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Abstract Blood flow in microcirculation shows several interesting phenomena that can be used to 

develop microfluidic devices for blood separation and analysis in continuous flow. In this study we 

present a novel continuous microfluidic device for partial extraction of red blood cells (RBCs) and 

subsequent measurement of RBC deformability. For this purpose, we use polydimethylsiloxane 

(PDMS) microchannels having different constrictions (25%, 50% and 75%) to investigate their effect 

on the cell-free layer (CFL) thickness and separation efficiency. By using a combination of image 

analysis techniques we are able to automatically measure the CFL width before and after an artificial 

constriction. The results suggest that the CFL width increases with enhancement of the constriction 

and contributes to partial cell separation. The subsequent measurements of RBCs deformation index 

reveal that the degree of deformation depends on the constriction geometries and hematocrit after the 

cell separation module. The proposed microfluidic device can be easily transformed into a simple, 

inexpensive and convenient clinical tool able to perform both RBC separation and deformability 

analysis in one single device. This would eliminate the need for external sample handling and thus 

reducing associated labor costs and potential human errors.  
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Introduction 

Cell separation and identification are essential in a variety of biomedical applications including cell 

biology, diagnostic and therapeutic methods. Blood is a non-Newtonian fluid containing extremely 

rich amount of information about the physiological and pathological state of the human body. 

However, due to its complexity there are few accurate analysis methods. Most of the standard 

techniques used cell separation and sorting are often labor intensive or require additional external 

labels to identify cells. 

Blood flow in microcirculation shows several interesting phenomena that can be used to develop 

microfluidic devices for blood separation and analysis in continuous flow. These phenomena include 

plasma skimming [1], cell-free layer (CFL) [2, 3, 4], leukocyte margination [5] and bifurcation law 

[6]. Recently, several researchers have used these effects and replicated in microfluidic systems. In 

microchannels RBCs, due to their deformability and lift forces, tend to be concentrated around the 

center of the microchannels while white blood cells (WBCs) and rigid RBCs (such as Malaria RBCs) 

tend to migrate to the CFL originated at regions close to the walls [1-5]. Bifurcation law [6] states that 

RBCs behavior, in microchannels with bifurcations, tends to be oriented to the wide microchannel. A 

number of microfluidic devices have been developed to take advantage of these natural hemodynamics 

phenomena. Shevkoplyas et al. [7] developed a microdevice to isolate WBCs from a blood sample by 

using the margination effect, whereas Hou et al. [8] have very recently proposed a biomimetic 

separation device to separate normal RBCs from malaria infected RBCs. Other researchers have found 

several advantages to control and manipulate blood flow in microfluidic devices. Fujiwara et al. [9] 

have found evidence that it is possible to create an artificial CFL under appropriate hemodynamic and 

geometrical conditions, and also the CFL thickness is strongly influenced by the RBC deformability. 
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Recently, Ishikawa et al. [10] and Leble et al. [11] have shown the existence of thin CFL in the centre 

of the microchannel, just downstream of a confluence. This phenomenon is due to the existence of a 

CFL in both inner walls and a consequent formation of a triangular CFL in the region of the 

confluence apex [10, 11]. Faivre et al. [12] and Sollier et al. [13] have demonstrated that the CFL 

could be enhanced by using a microchannel containing a constriction followed by sudden expansion to 

separate plasma from the whole in vitro blood. However, most of these studies aim at the complete 

extraction of cells from plasma, which is not the case of the present study. 

The main objective of the proposed microfluidic device is to separate certain amount of RBCs from 

plasma and then measure the deformability of individual RBCs downstream in one single step. RBC 

deformability is important in a clinical sense as it is related to several diseases such as diabetes, 

malaria, as well as cardiovascular disorders [14]. These diseases are at times fatal and early detection 

is crucially preferable. In this sense, RBC deformability can be a new biomarker and the fast and easy 

measurement methods are required. Former studies on RBC deformability have introduced some 

methodologies such as micropipette aspiration and optical tweezers where basically RBCs are 

stretched and the pressure or force for their extension is measured [15, 16]. Whilst these studies have 

revealed useful RBCs mechanical properties, these methods reqire large amount of preparation and are 

very time consuming. For fast analysis of vast amount of blood samples, these traditional 

measurement methods are unlikely to be appropriate. Moreover, since the preceded cell separation 

process is needed, the microfluidic devices which are easy to manipulate their microchannel 

geometries are more suitable for our purposes. A typical microdevice for RBC deformation studies 

uses a microchannel having a shape of sudden constriction in order to elongate cells. Zhao et al. [17] 

used a straight microchannel with a sudden narrowing and expanding constriction. Lee et al. [18], 

Yaginuma et al. [19-20] and Faustino et al. [21], on the other hand, used microchannels with a 

hyperbolic shape contraction followed by a sudden expansion region. These microfluidic experiments 

showed high deformability of RBCs when travelling through a contraction region. However, those 

studies did not include the preceded cell separation process as they have solely performed 

deformability measurements after an additional sample preparation [19-21]. 

The proposed microfluidic device aims to obtain a CFL with a low enough RBC concentration to 

perform cell deformability measurements downstream the separation constriction. This study is 

divided in two main parts. Firstly, a simple microfluidic device with different constrictions (25%, 50% 

and 75%) is used to test the RBCs separation. Secondly, a more complex device, able to perform in a 

single step both RBC separation and deformability analysis, was tested. This first tentative to integrate 

in one single device both tasks of separation and deformation have shown not only the viability of this 

new clinical strategy but also new findings that will be crucial to optimize the design for this kind of 

microfluidic device.   

 

Materials and methods  
 

Working fluids  
The working fluid used in this study was dextran 40 (Dx40) containing about 9% (i.e. Hematocrit, Hct 

= 9) by volume of human RBCs. More details can be found in Supplementary Materials. 

 
Microdevice geometries 

The microfluidic devices tested in this study were fabricated using a soft lithography technique and 

consist of two main parts: a cell separation region and a cell deformation region. The microchannel 

height was measured by a profilometer to be 51 m. 
 

Fabrication of the microfluidic devices 

The polydimethylsiloxane (PDMS) rectangular microchannels were fabricated using a soft 

lithographic technique. A detailed description of the fabrication process can be found elsewhere [22, 

23]. Briefly, the microchannel geometry was drawn using Autocad, and a high resolution photomask 

was manufactured. The solid master was then fabricated on a silicon wafer with an ultrathick 

photoresist (SU-8 50; Kayaku MicroChem, Japan). The PDMS prepolymer was prepared by mixing a 

comercial prepolymer and catalyzer (Silpot 184; Dow Corning, USA) at a weight ratio of 10:1. After 

the mixture was degassed under vacuum, the PDMS was poured into the SU-8 photo-resist master 

mold and cured by baking for about 2h at 70°C. Both master and PDMS were cooled to room 
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In terms of the deformation measurements, Figure 7 shows average DI values of ten RBCs flowing 

through the two different constriction regions. The maximum DI value is in both cases relatively the 

same, however, for the sudden contraction case (a) the maximum DI is located close to the constriction 

entrance whereas for the smooth case (b) the maximum DI is located around the middle of the 

constriction. In addition, in the constricted region in (a) RBCs tend to flow as parachute like shape and 

the DI values are not truly comparative in the sequence of cell behaviour throughout the deformation 

analysis region of the device. At least, the region for measurements has to be carefully selected for a 

meaningful comparison. On the other hand, the smooth contraction provides less deviation of DI 

results and indicates clearly an appropriate measurement region (x/Lc=0.5), i. e., middle of 

constriction. The majority of the cells are flowing with the same orientation at the centreline of the 

channel where the cells are under an extensional flow dominated regime and as a result they tend to 

elongate in y direction induced mainly by this extensional force. This stable state of the RBCs makes 

this geometry suitable to measure small changes of RBC deformability. More detailed studies on 

RBCs extensional flow effects can be found elsewhere [19-21]. 

As mentioned before, by using a constriction with  rେ = 0.5, we have observed collisions and the 

overlap of neighbouring cells flowing within the measurement region. In the CS region, the Hct of the 

flowing fluid is reduced from 9% to ≈2.4% but ideally it needs to be less than that. Nevertheless, it is 

worth mentioning that by reducing Hct to less than 2% the number of RBCs to measure may not be 

large enough to obtain a significant statistical picture of the results. Therefore, an optimization of 

channel, i.e. change in depth, needs to be done in order to obtain the best representative results of the 

RBCs DI.  

 

Conclusions 
The conventional microfluidic methods for measuring RBC deformability are often labor intensive and 

require additional sample modification and preparation. In this paper, we present a new, simple 

microfluidic device able to perform both RBCs separation and deformability assessment in one single 

step. In general, our results indicate that the proposed device can perform both operations (separation 

and deformation) successfully. The reported results show evidence that the constriction has a strong 

impact on the CFL thickness and consequently on separation rate.  Moreover, the deformability results 

show clearly that most appropriate geometry to measure RBC deformability is the microchannel 

containing a smooth constriction region. In this kind of geometry due to the existence of a dominant 

extensional force the majority of the RBCs tend to flow with the same orientation. This stable 

performance of the RBCs may prove to be enough sensitive to detect small changes of RBC 

deformability and thus it may have the ability to diagnose early stage RBC related diseases such as 

diabetes, malaria and sickle cell anemia. Therefore, the integrated and simple continuous system 

operations make the proposed microfluidic device a potential diagnostic technique to be applied to 

both healthy cells and blood cell diseases. 
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Supplementary Materials 

1. MATERIALS AND METHODS 

1.1. Working fluids  

The working fluid used in this study was dextran 40 (Dx40) containing about 9% (i.e. Hematocrit 

(Hct = 9%).  Briefly, blood was collected from a healthy adult volunteer and heparin was added in 

order to prevent coagulation. The red blood cells (RBCs) were separated from bulk blood by 

centrifugation and aspiration of the plasma and buffy coat. The RBCs were then washed twice with a 

physiological saline solution and diluted with Dx40 to make up the required RBC concentration. All 

blood samples were stored hermetically at 4ºC until the experiments were performed at controlled 

temperature of approximately 37ºC.  

 

1.2. Fabrication of the microfluidic devices 

The polydimethylsiloxane (PDMS) rectangular microchannels were fabricated using a soft 

lithographic technique. A detailed description of the fabrication process can be found elsewhere [22, 

23]. Briefly, the microchannel geometry was drawn using Autocad, and a high resolution photomask 

was manufactured. The solid master was then fabricated on a silicon wafer with an ultrathick 

photoresist (SU-8 50; Kayaku MicroChem, Japan). The PDMS prepolymer was prepared by mixing a 

comercial prepolymer and catalyzer (Silpot 184; Dow Corning, USA) at a weight ratio of 10:1. After 

the mixture was degassed under vacuum, the PDMS was poured into the SU-8 photo-resist master 

mold and cured by baking for about 2h at 70°C. Both master and PDMS were cooled to room 

temperature and the PDMS was peeled from the master. The input/output ports are made by means of 

micro-pipette tips.  Finally, the PDMS was washed with ethanol and brought into contact with a clean 

slide glass, where a reversible seal formed spontaneously. 

 

1.3. Experimental set-up 

The high-speed video microscopy system used in this study is shown in Figure 1. This system 

consisted mainly by an inverted microscope (IX71; Olympus, Japan) combined with a high-speed 

camera (Phantom v7.1; Vision Research, USA). All the microfluidic devices were placed on the stage 

of the inverted microscope and by using a syringe pump (KD Scientific, USA), a constant pressure-

driven was maintained. Additionally, a thermo plate controller (Tokai Hit) was set to 37ºC in order to 

have an environment close to in vivo conditions. 
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