall of the mixer allows this constant change to take place. The value in this 

constantly changing environment is an increasing Re as well as a changing radius of curvature 

that aids Dean flow (Figure 8). This induces counter-rotating vortices to increase the interface of 

the reagents to expedite diffusion of the different fluids (Scherr, Quitadamo et al. 2012). Fur-

thermore, the lack of grooves and sharp corners greatly reduces the risk of entrapping sperm 

within the mixer. It has been shown experimentally that SeLMA has a 10-15% higher mixing 

efficiency than other passive planar micromixer designs (Scherr, Quitadamo et al. 2012). Activa-
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tion of zebrafish sperm with this micromixer was demonstrated with a progressive motility of 

62% (Scherr, Knapp et al. 2015). 

While these microfluidic devices show promise in terms of mixing capability, each has a 

limited capacity to control fluid flow (Park, Egnatchik et al. 2012, Scherr, Knapp et al. 2015). 

These studies used a syringe pump to drive flow through the inlets to an open outlet. As a re-

sult, backpressure built at the inlets and causes a period of residual bulk fluid flow after the 

syringe pump was stopped. This residual flow had the potential to skew data by causing immo-

tile sperm caught in the flow stream to appear motile. For a device to work optimally in 

FIGURE 7: Diagram of the SeLMA device 
schematic showing planar geometry with 
logarithmic curves to increase mixing by 
inducing Dean secondary flow vortices. 
(Scherr et al 2012) 

FIGURE 8: Simulation images of z-
velocity at the first constriction of 
the mixer. A) Dean vortices in-
duced at constriction. B) The plane 
is taken at a constant height of 40 
μm from the bottom of the chan-
nel. (Scherr, Quitadamo et al. 2012) 
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conjunction with CASA or other motility analysis methods to analyze zebrafish sperm samples, 

it is imperative that effective control over fluid flow be achieved. 

1.6 Instrument-Free Pumping Mechanisms in Microfluidics 
One of the fundamental research themes in microfluidics and LOC technology is the re-

placement of bulky external equipment with integrated chip-scale technology. Advancement in 

this area is necessary to further the progress of microfluidics toward a practical and marketable 

technology. As a result, equipment-free pumping has become an active area of research that has 

made possible recent developments in on-chip flow control. As explained above, the use of a 

syringe pump to drive flow through a microfluidic device can result in an undesirable latent 

period of residual bulk fluid flow. One alternative is to eliminate the syringe pump from the 

design and implement an integrated pumping mechanism such as those described below to 

regulate flow. 

The recent progress in instrument-free flow control has wide applications in the labora-

tory setting, as well as in healthcare for point-of-care diagnostics. For example, the “Squeeze 

Chip” uses a system of  check valves actuated by finger squeezing to precisely control flow (Li, 

Chen et al. 2012). This device was able to provide a quantitative colorimetric analysis of glucose 

and uric acid concentrations. A similar finger-powered pumping system was used to generate 

oil-in-water and water-in-oil droplets, as well as to encapsulate endothelial cells in droplets, 

without the use of external or electrical controllers (Iwai, Shih et al. 2014). 3-dimentional (3-D) 

printing was utilized to create a series of “pumping lids”, which can generate precise positive or 

negative pressures to drive flow (Begolo, Zhukov et al. 2014). A simple finger-press actuated 

chip was developed that can isolate CD4+ cells from whole blood via magnetophoresis, provid-

ing an inexpensive and instrument-free method for monitoring HIV in resource-poor regions 

(Glynn, Kinahan et al. 2014). 
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By analyzing the constraints required to analyze zebrafish sperm motility on-chip, and 

the way the device is to be implemented, a novel pumping mechanism has been designed to 

potentially take the place of the syringe pump. This was done by integrating resealable PCR 

tubes into the inlets of the device, creating a reservoir into which samples can be directly pipet-

ted. These tubes are connected via tubing to a transfer pipette with a relief port in the bulb of 

the pipette. When the tubes are sealed, and the bulb of the pipette is squeezed, positive pressure 

is generated and fluid is pushed from the reservoirs towards the outlet of the device. This de-

sign will be further described and characterized in Section 2.3. 

1.7 Particle Tracking Velocimetry 
While the previously described equipment-free pumping mechanism has advantages, it 

lacks in the ability to precisely control flow rates when compared to traditional methods. Be-

cause mixing in a passive micromixer (and therefore sample activation) is dependent on fluid 

velocity, having the ability to measure and control the flow rate is essential. As will be dis-

cussed in Section 2.3, the flow rate will be controlled by varying the amount of pressure applied 

at the inlets. To measure the flow rate generated by this pressure, particle tracking velocimetry 

(PTV) was used. 

Particle tracking velocimetry is a Lagrangian technique that measures the velocity of a 

fluid by tracking the motion of particles suspended in the fluid. To determine the fluid velocity, 

micro-particles flowing through the channel are recorded and the trajectory of each particle is 

tracked. The displacement of the particles is measured with respect to a known period of time. 

This versatile technique is widely used in microfluidics to measure flow properties. Particle 

tracking has been used to measure flow generated by bioinspired cilia (Chen, Cheng et al. 2015), 

and to determine the relationship between slip length and the concentration of colloidal hard 

spheres flowing through microchannels (Ghosh, van den Ende et al. 2016). The flow rate in the 

sperm analysis device was measured using the 2D/3D Particle Tracking plugin for ImageJ. This 
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plugin uses a feature point tracking algorithm to detect particle trajectories in an image se-

quence (Sbalzarini and Koumoutsakos 2005). This program detects particles based on their 

relative intensity value, and can handle particle appearance and disappearance, making it ideal 

for tracking multiple particles as they flow through a microfluidic device. 

1.8 Impedance Spectroscopy 
As addressed in Chapter 2, to aid in the development of a standardized motility analysis 

protocol for zebrafish sperm, it is necessary to investigate the effects of sample osmolality on 

motility initiation and duration though the generation of an activation curve (Figure 1). Osmo-

lality is typically evaluated in a freezing point depression osmometer. The freezing point 

method operates on the principle that as the concentration of a solute dissolved in a solvent in-

creased the freezing point of the solution decreases. By measuring the freezing point of the 

solution, the osmolality, or concentration, can be determined. However, this method is time 

consuming, and (if cells are present) destructive to the sample. Because of these drawbacks, 

other osmometry techniques should be considered, particularly those amenable to miniaturiza-

tion and incorporation on-chip. It is possible to evaluate the osmolality of a solution indirectly 

by measuring the impedance generated by passing a current through the solution via a simple 

electrode. Impedance can be defined as the total opposition a circuit offers to the flow of an al-

ternating current (AC) at a given frequency. 

Impedance spectroscopy (IS) is a general term that subsumes the small-signal measure-
ment of the linear electrical response of a material of interest (including electrode effects) and 
the subsequent analysis of the response to yield useful information about the physicochemical 
properties of the system. (Macdonald 1992) 

 
In practice, IS is performed by measuring the impedance of a sample between two elec-

trodes, which can be defined as: � = �� , where V is the AC voltage and I is the complex current. 

Impedance has two components, a real (or resistive) part and an imaginary (reactive) part. This 

can be represented in either rectangular coordinate form by the resistive (R) and reactive (X) 
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(� = � + ��), or in polar coordinate form as a magnitude and phase angle (�) (|�| = ��� � and ∡� =�). In polar form, the magnitude refers to the resistive portion of the impedance measurement, 

while the phase angle refers to the reactive part. The phase angle can be used to determine if a 

circuit is exhibiting inductive or capacitive behavior. If the phase angle is negative, it indicates 

capacitive behavior, while a positive phase angle indicates inductance. 

Impedance Spectroscopy can be divided into two main categories: The first is Electro-

chemical Impedance Spectroscopy (EIS), which deals with the analysis of materials in which 

ionic conduction strongly predominates (Macdonald 1992). The second category is concerned 

with everything else, which can be crudely lumped into the analysis and characterization of the 

dielectric properties of a sample as a function of frequency(Audiffred 2012). This technique has 

wide applications in biosensors, such as quantifying hematocrit, determining the osmolality of a 

solution, determining sperm concentration in semen, and label-free detection of live and dead 

cells (Futai, Gu et al. 2004, L.I. Segerink 2009, Audiffred 2012). Because the HBSS solution used 

to dilute zebrafish sperm cells contains salts which impart conductivity proportional to their 

concentration, EIS will be an ideal technique to determine sample osmolality. This technique 

will be applied to the device proposed through the integration of a two gold micro-electrodes 

into the floor of the microchannel, enabling repeated measures of osmolality as fluid and cells 

progress through the microfluidic device. 

1.9 Surface Modification of PDMS Microfluidic Channels 
Because zebrafish sperm are prone to adhering to surfaces after they become immotile, it 

may be necessary to modify the surface chemistry of the microfluidic channel in the device. Al-

tering the surface of a PDMS-based microfluidic channel is a widely used technique that can 

facilitate reactions, protect the device from damage, as well as trap cells and molecules of inter-

est. However, a large portion of the research into PDMS surface modification is directed 

towards reducing the hydrophobicity of the material. This hydrophobicity is exacerbated by a 
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fast hydrophobic recovery time after oxidation, and the ability for hydrophobic analytes to ad-

sorb onto the PDMS surface (Zhou, Ellis et al. 2010). Because PDMS is by far the dominant 

material used for microfluidics, many PDMS modification techniques have been investigated to 

combat these issues (Zhou, Ellis et al. 2010, Zhou, Khodakov et al. 2012). This section will focus 

on the method of silanization, or the coating of a surface with functional silane molecules. 

Silanization is a widely used technique that is used to create a self-assembled monolayer 

(SAM) using alkoxy- or chlorosilanes with functional head groups to achieve desirable surface 

properties. This technique can be performed on many substrates if they have surface hydroxyl 

groups, which once oxidized, will react with alkoxysilanes to create covalent Si-O-Si bonds. 

PDMS was successfully treated in situ with a PEG-silane to prevent non-specific protein adsorp-

tion by flowing a mixture of H2O/H2O2/HCl to oxidize the microchannel and incubating with 2-

[methoxy-(polyethylenoxy)propyl]trimethoxysilane (Sui, Wang et al. 2006). This technique 

showed long term stability with the water contact angle (WCA) stabilizing at 40° after 2-3 days. 

A microfluidic assay was developed by patterning 3-aminopropyltrimethoxysilane (APTMS) to 

obtain patterned amine functionalities in a microchannel (Seguin, McLachlan et al. 2010). To 

accomplish this, PDMS was plasma-oxidized and coated with an aluminum film to preserve the 

hydrophilic surface. The aluminum was etched away and the surface was treated with APTMS 

dissolved in methanol. The water contact angle of the APTMS modified PDMS surface was 63° 

compared to 107° for native PDMS (Seguin, McLachlan et al. 2010). 

Due to the tendency of zebrafish sperm cells to adhere to PDMS and glass after they be-

come immotile, a PEG-silane (2-[methoxy-(polyethylenoxy)propyl]-trimethoxysilane) has been 

grafted onto the microchannel of the device to prevent non-specific adsorption. This will be ac-

complished by using a modified version of the procedure outlined by Sui et al. However, 

instead of using wet-chemical oxidation to create binding sites for the silane, plasma oxidation 

will be used. The details of this technique will be discussed further in Sections 2.1 and 2.3. 
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1.10 Significance 
The LOC device proposed will serve as a simple and reproducible means to perform 

quality evaluation on zebrafish sperm samples. This device has the potential to aid in the stand-

ardization of gamete quality analysis and gamete biology research for zebrafish sperm by 

reducing the human error in experiments involving investigation of sperm motility. It will also 

enable studies of motility duration and osmolality curves, serving as a LOC device with greater 

throughput and capability than the few other devices reported (Park, Egnatchik et al. 2012, 

Scherr, Knapp et al. 2015). Overall, the standardization of gamete quality analysis techniques 

across research laboratories will offer researchers the capability to reduce the ambiguity in data 

generated from studies involving zebrafish sperm (Yang and Tiersch 2009). The basic design of 

this device will be applicable to any aquatic, externally fertilizing freshwater species through 

proper scaling of the design, flow rates, and activation environments. 
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CHAPTER 2: MICROFLUIDIC DEVICE FOR MOTILITY AND 
OSMOLALITY ANALYSIS OF ZEBRAFISH SPERM 

2.1 Objectives 
The objectives of this study were to design and fabricate a microfluidic device with the 

capabilities to: (1) standardize the method of activation for zebrafish sperm so that all cells in a 

sample are subjected to the conditions needed to activate in a reproducible way, (2) reproduci-

bly enable motility analysis of the activated sample within 5 s after activation without the 

interference of bulk fluid flow, and (3) facilitate the generation of activation curves by relating 

osmolality of the sample solution to percent motility at the time when motility analysis was per-

formed. This device will be used to evaluate the motility of fresh Danio rerio sperm after 

activation in terms of percent motility, motility duration, and osmolality of the cell suspension. 

2.2 Introduction 
Zebrafish (Danio species) have become a popular vertebrate model organism due to their 

optically clear embryos, high fecundity, short generation interval, and the ability to apply effi-

cient invertebrate-style genetics to vertebrate-specific questions (Dooley and Zon 2000, Lieschke 

and Currie 2007). This popularity has resulted in the generation of several thousand mutant, 

transgenic, and wild-type zebrafish lines, however maintaining all of these lines as live fish is 

expensive, inefficient, and unrealistic (Hagedorn, Ricker et al. 2009). As a solution to these com-

plications, cryopreservation can be utilized to reduce the cost of maintaining myriad live 

strains, and provide the opportunities for lines to be shared among research laboratories on 

demand (Tiersch, Yang et al. 2007). Pre-freeze and post-thaw quality analysis is an essential step 

in determining the proper techniques for cryopreservation.  

Sperm motility analysis is the current standard for determining the quality of a sample. 

However, motility analysis of zebrafish sperm is difficult due to the small semen yield for each 

fish (1-2 μL), small sperm size, and short motility duration (10-15 s peak burst motility) 

(Wolenski and Hart 1987, Wilson-Leedy and Ingermann 2007). For an externally fertilizing, 
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freshwater aquatic species such as zebrafish, motility is initiated by introducing the sperm to a 

hypoosmotic environment. The shift in osmolality causes the initially dormant sperm to become 

active. The process by which this sudden activation happens has been thoroughly studied 

(Cosson 2004, Wilson-Leedy and Ingermann 2007, Wilson-Leedy, Kanuga et al. 2009, Scherr, 

Knapp et al. 2015), however little is still known about the exact cascade of events this shift in 

osmolality induces in freshwater fish. Motility analysis is performed by first activating the 

sperm, typically by manual dilution and hand mixing (see Figure 5 in Section 1.3), and motility 

is estimated either visually or through the use of computer assisted sperm analysis (CASA) sys-

tems (Wilson-Leedy and Ingermann 2007). The ~10 s time lag between activation and analysis, 

along with inconsistencies in activation due to human error, are limitations in measuring peak 

motility of fish sperm, which may result in error-prone evaluation of sperm sample quality. 

Therefore, there is a need for a platform that enables the rapid mixing and activation of small 

volumes of zebrafish sperm cells and time sensitive motility analysis. 

Microfluidic platforms have the ability to shorten analysis times and reduce the volumes 

of samples needed. Lab-on-a-chip technology has been used in gamete based studies to sort and 

orient sperm using hydrostatic pressure (Seo, Agca et al. 2007).  The utility of microfluidics has 

also been demonstrated in Murine in vitro fertilization (IVF) technology, where there was an 

increase in fertilization rate of 10-27% in microchannels versus center-well dishes for concentra-

tions of sperm in the range of 2x104-8x104 cells/mL (Suh, Zhu et al. 2006). Furthermore, 

microfluidic devices provide a geometrically constrained microenvironment that is similar to 

the in vivo microenvironment, creating an ideal setting to study the dynamics of sperm and flu-

id flow interactions (Beebe, Mensing et al. 2002). To date, only two microfluidic devices have 

been developed specifically for the activation of zebrafish sperm cells for motility assessment, 

so this field is relatively open for exploration and new contributions (Park, Egnatchik et al. 2012, 

Scherr, Knapp et al. 2015) (Table 1). 
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FIGURE 9: Design of sperm analysis chip using the 
SeLMA micromixer. 

Table 1: A comparison of previous microfluidic devices used to activate zebrafish sperm. 
Micromixer Flow 

Driving 
Method 

Flow 
Cessation 
Method 

Facilitation of 
CASA Analysis 

Flow Cessation 
Time (∆tfs) 

Percent 
Motili-
ty 

Reference 

Staggered 
Herringbone 

Syringe 
pump 

Turn off 
syringe 
pump 

Hamilton-
Thorne 2X-CEL 

CASA slide 
(Hamilton 

Thorne Biosci-
ences, Beverly, 

MA) 

≥10 s 56 ± 4% (Park, 
Egnatchik 
et al. 2012) 

Sequential 
Logarithmic 
Mixing Ap-

paratus 

Syringe 
pump 

Solenoid 
valves 

On-chip view-
ing chamber 

5-8 s 63 ± 8% (Scherr, 
Knapp et 
al. 2015) 

2.3 Device Design Considerations 
The general purpose of this mi-

crofluidic device is to aid in the 

standardization of zebrafish sperm 

quality analysis. This standardiza-

tion can be achieved by setting in 

place design constraints that satisfy 

the essential needs required to en-

sure that the conditions experienced 

by the cells during zebrafish sperm 

motility analysis are reproducible. 

The first was to standardize the method of activation for zebrafish sperm so that all cells in a 

sample are subjected to the conditions needed to activate in a reproducible way. The next con-

straint was to reproducibly enable motility analysis of the activated sample within 5 s after 

activation without the interference of bulk fluid flow. Performing analysis within the first 5 s of 

after activation ensured that the data was consistently collected during the burst motility phase 
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FIGURE 10: The minimum (dashed line) and maxi-
mum (solid line) modeled strain rates experienced by a 
particle as it moves through a microchannel in A) the 
Herringbone micromixer and B) the SeLMA micromix-
er (Scherr 2014). 

of activation, removing variation in motility due to time lag typically associated with manual 

activation methods (Section 1.3).  The final constraint was to facilitate the generation of activa-

tion curves by relating the osmolality of the sample solution to percent motility at the time 

when motility analysis was performed. 

By using the design constraints listed above, the device shown in Figure 9 was fabricated. 

To address the first objective, the design incorporated a passive micromixer. Two micromixers 

were investigated: the staggered herringbone mixer (SHM) and the sequential logarithmic mix-

ing apparatus (SeLMA). The staggered herringbone mixer and SeLMA have each proved to be 

viable options for zebrafish sperm cell activation (Park, Egnatchik et al. 2012, Scherr 2014). 

However, careful consideration must be made before choosing the best fit for the device pro-

posed. Because passive micro-

mixers rely on geometric features 

in the microchannels to facilitate 

mixing, it is useful to consider 

the mechanical stresses on the 

cell caused by these features. A 

model was produced that tracks 

the strain rate experienced by 

particles moving through the 

SHM and SeLMA (Figure 10) 

(Scherr 2014). The model predict-

ed that the herringbone mixer 

subjected cells to a consistently 

low strain rate (< 300 /s) with 
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similar maximum and minimum values for strain. However, the predicted strain rates experi-

enced in SeLMA were dynamic and, at the maximums (~2800 /s), approximately an order of 

magnitude higher than those experienced in the herringbone mixer. This introduces concern for 

sperm cell integrity, and calls for further investigation in order to validate this model. One op-

tion to alleviate this issue and decrease strain rate is to widen the constricted regions of SeLMA 

from 20 μm to 200 μm. While this modification is likely to reduce mixing efficiency, it may 

serve as an option if the device retains the ability to activate sperm samples effectively. 

To address the second design constraint, the device needed to be able to halt flow in under 

5 s after activation in order to be accurately analyzed during the peak burst motility phase of 

activation. As discussed in Section 1.6, using a syringe pump to drive flow caused an undesira-

ble 5-10 s period of residual flow after the syringe pump was stopped (Park, Egnatchik et al. 

2012, Scherr, Knapp et al. 2015). To avoid this, a more simple and equipment-free pumping sys-

tem was implemented. The system consisted of integrated PCR microcentrifuge tubes at the 

device inlets, with the caps connected via tubing to a simple one-way pneumatic bulb fabricated 

from a transfer pipette (8 mL General Purpose Transfer Pipet, Large Bulb, Cat#: 204, Thermo 

Scientific Samco, San Diego, CA).  

The use of PCR microcentrifuge tubes has many benefits. First, they allow for the sample to 

be directly pipetted into the reservoir tube, rather than pulled into syringes under vacuum, 

which is easier and reduces the setup time of the device. The use of a syringe pump also re-

quires the use of tubing to transport the sample to the device, which requires a volume of ~200 

μL to fill the dead space of the tubing and drive flow through the device. The PCR tube setup 

only requires ~60 μL of sample to drive flow. Because there is standing fluid in the inlets, the 

microchannel outlet reservoir has an enlarged 8 mm diameter that is left open to atmosphere, 

which serves to balance the hydrostatic pressure generated at the inlets. This is done by filling 

the outlet with enough fluid to match the pressure at the inlets. This design has the capability to 
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produce static flow by allowing the pressure driving the flow to be removed rapidly. This is 

done by creating a hole with an approximate diameter of 2 mm in the bulb portion of the pi-

pette, allowing pressure to be applied to the device by hand while the hole is covered. This hole 

is covered by the finger of the user when the bulb is squeezed, generating pneumatic pressure 

in the device reservoirs, which drives the sample through the microchannel. To release pressure 

in the system and halt flow, the bulb and relief hole are released. If it is assumed that the vol-

ume of fluid being pushed through the device is equal to the total volume of the device 

channels, the volume of fluid entering the outlet after one pipette push is less than 0.5 μL. The 

change in fluid height in the outlet reservoir, and the resultant change in pressure can then be 

calculated using the equations: 

ℎ = ���� (2) � = ���ℎ (3) 

Where h is the change in fluid height in the outlet, V is the volume of the fluid, r is the radi-

us of the outlet, P is the pressure, �� is the density of the fluid, and g is the acceleration due to 

gravity. The change in fluid height was calculated to be less than 10 μm per pipette push, and 

the resultant change in pressure was under 0.1 N/m3. This change is pressure is small enough 

that the fluid does not move back towards the inlets. Evaluation of these design features was 

accomplished by visually tracking the movement of polystyrene microbeads flowing through 

the channel under a microscope, and performing particle tracking analysis to assess control of 

flow in the device. 

For the final constraint of facilitating the generation of activation curves that relate osmolal-

ity to percent motility, two monolithic floor electrodes were utilized to interrogate the 

osmolality of the sample solution through impedance spectroscopy. The electrodes were placed 

such that the fingers protruded into the viewing chamber (Figure 11). This allowed the on-chip 

measurement of osmolality and percent motility (Section 2.4.7). 
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FIGURE 11: Two-prong gold floor electrode 
used for impedance measurements placed 
across in the viewing chamber of the micro-
channel. 

As stated above, the purpose of this de-

vice was to aid in the standardization of 

zebrafish sperm quality analysis. Thus, it is 

advantageous for the device to be reusable. 

However, as zebrafish sperm transition from 

motile to immotile, they adhere to the glass 

slide base. In an effort to prevent sperm cell 

adhesion in the device, the microchannel sur-

faces were treated with 2-[methoxy (polyeth-

yleneoxy) 6-9propyl] trimethoxysilane (Ge-

lest, Morrisville, PA). This treatment results in a hydrophilic PEG-grafted microchannel that has 

been shown in literature to prevent non-specific protein adsorption (Sui, Wang et al. 2006).  

The final device consisted of a three-inlet T-channel with an integrated micromixer for the 

activation of sperm samples (Figure 12). Briefly, the zebrafish sperm sample is loaded into the 

inlet reservoir, then driven, along with diluent, through the micromixer using pneumatic pres-

sure from the transfer pipette. The activated sperm sample was introduced to the viewing 

chamber. The flow was stopped, and CASA motility readings were performed while the osmo-

lality of the solution was interrogated by impedance spectroscopy. After CASA completed its 

protocol, the sample was transported out of the chip and discarded, enabling subsequent analy-

sis of samples. 
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FIGURE 12: Overview of LOC device operation (A-B) As the transfer pipette is squeezed, the 
inlet reservoirs are pressurized. (C-D) This results in the sample and diluent being pushed 
through the channel into the micromixer. (E-F) As the fluid passes through the micromixer, 
the sample and diluent are mixed. 



26 
 

2.4 Materials and Methods 

2.4.1 Device Fabrication 
AutoCAD (2015 version, San Rafael, CA) was used to create geometries for the micro-

channel and electrode designs. Silicon master molds were patterned with SU-8 and fabricated 

using a single step photolithography process. SU-8 2025 (MicroChem Corp., Newton, MA) was 

utilized to create a negative photoresist mold on a 4 in silicon wafer (Universtiywafer.com, 

South Boston, MA).  Protocols from MicroChem were adapted for the photolithography process 

(MicroChem).  The SU-8 was coated on the silicon wafer  using a spin coater (WS-650 Series 

Spin Processor, Laurell Technologies Corp., North Wales PA) at 3000 rpm for 30 s to achieve a 

thickness of 40 μm.  The wafers were pre-baked on a hot plate at 65 °C for 5 min and then at 95 

°C for 15 min with a ramp up of 2 °C/min and gradually cooled down to 25 °C over 2 hrs.  Fol-

lowing baking, the wafers and photomask were positioned into a custom exposure system that 

utilizes a Blak-Ray B-100 series UV lamp (UVP, LLC; Upland, CA), and were exposed to 365 nm 

UV light with an intensity of approximately 2 mW/cm2 for 80 s for an effective dose of 160 

mJ/cm2.  After exposure, the wafers were baked with the previous ramp up and cool down tem-

perature-time procedure. The wafers were immersed in an SU-8 developer solution 

(MicroChem Corp., Newton, MA) for 5 min, followed by a fresh developer rinse for 1 min, a last 

rinse with isopropyl alcohol, and finally dried with compressed nitrogen gas (Ultra High Purity, 

Airgas, Baton Rouge, LA). 

The electrodes were fabricated by the following procedure: An optical mask was pur-

chased from the Advanced Reproductions. Glass slides (2x1 in, Cat#: 3048-002, Gold Seal Plain 

Glass Microscope Slides, Thermo Scientific, Waltham, MA) were coated with MICROPOSIT 

S1813 (Dow Chemical, Midland, MI) positive photoresist using a spin-coater at CAMD. The 

photoresist was spin-coated onto the glass slide at 2000 rpm for 60 s. The spin-coated glass 

slides were baked on a hot plate at 115 °C for one min. UV exposure through the optical mask 
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FIGURE 13: Assembled Micro-
fluidic Sperm Analysis Chip. 

Transfer 
Pipette 

Microcentrifuge 
tubes 

Microchannel 

Electrodes 

was done at a UV exposure dose of 40 mJ/cm2 using the Quintel UL7000-OBS Exposure Station 

(Neutronix Quintel, Morgan Hill, CA). The exposed samples were developed in diluted 

AZ400K developer (Microchem Corp., Newton, MA) (1:4, AZ 400K:deionized water) for 1 min. 

Deionized water refers to water passed through a Millipore Synergy® UV Purification System 

and dispensed at 18.2 MΩ. The samples were rinsed with DI water and dried with nitrogen. The 

samples were baked on a hot plate at 115 °C for 1 min. After baking, the samples were cleaned 

in 100% oxygen plasma using the Reactive-ion etching (RIE) at 150 mT at a power of 100 W for 1 

min. Then the samples were coated with 10 nm Cr/ 100 nm Au using an e-beam evaporator at 

the University of Texas at Dallas. Then the samples were immersed in Acetone for the lift-off 

process of the photoresist, resulting in the microelectrodes on glass slides. 

The final device was fabricated using traditional soft li-

thography processes. Briefly, Sylgard 184 polydimethylsilox-

ane (Dow Corning, Midland, MI) was poured onto the master 

wafer at a ratio of 10:1 (base: curing agent). The PDMS was 

cured in an oven at 65 °C for 90 min and removed from the 

mold. The inlet access holes were created using a 6-mm Harris 

Uni-core biopsy punch, and the outlet was made using a 8-

mm punch. The PDMS devices were trimmed and irreversibly 

bonded to a clean glass microscope slide using a Harric Plas-

ma Cleaner, PDC-32G (Harric Plasma, Ithaca, New York) for 

30 s at 1.8 W. The plasma-treated channel was subjected to 2-

[methoxy(polyethyleneoxy)6-9propyl] trimethoxysilane within 

1 min of bonding and left to sit for 15 min. The unreacted 

silane was removed by flowing deionized water into the 
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channel for 5 min and dried by flowing nitrogen gas through the channel until all remaining 

fluid was evaporated. 

To create the inlet reservoirs, microcentrifuge tubes were cut at the junction of the ta-

pered and untapered region, and pneumatic access holes were created by punching through the 

cap with a sharpened 21g needle (OD 820 μm). The tubes were inserted into the device inlets 

and the area around the tubes was sealed with PDMS and the chip was baked at 65 °C for 90 

min. Blunted 0.5 in, 90° bend 21g needles were inserted into the pneumatic access holes, which 

were then sealed using clear, waterproof silicon adhesive (P/N: 12045, ITW Consumer, Hart-

ford, Conneticut). The sealant was allowed 24 hrs to cure. The pneumatic connection was 

created by using a tubing adaptor that connects a lure lock needle to 1/8” tubing by using a fe-

male lure lock attachment on one side and a 1/8” tubing barb on the other (MTLL230-1, 

Nordson Medical, Loveland, CO). The adapter was connected to 1/8” Tygon tubing, which ran 

to a 4-way barbed tubing connector (4PX230-1, Nordson Medical, Loveland, CO). The pneumat-

ic driver was fabricated out of an 8-mL polypropylene transfer pipette (Samco, Thermo 

Scientific, Waltham, MA) by creating a hole in the bulb portion of the pipette with an 18g needle 

(Figure 13). 

2.4.2 Flow Rate and Cessation Analysis 
As previously discussed, the flow in the device is generated by applying pneumatic 

pressure to the headspace of the microcentrifuge tubes by compressing the transfer pipette. A 

small pneumatic regulator (R-7010, Air Logic, Racine, WI) was used to control the amount of 

pressure applied to the device, allowing the flow rate to be manipulated. Particle tracking veloc-

imetry (PTV) was used to correlate the applied pressure to the flow rate. Because the maximum 

pressure that the transfer pipette could generate was determined to be approximately 3 psi by 

observing the pressure gauge of the regulator while squeezing the pipette bulb, the flow rate 

was analyzed at 1, 2, and 3 psi. 
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It is imperative that sperm analysis be performed by CASA as soon as possible following 

activation due to the short motility duration of zebrafish sperm. Measurement of motility using 

CASA requires static flow conditions so that bulk fluid drift does not influence the results. The 

device created by Park, Egnatchik et al. (2012) accomplished this by simply turning off the sy-

ringe pump as cells entered the viewing chamber. This method required a minimum of 10 s at 

the lowest flow rate for bulk fluid drift to subside after sperm activation. A 10 s delay cuts into 

the already short motility duration and inhibits analysis of the sperm during the brief 10-15 s 

burst motility phase. The device created by Scherr, Knapp et al. (2015) improved upon this de-

sign by using solenoid pinch valves to occlude the inlet and outlet tubing to reduce bulk fluid 

drift. However, this method still required a latent period of 5-8 s after activation for bulk fluid 

drift to subside enough for measurement by CASA. The current device sought to reduce the 

time for flow cessation considerably in an effort to ensure that analysis could be carried out 

within 5 s after sperm activation. 

Briefly, 6 μm microparticles (Polysciences, Inc., Warrington, PA) were introduced to the 

device at 1, 2, and 3 psi. The particles were recorded at 120 frames/s using the MoviePro app 

(Version 5.2, Depak Sharma) on an iPod 6 (Apple, Cupertino, CA) mounted to the microscope 

eyepiece. These videos were segmented into image sequences and thresholded using Fiji image 

processor (Schindelin, Arganda-Carreras et al. 2012). The Mosaic 2D/3D Particle Tracker plugin 

for Fiji was used to find the trajectory of each particle in the image sequence (Sbalzarini and 

Koumoutsakos 2005). These trajectories were analyzed to find the particle displacement be-

tween each frame, which was divided by the time between each frame to find the velocity. 

Assuming that the microparticles were moving at the same velocity as the fluid, the flow rate 

was found by using the equation Q=VA, where Q is the flow rate, V is the fluid velocity, and A 

is the cross sectional area of the microchannel perpendicular to flow. 
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2.4.3 Sample Handling and Acquisition 
Protocols for the use of animals in this study were reviewed and approved by the Loui-

siana State University Institutional Animal Care and Use Committee (Baton Rouge, LA). Adult 

Zebrafish (Danio rerio) were obtained from the Zebrafish International Resource Center (ZIRC, 

OR, USA). Fish were maintained within a 638-L recirculating system. Water quality parameters 

were maintained at 28.5° C (temperature), 8.5 (pH) and 12-h light:12-h dark (photoperiod). Fish 

were fed to satiation twice daily with a dry food master mix (http://zebrafish.org/ docu-

ments/protocols/pdf/Fish_Feeding/Flake_Food/Dry_Food_Recipes2015.pdf, accessed on May 

10, 2015) in the morning and artemia (Brine Shrimp Direct, Ogden, Utah) in the afternoon. Ad-

ditional water quality parameters that were monitored weekly and kept at an acceptable range 

included: ammonia (0 - 1.0 mg/L), nitrites (0 - 0.8 mg/L) and nitrates (0 - 15 mg/L). For sperm 

collection, fish were anesthetized with 0.01% MS-222 (Tricaine methanesulfonate, Western 

Chemical, Inc. Ferndale, WA).  Fish were placed ventral side up on a moist sponge and gently 

stripped. Sperm were collected into a glass capillary tube and mixed with Hanks’ balanced salt 

solution (HBSS, 0.137 M NaCl, 5.4 mM KCl, 1.3 mM CaCl2, 1.0 mM MgSO4, 0.25 mM 

Na2HPO4, 0.44 mM KH2PO4, 4.2 mM NaHCO3, and 5.55 mM glucose, pH 7.2) at 300 

mOsm/kg. Given the limited volume of sperm collectable from Zebrafish (1 to 3 μl), pooled 

sperm samples from as many as 6 individuals were used. 

2.4.4 Comparison of Microfluidic vs. Manual Activation 
As previously stated, the general theme of this device was to standardize zebrafish 

sperm analysis. This requires eliminating the high variability in manual sperm activation. If the 

activation performance of the micromixer outweighs that of manual activation methods, it will 

solve a crucial problem with sperm quality analysis and facilitate the standardization of gamete 

quality analysis procedures. To validate the utility of the device, it was be necessary to compare 

percent activation over time for multiple trials between manual activation performed by a 
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trained technician, and micromixer facilitated activation on a microfluidic platform. This valida-

tion was carried out by performing motility analysis via CASA on a single sample using manual 

activation and then analyzing the same sample on-chip. 

A commercially available CASA instrument was used (HTM-CEROS, version 14 Build 

013, Hamilton Thorne Biosciences, Beverly, Massachusetts, USA). Images were captured (100 

frames) at a rate of 60 frames/s. The minimum contrast was 50 and minimum cell size was 2 

pixels. The default values when less than 5 cells were motile were set at 4 pixels for cell size and 

65 for cell intensity. Briefly, manual activation was performed using by pipetting 1 μL of a 

sperm sample onto the bottom portion of a Makler® Counting Chamber (Irvine Scientific, Santa 

Ana, CA), which was diluted with 2 μL of deionized water. The sperm sample was mixed with 

the tip of the pipette, and the top of the Makler® Counting Chamber was placed on top to create 

a monolayer of cells. The chamber was placed on the microscope and analyzed via CASA. On-

chip activation was performed by first placing the device on the microscope and adjusting the 

focus on the viewing chamber. Sperm sample (60 μL) was pipetted into the center inlet of the 

device, and 60 μL of deionized water into each side inlet. The pneumatic bulb was squeezed 

and the sperm and deionized water were driven through the micromixer, activating the sample. 

The sperm were transported directly into the viewing chamber, where flow was halted, and the 

sample was analyzed using CASA. Due to the small volume of the chip (<0.5 uL), the same 60 

uL sample was used for all trials. 

2.4.5 Generation of Activation Curve 
The assessment of sample osmolality within the microchannel would facilitate the gen-

eration of sperm activation curves, used to determine the optimal osmolality at which the sperm 

in the sample activate. One primary reason to determine osmolality on-chip is that different di-

lutions can be created by adjusting the flow between sperm and diluent, or by using HBSS in 

diluent sample inlets. This information will aid in discovering the proper protocols for sperm 
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activation, and give insight to the physiological mechanisms by which the sperm transition 

from non-motile to motile. To create an activation curve, the percent activation and motility du-

ration of zebrafish sperm samples were assessed using CASA. The samples were analyzed at 

four different osmolalities ranging from 100-300 mOsm, increasing at 50 mOsm increments. The 

sperm were activated using on-chip activation methods. The final osmolality of the sample was 

manipulated by using HBSS dilutions in the diluent reservoirs. To determine the correct osmo-

lality of the diluent needed to achieve the desired final osmolality, samples of HBSS300 were 

mixed in a 2:1 ratio (Diluent:HBSS300) with HBSS dilutions ranging from 16-305 mOsm. The 

final osmolality was determined by using a freezing point depression osmometer (Table 3). The 

osmolality of the sample was measured via impedance spectroscopy using the on-chip electrode 

by interrogating the sample while still in the channel. 

2.5 Results and Discussion 

2.5.1 Surface Modification using PEG-Silane 
Previous reports have shown the silanization of PDMS using 2-[methoxy (polyethylene-

oxy)6-9propyl]trimethoxysilane (Sui, Wang et al. 2006), however the effects on glass are 

currently unreported. Contact angle experiments were employed to investigate the surface 

properties of PEG-silane treated glass. Clean glass slides were treated using the same procedure 

used on the micro-device, and the water contact angle was analyzed after a treatment time of 5 

min and 15 min. The water contact angle of the treated glass decreased from 24.10 ± 0.76° of na-

tive glass to 13.68 ± 3.09° after a treatment time of 5 min, and decreased further to 6.68 ± 1.74° 

after a treatment time of 15 min. The decrease in water contact angle shows the hydrophobicity 

of the glass decreased after treatment with the silane, indicating that a hydrophilic layer was 

formed. 
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To test the cell-repelling characteristics of the PEG-grafted microchannels, a side-by-side 

comparison of treated and non-treated microchannels was performed. The treated devices were 

fabricated using the methods in Section 2.3.2. To perform the experiment, a zebrafish sperm 

sample with a concentration of approximately 1x108 cells/ml was introduced into the channel of 

treated and non-treated devices. As shown in Figure 14, there was an increase in cell adhesion 

for the untreated device compared to the treated devices with more 500 adhered cells in the un-

treated device and an average of 12 ± 3 cells adhered in the treated devices. This results 

indicates treating the microchannel with the PEG-silane reduced the adhesion of zebrafish 

sperm and was used in all subsequent devices tested. 

2.5.2 Flow Rate and Cessation Analysis 
The approximate flow rate of the device at 1, 2, and 3 PSI was determined by tracking 

tracer beads moving through the device as flow was initiated and then ceased. An example of 

the typical flow rate profile at 2 PSI is shown in Figure 15. As expected, when pneumatic pres-

sure is applied to the device, there is a sharp increase in the flow rate, which then levels off. As 

FIGURE 14: An untreated microchannel (Left) and a PEG-grafted microchannel (Right) after 
a sample of zebrafish sperm has been introduced to the device. Sperm cells in the treated 
device are indicated, so as not to be confused with camera artifacts (Magnification 100x) 
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FIGURE 15: A flow rate profile over time for 2PSI as measured using PTV. 

the pressure is removed, there is a rapid decrease in flow rate, indicated by the region labeled 

∆tFC, (time required for flow cessation), from approximately 5 μL/min to 0 μL/min over a period 

of ~0.6 s (Figure 15). 

The average maximum flow rate was determined by averaging the peak velocities for 

each pressure. 1 PSI showed the lowest flow rate, with 3.4 ± 0.8 μL/min. There was no signifi-

cant difference between the flow rates at 2 PSI (8.1 ± 1.7 μL/min) and 3 PSI (9 ± 2.2 μL/min) 

(P<0.05) (Figure 16). The flow rate at 1PSI was statistically different from the flow rates at 2 and 

3 PSI (P<0.05). This data was expected, because as the pressure increases, the fluid should be 

pushed though the channel at a greater rate. The Flow cessation at each pressure was deter-

mined as the time taken for bulk fluid drift to stop after the pneumatic bulb was released. At 1 

psi, bulk fluid flow subsided after 0.31 ± 0.21 s, and at 3 psi, flow cessation was achieved in 0.68 

± 0.22 s. There was no significant difference between the flow cessation times at any of the pres-

sures (P<0.05). This represents an improvement over the previous devices reported, which re-
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FIGURE 16: (Right) Flow cessation time and (Left) Maximum Flow Rate for pneumatically 
driven microfluidic chip. (n=3) 

required 5-10 s to achieve flow cessation (Park, Egnatchik et al. 2012, Scherr, Knapp et al. 2015). 

Halting flow rapidly in the microdevice enables the user to analyze zebrafish sperm quality di-

rectly after activation, thus insuring that analysis was performed during the initial 10-15 s burst 

motility phase of zebrafish sperm activation. 

2.5.3 Micromixer Selection 
To evaluate the mixing efficiency of the SeLMA micromixer compared to that of the 

Herringbone micromixer, fluorescence was quantified as deionized water and fluorescein were 

passed through the micromixers. For both devices 50 μM of sodium fluorescein in water (Sig-

ma-Aldrich, St. Louis, MO) was pipetted into the center inlet, while deionized water was put 

into the two outer inlets, and mixing was analyzed at 1, 2, and 3 psi. The microchannels were 

imaged at the inlet and outlet using an inverted fluorescent microscope (Eclipse, Nikon Instru-

ments Inc. Melville, NY, USA) with a 10-x objective lens and digital camera (CoolSnapFX 

Photometrics, Tucson, AZ, USA), and analyzed in Metamorph Software (Universal Imaging, 

Corp., West Chester, PA, USA). To determine mixing efficiency, a linescan was taken across the 

channel at each point of interest (Figure 17) and the intensity of the fluorescence was recorded. 

Mixing efficiency was calculated using Equation 4: 
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where N is the total number of pixels, Ii is the intensity recorded at pixel i at a specific location, 

I0 is the intensity without mixing or diffusion, and Iperf.mix is the intensity of a perfectly mixed so-

lution (Johnson, Ross et al. 2002). 

Due to the increase in fabrication time and difficulty associated with multilayer lithog-

raphy, and the tendency for sperm cells to become caught in the herringbone features, the 

herringbone micromixer was eliminated. Non-Constricted SeLMA increased in mixing efficien-

Figure 17: The mixing efficiencies for the Constricted SeLMA (grey) micromixer 
and the Non-Constricted SeLMA (dark grey)  micromixer in relation to the pres-
sure applied to the microdevice to drive flow. Mixing efficiencies for each pressure 
were calculated by comparing the standard deviation of the intensity values across 
the channel to the standard deviation of the intensity across a perfectly mixed 
sample (n=3) 
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cy  from 57 ± 6% to 94 ± 1% as the pressure driving flow was decreased from 3 to 1 PSI. Both mi-

cromixers showed the highest mixing efficiency at 1 PSI, with 95 ± 2% for the Constricted 

SeLMA micromixer and 94 ± 1% for Non-Constricted SeLMA micromixer. This was an expected 

result because mixing is dominated by diffusion at the lower flow rates tested. The mixing effi-

ciency of Constricted SeLMA was statistically higher than Non-Constricted SeLMA at 2 and 3 

PSI (Figure 17, P < 0.05, n=3). However, due to the tendency of aggregate sperm cells to block 

the constrictions in Constricted SeLMA, Non-Constricted SeLMA was selected to be incorpo-

rated into the final device design. 

2.5.4 Analysis of Zebrafish Sperm Activation 
Sperm cells at a concentration of 1.0x108 cells/mL in HBSS300 were activated on-chip 

within 1 hr of stripping and motility was investigated at osmolalities of 100-300 mOsm. This 

narrow range was chosen because the lowest osmolality that can be generated in a 3-inlet micro-

fluidic device without prematurely activating the sample was 100 mOsm, where the cell 

suspension is at 300 mOsm and the adjacent diluent channels could be at a minimum of zero 

osmolality. Approximately 75 μL of sperm sample was loaded into the center inlet of the chan-

nel, and equal amounts of deionized water were pipetted into the side inlets. All tests were run 

FIGURE 18: Zebrafish Sperm Activation Curve: The motility (left) and the motility duration 
(right) of  zebrafish sperm activated in 4 osmolalities of HBSS. (n=3) 
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at 3 PSI to give an approximate initial flow rate of 10 μL/min (described in Section 2.3.2). As ex-

pected, the percent of motile sperm cells decreased as the osmolality of the final solution was 

increased (Figure 18). As the osmolality was increased from 100 mOsm to 200 mOsm, the pro-

gressive motility decreased from 62 ± 6% to 38 ± 8%. At 250 mOsm, the motility dropped to 3%, 

which was consistent with previous reports on zebrafish sperm motility (Yang, Carmichael et 

al. 2007). The increase in the osmotic pressure as the final osmolality of the cell solution in-

creased resulted in a decrease in the duration of cell motility. The swimming duration 

decreased from 128 ± 12 s to 67 ± 6 s as the final osmolality increased from 100 mOsm to 200 

mOsm. This result from the microfluidic format was also consistent with previous reports ac-

complished via hand mixing (Yang, Carmichael et al. 2007). 

2.5.5 Comparison of Manual and Microfluidic Sperm Activation 
The activation of zebrafish sperm by hand mixing was compared with on-chip activation 

using the Non-Constricted SeLMA micromixer device. All tests were carried out until the pro-

gressive motility of the sample had reached <1%. In an effort to assess the overall potential of 

the chip in replacing traditional manual methods, the manual activation was done using a 4:1 

dilution in order to increase the activation potential of the sperm. This is in contrast to the re-

sultant 2:1 dilution generated by the microfluidic device. Manual activation (Figure 19) resulted 

in an initial motility of 58 ± 10%, which then decreased to <1% over 70 s, while on-chip activa-

tion had an initial motility of 63 ± 2%, and showed a stable decrease in motility over 140 s. 

However, initial motility analysis was performed ~10 s after activation for all manual tests due 

to the time lag associated with this method (Figure 19). There was no significant difference be-

tween the percent motility at 10 s for either activation method (n = 3, p < 0.05). Due to the 

difference in dilution ratio, and thus motility duration, comparing data beyond 10 s may not 

yield relevant results. There was also a higher standard deviation throughout the manual acti-
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vation trials, indicating that improper mixing may have resulted in cells becoming active after 

initial mixing due to diffusion.  

In addition to the 4:1 manual dilution study described above, a 2:1 hand dilution was 

performed to be more consistent with the microfluidic 2:1 dilution ratio (Figure 20). On-chip 

activation resulted in an initial motility of 66 ± 6%, while manual activation had an initial motili-

ty duration of 49 ± 8%. When compared to the manual 4:1 activation, the manual 2:1 activation 

resulted in a more gradual decrease in motility over time. The percent motility in the 4:1 test 

FIGURE 19: (Top) A time line comparing manual to on chip activation. (Left) Manual 
zebrafish sperm cell activation using a standard 4:1 dilution ratio and (Right) the 2:1 on-chip 
zebrafish sperm activation 
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decreased from 48 ± 10% to 19 ±10% between 30 and 40 s, a minimum drop of 9%. This is an ex-

pected result, since a higher dilution, and thus a lower osmolality, would result in a faster 

decrease in motility (Yang, Carmichael et al. 2007). 

To compare the on-chip activation data to the manual activation data in terms of statisti-

cal significance and variance, a Student’s T-Test was performed (p < 0.05). Due to the latency 

period associated with manual activation, the motility was only compared for time points after 

10 s. Significance was only found at 80 s (P = 0.014) between the manual activation and on-chip 

activation (Figure 21). This can be attributed to the higher standard deviation of the manual ac-

tivation, however an F Test revealed that the only time points with a significant difference 

between the standard deviations of the two methods were at 30 (P = 0.020), 60 (P = 0.034), 110 s 

(P=0.016). Because this variability is seen in both instances of manual activation, it is a likely in-

dicator that the hand mixing involved in manual activation is less effective than the on-chip 

FIGURE 20: Motility over time for (Left) Manual zebrafish sperm activation using 2:1 dilu-
tion ratio and (Right) on-chip zebrafish sperm activation using a 2:1 dilution ratio. Due to 
the time lag associated with manual activation, the time points for that experiment start at 
t=10. 
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mixer at providing cells that have the potential to become motile with the appropriate condi-

tions needed to activate.  

2.5.6 Generation of Standard Curve for Osmolality Measurement 
As discussed in Chapter 1, impedance spectroscopy can be used to characterize the re-

sistance and capacitance of samples by applying an AC electrical input and measuring the 

magnitude (resistive) and phase (reactive) components of the resulting signal.  An initial analy-

sis of impedance signals as a function of HBSS osmolality was performed by measuring HBSS in 

the microfluidic device via the on-chip microelectrodes, which was connected to a 660B Electro-

chemical Analyzer (CHI Instruments Inc., Austin, TX). To determine the optimal frequency at 

which to interrogate a sample, a bode plot ranging from 1-100,000 Hz was performed on each 

sample in a seventeen-part dilution ranging from 16-306 mOsm was created. 

Figure 21: Statistical Analysis of manual (black bars, α=0.05, n=3) and on-chip (grey bars, 
α=0.05, n=6) activation of zebrafish sperm over time. * Indicates Significance. † Indicates Une-
qual Variance 
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 As frequency increased, there was a greater distinction in the magnitude and phase an-

gle for each osmolality. Thus, it was decided to interrogate the sample at 100,000 Hz. This data 

can be found in the Appendix. To create a standard curve, impedance analysis was performed 

on the same seventeen-part dilution of HBSS ranging from 16 to 305 mOsm. The solution was 

interrogated at 9.668x104 Hz with an amplitude of 0.01 V. The phase angle of the impedance de-

creased from -11.6°± 0° to -23.57°± 0.05° as the osmolality of the solution increased from 16 

mOsm to 305 mOsm (Figure 22). The magnitude of the impedance decreased from 57703 ± 61 Ω 

to 5127 ± 15 Ω as the osmolality of the solution increased, albeit in a non-linear fashion (Figure 

23). This is expected, because the conductivity of the solution should increase (thus decreasing 

the resistance) with the concentration of ions. There was a very low variability between all tests 

(<1° and <100 Ω). However, due to small variations between electrodes it should be noted that a 

standard curve must be created for each device to ensure accuracy. 

FIGURE 22: Standard Curve for Osmolality Determination of HBSS using the phase angle 
component of Impedance Spectroscopy. Each point represents the mean ± S.D. of measure-
ments from three samples. 
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2.5.7 Osmolality Determination of Sperm Sample 
The osmolality of a sperm cell solution at a concentration of 1.0x108 cells/mL was inter-

rogated using Impedance Spectroscopy as the osmolality of the solution was increased from 100 

to 300 mOsm, increasing at 50 mOsm increments. Both the magnitude and phase angle of the 

impedance were investigated. After the cells were introduced into the channel, it became ap-

parent that the phase angle component of the impedance no longer correlated to the osmolality 

(Figure 24). There was no significance between the phase angles at 100 mOsm, but all other 

points showed significance. This indicated that there was no correlation between the standard 

curve and the measurements taken with zebrafish sperm in the microchannel (Figure 25). 

To determine if the interference caused by zebrafish sperm on the phase angle of the im-

pedance was dependent on the sperm cell concentration, impedance measurements of zebrafish 

sperm in HBSS at osmolalities of 100, 200, and 300 mOsm were taken at cell concentrations of 

1.4x108, 1.05x108, and 7x107 cells/mL (Figure 24). There was no definite trend in phase angle as 

Figure 23: The standard curve for determining the osmolality of a solution by measuring 
the magnitude of the impedance. 
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FIGURE 24: The phase angle of the impedance in relation to the osmolality of zebrafish 
sperm suspended in HBSS at concentrations of 1.4x108 (diamond), 1.05x108 (square), 1.0x108  
(X), 7x107 (triangle), and 0 (circle) cells/mL. 

the cell concentration was decreased, and all values were statistically different from the stand-

ard curve. 

Because the phase angle component of the impedance showed sensitivity to the presence 

of sperm cells, the magnitude component of the impedance recorded during the same studies 

listed above was compared to the osmolality. The magnitude values behaved in a more stable 

manner than the phase angle when sperm were present in the sample. The resistance values 

showed a high variability (9.6x103 Ω) at 100 mOsm during the experiments with sperm, but this 

decreased as the experiment progressed (Figure 26). The impedance decreased 1.2x104 ± 1.3x103 

Ω to 5.9x103 ± 8 Ω as the osmolality increased from 100 to 250 mOsm. This is an expected result, 

as the conductance should increase with the strength of the electrolyte solution, albeit in a non-
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FIGURE 25: A comparison of resistive component of the impedance in relation to the osmo-
lality of a range of HBSS dilutions (grey squares) and zebrafish sperm cells suspended in 
HBSS (black triangles). 

linear fashion. To determine the uncertainty of the sensor response with cells present, the 

standard curve was fitted with the equation shown in Figure 25, and the impedance variability 

values were used to determine the resulting variation in osmolality in the range of values test-

ed. Due to the higher variability of impedance at the lower (100 mOsm) range, the osmolality 

uncertainty was ± 14 mOsm.  This uncertainty decreased to ± 7 mOsm at the high (250 mOsm) 

end of the sensor range. A Student’s T-Test (α = 0.05) was performed to investigate the statistical 

significance of the impedance data when cells were present or were absent (Figure 27). The only 

data pair that showed statistical significance was at 150 mOsm.  Considering the magnitude 

values for each osmolality were similar to each other, the method of using the resistive compo-

nent of impedance to measure the osmolality of a cell solution on chip was a viable solution. 
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The discrepencies in phase angle when comparing the impedance values of HBSS and 

zebrafish sperm suspended in HBSS can be explained in terms of inductance and capacitance. 

The phase angle measurements for all tests were negative, indicating that the floor electrode in 

the device exhibited capacitive behavior. Previous studies have determined that planar 

electrodes exhibit a double layer capacitance, which influences the impedance signal at 

frequencies lower than 1x105 Hz (Gawad, Schild et al. 2001, Segerink, Sprenkels et al. 2010). 

When sperm cells are introduced into the interrogation area of the electrode, the cells interfered 

with the double layer capacitance of the electrode, thus changing the phase angle. The resistive 

component of the impedance was likely unaffected due to fact that planar electrodes have been 

shown to have a small change in resistence (<3%) for particles between 5-8 μm than other 

electrode configurations (Gawad, Schild et al. 2001). Thus the magnitude of the impedance is 

affected more by the electrolyte concentration of the solution. All impedance studies done using 

zebrafish sperm showed the highest standard deviation at 100 mOsm. This was likely due to the 

lower conductivity of the solution at this concentration, combined with the interference of the 

sperm cells. However, because studies of the electrical properties of cells in an electrolyte 

FIGURE 27: Statistical analysis of on-chip osmolality determina-
tion between HBSS dilutions and zebrafish sperm suspended in 
HBSS. * denotes significance (α=0.05, n=3) 
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solution are typically performed in an isotonic environment, further experimentation relating 

the solution conductivity and the electrical properties of cells is needed. A larger spacing 

between the electrodes might increase the sensitivity of the real impedance values, as a greater 

impedance value, and a change in that value, could result from a change in osmolality. 

However, this larger interrogation volume could also be subject to artifact by the greater 

likelihood of cells (and/or debris) being present in the interrogation area. Future simulation and 

experiments exploring optimal electrode and microchannel geometries may prove useful in this 

regard. 
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CHAPTER 3: CONCLUSIONS AND FUTURE WORK 

3.1 Conclusions 
In this study, a microfluidic device with the ability to activate zebrafish sperm for motili-

ty analysis and to measure the osmolality of the cell solution in the microchannel was 

introduced. The on-chip micromixer allowed for reproducible mixing of fluids (57 ± 6 to 94 ± 1% 

at 3-1 PSI), which resulted in consistent zebrafish sperm cell activation (66 ± 6%). The incorpora-

tion of the micromixer removes the possibility of human error associated with hand mixing, 

lending to the standardization of activation techniques. The incorporation of a simple, pneumat-

ically driven, flow controller in place of a syringe pump facilitated a flow cessation time of ~1 s 

for all pressures tested. This is 5 fold improvement over previous microfluidic devices used for 

zebrafish sperm analysis, which had latent periods of 5-10 s after activation before bulk fluid 

flow subsided (Park, Egnatchik et al. 2012, Scherr, Knapp et al. 2015). More importantly, prompt 

cessation of flow allowed for motility analysis to be performed during the burst motility phase 

of activation. This represents an improvement over manual activation methods, which can have 

a latency period of ~10 s due to procedural requirements and human error. By performing mo-

tility analysis on-chip, it was determined that there was a drop in motility from 66 ± 6% to 47 ± 

6% during the first 10 s after activation. This equipment free solution to flow control also facili-

tated the replacement of the syringe pump with PCR microcentrifuge tubes. This design change 

decreased the volume of the zebrafish sperm sample needed for analysis from ~200 μL to ~60 

μL. The on-chip microelectrode allowed for the measurement of the osmolality of a zebrafish 

sperm sample in the device channel. The capability to measure osmolality on-chip permits the 

researcher to analyze the osmolality of a sample in real time, which saves time and facilitates 

the creation of accurate activation curves. Overall, the device described herein has the potential 

to aid in the standardization of cryopreservation techniques for zebrafish sperm by eliminating 

the error caused by the human element in experiments involving the investigation sperm motil-
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ity and osmolality. Overall, the standardization of motility analysis techniques across research 

laboratories will offer researchers the capability to reduce the ambiguity in data generated by 

manual activation methods. 

3.2 Future Directions 

3.2.1 Device Goals and Proposed Research 
Moving forward, it would be useful to further optimize the on-chip electrode for osmo-

lality detection. This would involve investigating new electrode configurations, as well as 

interrogation techniques. For example, because there was a strong correlation between the resis-

tive component of the impedance values, it may prove beneficial to determine osmolality by 

measuring the conductivity of the cell solution, as has been reported for on-chip detection of 

tear osmolality (Jacobi C. 2011). A more thorough design analysis for optimal electrical interro-

gation of osmolality would be worthwhile, as sensitivity and robustness of the sensing system 

may be improved with different numbers, geometries and configurations of the electrodes in 

the microchannel.  For instance, the TearLab chip uses a four-electrode configuration (Jacobi C. 

2011), and other on-chip electrical sensing studies have shown the difference between floor and 

side-wall electrode placement (Gawad, Schild et al. 2001).   It would also be beneficial to contin-

ue the miniaturization of the currently required laboratory equipment into portable apparatuses 

that can be used with the current chip design, such as the Cheapstat portable potentiostat that 

could be used for these applications, potentially reducing the overall cost of on-chip osmolality 

detection. Other off-chip components that should also be considered for further development 

would be the replacement of the microscope with another optical device such as a cell phone 

camera and lens system.  The iPod 6 used for PTV analysis, could prove to be a viable option. In 

order to achieve portability, one would have to create a small, but sensitive electrical interroga-

tion apparatus that could connect directly to the on-chip electrode. The end design would be a 
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true LOC device with the capability to perform sperm analysis in the field or be portable for 

movement between used aquaculture and research facilities with greater ease. 

Beyond on-chip analysis of standard motility as studied in this project, the microfluidic 

platform may enable new and more powerful studies of aquatic sperm physiology.  For in-

stance, because the flow can be directly controlled with greater precision in the microfluidic 

device than could be accomplished by pipetting onto a microscope slide, more complex studies 

of sperm swimming behavior, such as rheotactic or chemotactic behavior, could be accom-

plished, as have been done for other species sperm (El-Sherry, Elsayed et al. 2014, Tung, Ardon 

et al. 2014).  The platform of interrogating sperm visually in the vicinity of electrodes could also 

be utilized to study sperm swimming behavior in the presence of an electric field, or perhaps 

sorting sperm using a dielectrophoresis technique as has been done with other cell types in 

bioMEMS devices (Lee 2016). 

3.2.2 Proposed Plan for Large Scale Production 
For this device to truly standardize zebrafish sperm activation, it must be made availa-

ble to the aquaculture research community. Fabrication of the current device design requires 

specialized equipment and training, and each device can only analyze a limited number of 

samples (<10) before cell adhesion fouls the device. Using current methods, the time taken to 

fabricate three devices (assuming the silicon master mold and electrodes are readily available) is 

approximately 7 hrs. A trained technician can feasibly make 6 chips per day if two wafers are 

used simultaneously, resulting in approximately 100 devices every 17 days. If the target user 

group is assumed to be the aquaculture gamete research community (~100 labs), and aquacul-

ture farms specialized in Freshwater Egg Layers (92 farms) (2012 Census of Agriculture, USDA, 

National Agricultural Statistics Service), and each user were to request 10 chips, it would take 

approximately 326 days to fabricate enough chips to satisfy this order.  
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 In order to take this device to the manufacturing stage, the design must be re-evaluated 

and modified to fit the industrial scale. While PDMS on glass devices are useful for research 

scale prototyping, the current methods for fabricating these devices are not well adapted to the 

manufacturing scale. Thermoplastics, such as PMMA, polystyrene (PS), and polyethylene ter-

ephthalate (PET), are widely used in industry due to their ability to be remolded multiple times 

after curing by heating the material to its glass transition temperature (Ren, Zhou et al. 2013). 

These materials are purchased as solids that are then used to fabricate devices using ther-

momolding. The surface of these materials also retains hydrophilicity after oxygen plasma 

treatment for up to a few years, possibly eliminating the need for grafting of the hydrophilic 

PEG-Silane to prevent cell adhesion (Ren, Zhou et al. 2013). There are multiple techniques used 

in order to seal a thermomolded device to a base, including thermobonding and adhesives 

(Tsao and DeVoe 2009). The selection of a bonding process would need to be determined exper-

imentally, as all techniques have advantages and disadvantages. Adhesives tend to pose a 

threat in terms of clogging the channel, and thermobonding has a tendency to deform the chan-

nel geometry when the materials are heated to the glass transition temperature. These materials 

also allow for the easy integration of electrodes (Lin, Jen et al. 2001, Studer, Pépin et al. 2002). 

Thermomolding is a cheap and rapid manufacturing technique, and requires the use of metal 

templates, such as brass, that can withstand high temperatures. Because these templates are 

non-sacrificial and robust, and the device design is likely to remain constant, the most economi-

cal option would be to outsource their production. 

 Large-scale fabrication of devices by thermomolding will require the acquisition of a hot 

embosser capable of fabricating microfluidic devices. One option is to custom fabricate the 

equipment to fit the needs of the device. A low-cost template for fabricating a rapid cycle hot 

embossed has been proposed that uses off-the-shelf parts, has the capability to output one de-

vice every two minutes with submicron variatoin, and would cost approximately $10k (Hale 
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2009). In addition to creating channel geometries, the micro-to-macro interface (inlet/outlet res-

ervoirs and pneumatic bulb) used in the sperm activation device will have to be redesigned to 

fit the needs of large scale production. These parts will need to be customized so that they do 

not add considerable time to fabrication. 3-dimensional printing or injection molding are the 

natural options for fabricating consistent polymer parts. 3-dimensional printing is more cost 

efficient than injection molding, but can have long fabrication times and poor reproducibility 

due to environmental conditions. Due to these problems, injection molding would likely be 

used. There are two options by which this can be implemented: buy an injection molding press, 

or outsource the production of parts. The decision would require a long-term economic analysis 

based on the number of chips sold per year and the cost of each method. However, outsourcing 

may be the best option during the start-up phase of production. Noble Plastics, based out of 

Grand Coteau, Louisiana, is a product realization company that specializes in injection molding, 

and may serve as a useful business partner due to the convenience of their location. 

 Using the methods described above, the production time of sperm activation devices 

could be reduced considerably. If the total production time for one day is reasonably assumed 

to be 6 hrs/day, then this fabrication scheme could produce up to 72 devices per day, depending 

on the methods of bonding and macro-to-micro interface decided upon. This is a 12-fold im-

provement over the current fabrication method. With the ability to produce a large number of 

devices in a short period of time, the device could be readily distributed to the aquaculture 

gamete research community. 
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APPENDIX 

APPENDIX A: CRYOPRESERVATION OF ZEBRAFISH SPERM 
Cryopreservation is the act of freezing germplasm of a desired species to a state of sus-

pended animation for storage, with the intent of thawing and reanimating the resources for 

later use. This is accomplished through a series of steps including: sample collection, sperm di-

luting (extension), the selection and addition of cryoprotectants, cooling, storage, thawing, and 

viability detection. Each of these steps must be carefully developed, optimized, and investigated 

to prevent accumulation of even small losses at each step (Yang, Carmichael et al. 2007).  

Cryopreservation has been applied to the conservation of genetic resources in  numer-

ous species such as cattle (Bos Taurus) (Polge and Rowson 1952) laboratory mice (Mus musculus) 

(Polge, Smith et al. 1949), and most notably in humans (Homo sapians) (Nakagata 2000). While 

these studies serve as examples for the utility of cryopreservation, a lack of standardized proto-

cols for zebrafish sperm preservation has resulted in a multitude of complications. One 

difficulty that occurs during cryopreservation is the generation of ice crystals caused by freez-

ing water. When these crystals form within the cells, the membrane integrity of the cell can be 

compromised. In order to reduce the creation of ice crystals, cryoprotectants are added to re-

duce the intracellular freezing point (Yang and Tiersch 2011). Common cryoprotectants include 

methanol, glycerol, N,N-dimethyl acetamide (DMA) and dimethyl sulfoxide (DMSO) among 

others (Irawan, Vuthiphandchai et al. 2010). The use of cryoprotectants has been shown to be 

effective; however, chemical ratios and concentrations vary between species due to varying 

sperm size, concentration, and physiology. Because of this variation, optimal cryoprotectant 

techniques must be established experimentally (Yang and Tiersch 2009). Although cryopreser-

vation protocols for zebrafish sperm exist (Morris, Berghmans et al. 2003, Draper, McCallum et 

al. 2004, Sood, English et al. 2006) most are based on a single protocol from over 30 years ago 

(Harvey, Kelley et al. 1982) and yield inconsistent results (Hagedorn, Ricker et al. 2009). These 
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ambiguities have resulted in a lack of cohesive knowledge on the true effects of a multitude of 

cryopreservation variables on the quality of post-thaw zebrafish sperm. For example, there was 

an observed variation in post-thaw fertility (33 ± 20% with a range of 5-81%) in zebrafish sperm 

samples with the same initial percent motility that were frozen using the same cryopreservation 

protocol (Yang, Carmichael et al. 2007). To reduce the variability in these results, protocols for 

cryopreservation need refinement and evaluation using pre-freeze and post-thaw motility stud-

ies. One necessary step in creating a standardized cryopreservation protocol for zebrafish is to 

develop a simple and reproducible means to evaluating sperm quality before and after freezing 

(Yang and Tiersch 2009). 
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APPENDIX B: STANDARD OPERATING PROCEDURES 

SOP-1:Hanks’ balanced salt solution (HBSS) 
 
Hanks‘ balanced salt solution is used as a collection medium for sperm. The HBSS should be 
prepared with an osmolality of 290 to 300 mOsmol/Kg to prevent activation of the sperm. 
 
Procedure: 

1. Combine the ingredients (Table A-1) with distilled water; bring the total volume to ~ 3.9 L.  

2. Stir until all solutes are dissolved.  

3. Verify the osmolality of mixture using osmometer; adjust to 300 mOsmol/kg by adding water.  

4. Distribute the solution into 1 -L bottles, and label with the date and name of person preparing 
the solution.  

5. Store bottles in refrigerator.  

TABLE A.1 Ingredients for Hanks‘ balanced salt solution. 
Ingredient grams/Liter Molarity 
NaCl 8.00 0.1400 
KCl 0.40 0.0050 
CaCl2•2H2O 0.16 0.0010 
MgSO4•7H2O 0.20 0.0010 
Na2HPO4 0.06 0.0004 
KH2PO4 0.06 0.0004 
NaHCO3 0.35 0.0040 
C6H12O6(glucose) 1.00 0.0060 
Tiersch, T. R., Goudie, C. A. & Carmichael, G. J. 1994. Cryopreservation of channel catfish 
sperm: storage in cryoprotectants, fertilization trials, and growth of channel catfish produced 
with cryopreserved sperm. Transactions of the American Fisheries Society, 123: 580-586. 

SOP-2: Use of the osmometer Osmette III™ 
1. OBJECTIVE 

 To reliably measure the osmotic strength of a solution, colloid or compound using the 
osmometer Osmette IIITM. 

 

2. HEALTH AND SAFETY 

Closed-toed shoes, laboratory coat, and eye protection must be worn in the laboratory. 

 

3. PERSONNEL/TRAINING RESPONSIBILITIES 
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 After reading these procedures, have assisted-training from experienced staff. 

 

4. REQUIRED AND RECOMMENDED MATERIALS 

All materials are located in room 121C: ‒ Osmette III pipette (silver) - top drawer on the left plastic organizer  ‒ Pipette tips – top cabinet ‒ Cleanette absorbent cleaning rod ‒ Standard solutions – top cabinet ‒ Osmometry standard bottles labeled with different osmolarities – top cabinet ‒ Kimwipes® 

 

5. TO MAINTAIN THE ACCURACY OF THE STANDARDS 

5.1 Standards should be stored at room temperature with the caps or pour spouts 
tightly closed.  

5.2 Pour, do NOT pipette, from the bottle into a clean, dry microcentrifuge tube.  Pi-
pette from this tube.   

5.3 Replace cap immediately.  Standards and samples will change their values fairly 
quickly if left uncovered. 

5.4 Do NOT dilute contents. 

5.5 Discard solution after use; NEVER return it to the bottle. 

5.6 Discard the bottle when only 20% of the contents remain. 

5.7 Use care in opening ampoules to avoid sharp edges. 

5.8 When pipetting the sample, there should be an air separation between the sample 
and the Teflon piston tip.  Careless pipetting will result in erroneous readings. 

 

6. TURNING ON AND CALIBRATION 

6.1 Switch ON/OFF switch to ON, and allow the cooler to cool down.  

6.2 Push a cleanette all the way to the bottom of the cooler well.  Rotate it to remove any 
moisture.  Remove and dispose it.  Repeat this procedure after every run. 

6.3 Every time the osmometer is turned ON, calibration needs to be checked.  If drift-
ing, recalibrate. 

6.4 After the display has cycled, using the pipette with a clean, dry pipette tip, pick up 
10 μl of a 100 mOsm sample and place the pipette tip into the cooler well.  

6.5 DO NOT PIPPETE THE SAMPLE INTO THE WELL!!  The sample remains in the 
pipette tip with handle attached during the measurement cycle. Do NOT press the 
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plunger of the pipette handle while the pipette tip is in the well, or probe damage 
may result. 

6.6 Always wipe the outside of the pipette tip dry with a Kimwipe® before inserting 
the tip into the well. 

6.7 Press RUN.  The osmometer will countdown to zero to freeze, and then will give 
an osmolarity measurement.  Running this sample will clean the well and ensure 
the electronics and cooler are cycling correctly. 

6.8 Press the CAL button (Fig. 1) to start a new calibration. 

Fig. 1. Pressure sensitive key pad. 

 

6.9 The message on the screen will change from Wipe before sample to Wipe before STD. 

6.10 Wipe the well with a cleanette before each standard is run.   ‒ Run three replicates of deionized water samples (0 mOsm) ‒ Run three replicates of 100 mOsm standards ‒ Run three replicates of 500 mOsm standards ‒ Run three replicates of 1500 mOsm standards ‒ Run three replicates of 2000 mOsm standards 

6.11 Place a fresh pipette tip containing each standard into the cooler well and press 
RUN. 

6.12 Observe the Display.  Seeding (vibration) will occur when Display reads 0.  After 
READ is displayed, the reading for that Standard is automatically added to the cal-
ibration.   

6.13 Press CAL to end and save the new calibration. 

6.14 If the following error message occurs: OUTSIDE CALIBRATION, possible fixes 
are: ‒ Recalibrate using previous standards and one higher if the reading was 

above the maximum previous standard. ‒ Recalibrate using previous standards and one lower if the reading was be-



64 
 

low the minimum previous standard. 

6.15 In addition to the 125-ml bottles of standards, CON-TROLTM Reference Standards 
are available in 5-ml glass ampoules for 100, 290 and 500 mOsm/kg.  Check the 
standards against the CON-TROLTM Reference Standards every week or two, de-
pending on the load of samples tested each week. 

7. RUNNING OF SAMPLES 

7.1 Once the osmometer is calibrated, pipette the solution to be tested, wipe the tip 
and place the pipette tip with handle attached in the cooler well. 

7.2 Always wipe the outside of the pipette tip dry with a Kimwipe® before inserting 
the tip into the well. 

7.3 Press RUN.  The osmometer will countdown to zero to freeze, and then will give 
an osmolarity measurement. 

7.4 Make sure that the cooler well is cleaned with a cleanette AFTER EACH RUN. 

7.5 Once all the samples are analyzed, switch ON/OFF switch to OFF.  The cooler well 
will close automatically. 

 

8. FACTORS AFFECTING REPRODUCIBILITY 

8.1 Always use the pipette tips and cleanettes provided by the vendor. 

8.2 Carefully pipette samples to avoid capturing air in the bottom of the pipette tip. 
NOTE: There SHOULD be air between the sample and the Teflon plunger. 

8.3 Make sure pipette tips fit snug on the Teflon plunger.  If they do not fit, it may be 
that the Teflon tip is worn out and needs replacement. 

8.4 Storing pipette with the tip cover will help increase the lifespan of the Teflon tip. 

8.5 When Teflon tip is worn out, sample may leak into the well, giving inconsistent 
readings 

8.6 Run a series of samples or standards in quick succession, discarding the first read-
ing, as it thermally conditions the well. 

8.7 Avoid re-running the sample with the same pipette tip. 

  

9. LITERATURE  
Osmette IIITM, Model 5010 Automatic Osmometer, Operating Manual. 2008. Precision 
Systems Inc. Natick, MA. 
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Figure A1: The frequency response for (Top) the magnitude and (Bottom) the phase angle of 
the impedance as osmolality is  increased from 16-305 mOsm. Each point represent the mean 
± S.D. of three aliquots from each dilution of HBSS. 

APPENDIX C: BODE PLOT 
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