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Abstract: Chromosome structural changes with nonre-
current endpoints associated with genomic disorders
offer windows into the mechanism of origin of copy
number variation (CNV). A recent report of nonrecurrent
duplications associated with Pelizaeus-Merzbacher dis-
ease identified three distinctive characteristics. First, the
majority of events can be seen to be complex, showing
discontinuous duplications mixed with deletions, inverted
duplications, and triplications. Second, junctions at end-
points show microhomology of 2–5 base pairs (bp). Third,
endpoints occur near pre-existing low copy repeats
(LCRs). Using these observations and evidence from
DNA repair in other organisms, we derive a model of
microhomology-mediated break-induced replication
(MMBIR) for the origin of CNV and, ultimately, of LCRs.
We propose that breakage of replication forks in stressed
cells that are deficient in homologous recombination
induces an aberrant repair process with features of break-
induced replication (BIR). Under these circumstances,
single-strand 39 tails from broken replication forks will
anneal with microhomology on any single-stranded DNA
nearby, priming low-processivity polymerization with
multiple template switches generating complex rear-
rangements, and eventual re-establishment of processive
replication.

Introduction

In the past few years, we have learnt that a major component of

the differences between individuals is variation in the number of

copies of segments of the genome, and of genes included in these

segments (copy number variation or CNV) (for definition of

abbreviations, see Table 1). A considerable portion of the genome

is involved in CNV [1–11]—with estimates of up to 12% [4]—

which can arise meiotically and also somatically as shown by the

finding that identical twins can differ in CNV [12]. CNV has been

a significant component of primate evolution [13–16]. Here we

draw on evidence on the mechanism of DNA transactions in

Escherichia coli, yeast, Drosophila, mammals, and human cancer to

derive a model for the origin of CNV based on the mechanism of

BIR occurring at sites of microhomology (microhomology-

mediated BIR or MMBIR).

Genomic Disorders

Although we can see that considerable variation in copy

number is tolerated or is advantageous to its carrier, some genes

are dosage-sensitive, and duplication or deletion involving these

genes gives rise to human clinical phenotypes collectively referred

to as genomic disorders [17]. This has allowed the ascertainment

of structural changes and thus the study of the origin of CNV. For

recurrent rearrangements, much CNV stems from homologous

recombination between segments that already occur as two or

more copies. When this happens, sequences that lie between the

repeats that recombine will be either duplicated or deleted, thus

changing the copy number. This process is referred to as nonallelic

homologous recombination, or NAHR [18]. The repeated

sequences that recombine might occasionally be highly repetitive

sequences that occur widely in the human genome [19] but are

usually sequences that occur only twice or a few times (i.e., low-

copy repeats, LCRs, or segmental duplications, SDs). The LCRs

tend to occur in clusters in highly complex regions of the genome.

These repeated segments might be short (about 10 kilobases (kb)),

or up to several hundreds of kb in length, and they occur in either

orientation. Some examples of genomic complex regions are

shown in Figure 1.

The endpoints of CNVs that arose by NAHR occur in a few

positions where there is sufficient homology for homologous

recombination. Although many genomic disorders arise by NAHR

[20], some rearrangements have endpoints in many different

positions. These CNVs arose de novo by rearrangements at sites

that lack extensive homology. Recent evidence on the distribution

of nonpathological CNVs in two individuals suggests that most

differences in copy number from the reference sequence arose by

nonrecurrent events [2]. Thus nonrecurrent chromosomal chang-

es arise quite frequently [21]. Because the nonrecurrent events

presumably reflect the origin of most genome complexity, the

study of them is important to the understanding of genomic

disorders, genetic variability due to CNV, and human evolution.

Pelizaeus-Merzbacher disease (PMD; Online Mendelian Inher-

itance in Man (OMIM) accession code 312080; http://www.ncbi.

nlm.nih.gov/omim/) is a recessive X-linked genomic disorder

affecting the central nervous system that arises by nonrecurrent

chromosomal changes. The changes involve duplication, triplica-

tion, or deletion of the PLP1 gene. The clinical phenotype allows

identification of individuals showing nonrecurrent chromosomal

changes in the PLP region. In a study of the structural variation in

the genomes of patients with PMD, Lee et al. [22] describe some

aspects of the fine structure of newly arising CNVs with

nonrecurrent endpoints and report three striking properties of
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their structure that help us to understand the origin of CNVs.

First, the authors report that the novel junctions form at sites of

microhomology, i.e., lengths of homology 2 to 5 nucleotides long

that are too short to support homologous recombination. Such

junctions have been reported previously in cases of nonrecurrent

endpoints of deletions and duplications [19,23,24]. Second, they

observed that the new structures are complex, showing duplication

and deletion interspersed with nonduplicated or with triplicated

lengths, and showing duplicated segments in either orientation.

These characteristics were reported previously [25–31]. Third,

although these events did not arise by NAHR, the novel junctions

tend to occur in close proximity to LCRs [32–34]. Figures 2 and 3

illustrate examples of these complex non-recurrent events.

Nonrecurrent rearrangements had previously been attributed to

a mechanism of nonhomologous end-joining (NHEJ)

[19,20,24,33]. However, the characteristics of microhomology

junctions and structural complexity in these new structures, as

revealed by nucleotide sequencing and high-resolution array

comparative genomic hybridization, led Lee et al. [22] to propose

that the rearrangements arose through a replication-based

mechanism termed FoSTeS (fork stalling and template switching),

a mechanism proposed previously for amplification in E. coli [35].

Replication-based models have also been proposed to explain the

origin of gross chromosomal rearrangements seen in a low

proportion of patients with cystic fibrosis and hemophilia A.

Analysis of deletions of the genes involved reveals complex

structures similar to those described for PLP1 [28,29,31].

Genome Rearrangements in Cancer

The amount of structural variation in cancer cells is sometimes

so extreme [36] that it is not possible to determine which changes

occurred within the same event. However, it can be seen that

duplications are often discontinuous, and junction regions include

insertions of nearby, unlinked, and unknown sequences, and

deletions and inversions [37], showing that rearrangement events

in cancer cells are complex. Many studies report microhomology

at junctions of a large proportion of the structural variation (e. g.,

[37–39]). Studies of translocation endpoints in leukemia and other

cancers find that many junctions have microhomology and are

associated with insertions and deletions of various lengths [40–42].

These observations are compatible with at least some of the

genomic instability seen in tumor formation and progression

having stemmed from the same underlying mechanism as the

formation of nonrecurrent duplications in genomic disorders.

Involvement of Replication in Chromosomal
Structural Change

In the Lac assay system in E. coli [43], amplification of the lac

operon to 20–100 copies occurs in response to the stress of

starvation [44,45]. The novel junctions of the amplified segments

(amplicons) show that endpoints occurred at sites of microhomol-

ogy of 2–15 bp [35,46]. Some of the amplicons are complex,

containing both direct and inverted repeats. Many others cannot

Table 1. Abbreviations Used in the Text.

Abbreviation Meaning

BIR Break-induced replication, a recombination-based mechanism for restarting broken replication forks.

CNV Copy number variation, variation within a population of the number of copies of a gene or length of genome.

DSB Double-strand break, a break in both strands of a DNA molecule.

FoSTeS Fork stalling and template switching, a replicative mechanism for changing chromosome structure.

LCR Low copy repeat, a length of genome that occurs twice or a few times.

MMBIR Microhomology-mediated break-induced replication, a replication-based mechanism of recombination between sequences with very little
base identity, proposed here.

NAHR Nonallelic homologous recombination, homologous recombination occurring between low copy repeats.

NHEJ Nonhomologous end joining, a mechanism for repair of DNA double-strand breaks that does not require homology.

SD Segmental duplication, a repetition of a length of genome.

doi:10.1371/journal.pgen.1000327.t001

Figure 1. In silico analyses revealed complex genomic architecture in regions of nonrecurrent rearrangement. (A) The ,3 Mb
surrounding the PLP1 gene and (B) the ,4 Mb surrounding the MECP2 gene on the X chromosome contain numerous LCRs in various orientations
[33,106]. LCRs are represented by the colored block arrows, and like LCR copies are designated by color and letter for a given sequence. Orientation is
depicted by the direction of the block arrow.
doi:10.1371/journal.pgen.1000327.g001
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be identified by outward-facing polymerase chain reaction (an

observation also encountered frequently for PLP1 duplication

junction analysis [22]), which would reveal the junctions of simple

tandem repeats, and so are presumed to be complex, rather than

simple tandem repeats [35,46,47]. By these criteria, about 25% of

amplicons are complex. Thus, with respect to microhomology and

complexity, the chromosomal structural changes in this system

resemble those found in nonrecurrent events in human genomic

disorders.

Homologous recombination requires RecA protein (Rad51 in

eukaryotes) (reviewed in [48]). Microhomology-mediated deletion

formation in E. coli (less than 25 nucleotides of homology) has long

been known to be RecA-independent [49–52]. RecA-independent

short homology-mediated deletions (25–50 nucleotides) have

previously been attributed to template switching within a

replication fork during DNA replication (reviewed in [53]). The

evidence for this is, first, that mutations in genes encoding

replication functions affect the formation of these events; second,

that mutations affecting post-replicational mismatch repair affect

them, placing the event very near to the replication fork; third,

that mutation of 39 exonucleases has an effect that is consistent

with the ends being used to prime DNA synthesis; and fourth, that

it is very difficult to obtain mutations affecting the process by

transposon mutagenesis, suggesting essential functions.

In the E. coli Lac system, study of genetic requirements of stress-

induced amplification has revealed some details of the mechanism.

First, the events involve 39 DNA ends. This is seen by an increase in

amplification when a 39 exonuclease gene (xonA) is deleted, and a

decrease when the 39 exonuclease is over-expressed. Similar

manipulation of 59-exonuclease has no effect [35]. This suggests

that amplification results from free 39 ends in the cell most of which

are normally removed by exonuclease. As above, the involvement of

39 ends but not 59 ends is consistent with priming of DNA synthesis.

Second, lagging-strand processing at replication forks is

implicated by a requirement for the 59 exonuclease domain of

DNA polymerase I (Pol I) [35,45]. Pol I is involved in lagging-

Figure 2. Complex rearrangements involving PLP1 detected by junction analysis (A) and oligonucleotide array comparative
genomic hybridization analysis (B) [22]. (A) A complex duplication of the PLP1 region detected by outward facing polymerase chain reaction.
Panel (i) shows the PLP1 region with the positions of the outward facing primers. The structure of the duplicated region is shown in (ii), with an
enlargement of the complex junction region in (iii). Two or three bp of microhomology, shown by the letters A, C, G and T, were found at the
breakpoint junctions (open arrows). (B) Deletion and duplications found in two patients with Pelizaeus-Merzbacher disease and their carrier mother
[24], shown by comparative genomic hybridization. A ,190-kb deletion is followed by a ,9-kb segment with no copy-number change, and an
interrupted ,190-kb duplication was detected (i). Panel (ii) shows enlargement of the array revealing interruption of the ,190-kb duplication. In
each horizontal yellow box above, blue lines represent an average of the data points. Red data points indicate copy-number gains, green data points
indicate losses, and black data points indicate no copy-number change. The y-axes show relative hybridization; genomic position is on the x-axis.
Panel (iii) summarizes the structure based on comparative genomic hybridization where a green box shows the region deleted, red boxes show the
regions duplicated, and black lines show regions of no change.
doi:10.1371/journal.pgen.1000327.g002
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strand replication, base excision repair, and nucleotide excision

repair, but these excision repair processes are not involved in

amplification [35], so lagging strands at replication forks are

implicated in amplification.

Third, there is a requirement for the proteins of double-strand

break (DSB) repair by homologous recombination [35] (the

RecBC system, reviewed in [48]). That this is actually a

requirement for DSB repair (not just the proteins) is shown by

the discovery that in vivo double-strand cleavage of DNA near lac

enhances amplification rates [54].

Taken together, these observations suggest a model for

amplification in the Lac system in E. coli in which replication is

restarted at sites of repair of DNA double-strand ends [35]. The

hypothesis proposed was that template switching occurs during

replication restart at stalled replication forks. Because the distances

involved exceed the lengths that are expected to be exposed as

single-stranded at a single replication fork, it was proposed that the

switches occurred between different replication forks [35].

The idea that chromosomal structural changes originate from

DNA replication has received support from a study of micro-

homology-mediated SD formation in yeast [55]. These authors

support the idea that the mechanism of SD formation involves

replication by showing that its frequency is enhanced by treatment

with camptothecin and is dependent on Pol32, a component of

Pold (discussed below). Camptothecin is a topoisomerase I

inhibitor that leaves nicks in DNA. These nicks are believed to

become collapsed forks when a replication fork reaches them.

Thus, increasing the frequency of fork collapse increases the

frequency of duplication formation. These authors also report that

situations that lead to fork stalling rather than collapse have little

effect on the frequency of duplication formation [55]. Thus, it

appears that the substrate for duplication is a single double-strand

end at a collapsed replication fork.

This long-distance template-switch model was also used by Lee

et al. [22] to explain the observations of nonrecurrent chromo-

somal changes seen in Pelizaeus-Merzbacher disease discussed

above and the juxtaposition of multiple genomic sequences

normally separated by large genomic distances [22,56]. Experi-

ments on the integration of nonhomologous DNA into mamma-

lian cells revealed microhomology junctions and insertion of

sequence from other parts of the genome at the junctions. These

observations were interpreted in terms of a similar model of

repeated copying and switching to another template [57].

Break-Induced Replication

A more specific model for restarting replication at collapsed

(broken) replication forks, BIR [58], has been developed for yeast,

and a similar mechanism was proposed to explain telomere

maintenance in yeast and human cell lines that have lost

telomerase activity (reviewed in [59]). Recent evidence [60,61]

suggests that the BIR mechanism can be modified to explain the

complexity of chromosomal structural changes described above for

human and E. coli. Figure 4 illustrates the mechanism of BIR.

When the replicative helicase encounters a nick on the template

strand (Figure 4A), one arm of a replication fork breaks off

(Figure 4B). There is no second end to be involved in the

mechanisms of DSB repair that are available at a DSB consisting

of two double-strand ends: homologous recombination or

nonhomologous end-joining. The 59 end of the broken arm is

resected by an exonuclease to leave a 39 overhang (Figure 4C).

This 39 tail invades a homologous sequence, normally the sister

chromatid from which it came. This invasion is mediated by

RecA/Rad51 protein (Figure 4D). The 39 end primes DNA

synthesis and establishes a replication fork consisting of both

leading and lagging strand synthesis [61] (Figure 4E). This

replication is of low processivity, and the extended arm is

separated from the sister chromatid (Figure 4E). Such separation

might be achieved by migration of the Holliday junction shown in

Figure 4D and 4E. The 39 end reinvades and the process is

repeated (Figure 4G and 4H). After a few cycles of invasion,

extension, and separation, the replication fork becomes more

processive, and replication continues to the end of the chromo-

some arm or to the end of the replicon. The change from low

processivity to highly processive replication can be attributed to a

switch in the DNA polymerases involved [61]. Initial extension

from a double-strand end was shown to require the primase

Figure 3. Complex genomic rearrangements at PLP1 seen in patients with Pelizaeus-Merzbacher disease, illustrating long-range as
well as short-range complexity. Duplications are shown in red, deletions in green, triplications in blue, and no copy number change in black. The
figure is not drawn to scale. Approximate positions are given relative to PLP1.
doi:10.1371/journal.pgen.1000327.g003
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complex and Pold, notably the nonessential Pol32 subunit,

whereas the more processive Pole was required for the 30-kb

extension to the telomere. Figure 4I shows the completed pair of

chromatids with the new material segregating conservatively as

suggested for E. coli [62]. This would result if the Holliday junction

followed the replication fork. Another possibility is that the

Holliday junction is resolved so that there will be semi-

conservative segregation of old and new DNA strands [60],

(reviewed in [63]). Evidence for conservative segregation of new

DNA strands in BIR, suggesting that the Holliday junction was not

resolved, was reported for E. coli [62].

The repeated extension and separation have been interpreted as

repeated attempts to find the other side of a break consisting of two

double-strand ends. When, eventually, none is found because this

is a collapsed fork rather than a two ended DSB, the remainder of

the chromosome is replaced by replication [60,63]. The pattern of

repeated rounds of template switching followed by a long length of

replication is supported by observations of BIR in yeast. BIR can

be induced experimentally by transforming a chromosomal

fragment into a yeast cell [64]. Using such a system, Smith et al.

[60] placed a chromosomal fragment with a centromere and one

telomere-forming sequence into a diploid yeast cell. The fragment

had homology to both homologues of chromosome III. These

homologues were differentially marked. Selection for a marker on

the fragment selected for cells in which the fragment had acquired

a second telomere. These authors found that most fragments had

completed the replication of 50 kb to the end of the chromosome

to which the fragment had homology. The striking result was that

many of the chromosomes recovered had switched from one

homologue to the other. In some cases, more than one switch was

seen. The switches were confined to the first 10 kb, after which a

single homologue was copied. In a few percent of cases, the switch

was to a different chromosome at sites of repeated homology

consisting of the long terminal repeat of a retrotransposon. Thus,

BIR was demonstrated to produce complexity of the sorts reported

above for E. coli amplification and for nonrecurrent end-points in

human genomic disorders.

BIR has been suggested as the mechanism that underlies SD

and other structural changes in yeast, e.g., [55,65,66], and human,

e.g., [31,67]. As discussed below, BIR is strongly RecA/Rad51-

dependent and homology-dependent, and so cannot account for

the observations of microhomology associated with complex

rearrangements without substantial change.

Microhomology-Mediated BIR (MMBIR)

BIR, as described above, is usually an accurate process, because

the repeated invasions are RecA/Rad51-mediated and involve long

lengths of homology between DNA sequences. Invasion catalyzed

by RecA/Rad51 requires extensive homology of about 50 bp in E.

coli [68] and more in eukaryotes [69,70]. This does not fit with the

microhomology junctions described above. We therefore suggest

that in these systems, replication forks are reestablished in a RecA/

Rad51-independent manner. Rad51-independent BIR occurs in

yeast at a much lower efficiency than the Rad51-dependent BIR

[71,72], though its frequency is very much enhanced, at the expense

of fidelity, by the presence of unusual structures such as an inverted

repeat [71]. However, telomere recombination in the absence of

telomerase is proficient in the absence of Rad51 and is mediated by

very short homologies [73,74] (reviewed in [59]). The fact that

telomere recombination occurs by BIR is supported by the finding

that it requires the same set of enzymes as BIR that is initiated in the

middle of a chromosome [61]. Absence or shortage of RecA/Rad51

might arise because the cells are stressed, as described below. That

microhomology-mediated SD formation occurs in yeast by a BIR

mechanism is supported by the finding that, like homology-

mediated BIR [61], it requires Pol32 [55].

In mammalian cells, there is a surprisingly efficient micro-

homology-mediated DSB repair pathway. Most, if not all,

experimental research on microhomology-mediated DSB repair

has been performed with nuclease-induced breaks. This recently

Figure 4. Repair of a collapsed replication fork by BIR. When a replication fork encounters a nick in a template strand (A) (arrowhead), one arm
of the fork breaks off (red), producing a collapsed fork (B). At the single double-strand end, the 59 strand is resected, giving a 39 overhang (C). The 39
single-strand end invades the sister molecule (blue), forming a D-loop (D), which subsequently becomes a replication fork with both leading and
lagging strand replication (E). There is a Holliday junction at the site of the D-loop. Migration of the Holliday junction, or some other helicase activity,
separates the extended double-strand end from its templates (F). The separated end is again processed to give a 39 single-strand end, which again
invades the sister, and forms a replication fork (G). Eventually the replication fork becomes fully processive, and continues replication to the
chromosome end (H and I). This process is shown here with the Holliday junction following the fork so that newly formed strands are segregated
together (conservative segregation) (H). Each line represents a DNA nucleotide chain (strand). Polarity is indicated by half arrows on 39 end. New DNA
synthesis is shown by dashed lines. The publications on which this model is based are cited in the text.
doi:10.1371/journal.pgen.1000327.g004
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described pathway was characterized in recombination events

induced by I-SceI or RAG1/RAG2 nucleases in cells deficient in

classical NHEJ and in cancer cells [75,76]. Nucleases generate

two-ended breaks at random with respect to ongoing replication

forks. However, BIR acts under circumstances when DSB repair,

including NHEJ, is not an option, because after replication fork

breakage, there is only a single end with no second end to which

the one end can be annealed or ligated. Spontaneous damage to

DNA occurs predominantly during replication [77–79], so that

mechanisms that repair single DNA ends are more appropriately

invoked for spontaneous damage than are mechanisms that act on

two-ended DSBs. We suggest that a novel pathway, microhomol-

ogy-mediated BIR (MMBIR), is used to repair single double-

strand ends when stretches of single-stranded DNA are available

and share microhomology with the 39 single-strand end from the

collapsed fork.

Single-stranded DNA might be expected to occur in replication

forks, from stalled transcription complexes, at excision repair

tracts, or at secondary structures in DNA such as cruciforms or

hairpins caused by complex genomic architecture, and possibly in

other situations such as in promoter regions and replication

origins. The dimensions of most of the template switches discussed

here (tens to hundreds of kb distant, i.e., the length of a duplication

or deletion) preclude mechanisms of replication slippage within a

single replication fork. An ability of any single-stranded DNA

region that shares microhomology with the single-stranded 39 end

to take part in the events would explain why MMBIR is inexact

and liable to lead to chromosomal structural changes. Very short

homology should not be a barrier to replication fork restart

because polymerase eta, used in DSB repair in vertebrates [80,81],

is efficient in initiating new DNA synthesis from mismatched

primers, and even primers as short as 2–3 bp [82].

The presence of inverted repeats could generate hairpin loops

that expose single-stranded sequence [22,32]. In addition, hairpin

structures might increase the likelihood of replication fork stalling,

which might then initiate BIR. Such major roles for secondary

DNA structures in the generation of chromosomal structural

changes offers an explanation for the clustering of structural

changes, producing complex chromosomal regions such as that

illustrated in Figure 1. The model of MMBIR is presented in

Figure 5.

The clear distinction between NHEJ and BIR mediated by

microhomology is that, in the second instance, microhomology

junctions are followed by shorter or longer stretches of DNA

sequence derived from elsewhere. Ten to 20% of nonhomologous

junctions in mammalian cells have sequence inserted at the

junction [83]. Some events that had previously been interpreted as

occurring by an NHEJ mechanism might have occurred by

MMBIR with a single template switch. In addition, events that

appeared to be simple end-joining events might have had

complexity that was not revealed by the techniques in use.

Control of BIR and MMBIR

A major question remains—why do cells use microhomology-

and not homology-driven repair? The likely answer is that Rad51

is not available or is in short supply. This might be caused by stress

responses. Evidence supporting this comes from cancer research.

Hypoxia in the tumor microenvironment is correlated with genetic

instability [84,85] (reviewed in [86]). It has been shown that

hypoxia leads to repression of RAD51 and BRCA1 [87,88] and to

reduced homologous recombination [87,89] (reviewed in [89,90]).

This has been interpreted as a switch from high-fidelity

homologous recombination to lower fidelity NHEJ caused by

stress [87,88]. At collapsed replication forks, where NHEJ is not

possible, we suggest that down-regulation of RAD51 prevents BIR

from following the Rad51- homology-dependent BIR route but

still allows a Rad51-independent BIR route that requires very

much less homology, as observed in telomere recombination in

budding yeast [73,74]. If Rad51 is down-regulated but not absent,

a condition might prevail in which some homologous invasion is

allowed, but not enough to prevent some illegitimate events

occurring, as was witnessed in Drosophila with reduced gene dosage

of Rad51 [91]. We do not know whether the error-prone nature of

this repair is aided by down-regulation of mismatch repair, which

has also been reported for stressed cancer cells [92,93]. There

might be other changes in gene expression under stress that

promote genomic instability (e.g., [94]).

A similar switch from high fidelity to low-fidelity DSB repair is

seen in E. coli in response to the stress of starvation [54]. Similarly

the microhomology-mediated amplification seen in the Lac system

in E. coli discussed above is induced by stress, as evidenced by the

observation that the event occurred after the beginning of

starvation [44], and by the finding that adaptive amplification in

this system requires the starvation and general stress response

transcriptional activator RpoS [95].

The mechanism of MMBIR, as described above, features

annealing of single-stranded DNA with minimal homology. Hence

the enzyme responsible for this has a central role in the proposed

mechanism. We suggest that annealing is catalyzed by Rad52.

Rad52 is essential for the single-strand annealing reaction that

Figure 5. MMBIR. The figure shows successive switches to different
genomic positions (distinguished by color) forming microhomology
junctions (arrows). For clarity, the nature of the single-stranded regions
of annealing is not defined (see text). (A) shows the broken arm of a
collapsed replication fork, which forms a new low-processivity fork as
shown at (B). The extended end dissociates repeatedly ((C and E) shown
with 59-ends resected) and reforms the fork on different templates (D
and F). In (F), the switch returns to the original sister chromatid (blue),
forming a processive replication fork that completes replication. (G)
shows the final product containing sequence from different genomic
regions. Each line represents a DNA nucleotide chain (strand). Polarity is
indicated by half arrows on 39 end. Whether the return to the sister
chromatid occurs in front of or behind the position of the original
collapse determines whether there is a deletion or duplication (see
Table 2).
doi:10.1371/journal.pgen.1000327.g005
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deletes sequence between direct repeats [96], and it anneals single

strands in vitro [97]. Chromosomal rearrangements in yeast that

have microhomology at the junctions have been seen to occur in

the absence of Rad51, but they require Rad52 [42,66,98]. In one

of these cases, frequent switches were associated with micro-

homology junctions in a Rad51-independent, Rad52-dependent

process that produced translocations and inversions at sites of

highly diverged genes [66]. These authors proposed that these

events occurred by template switching during BIR [66]. In vitro,

Rad51 inhibits the single-strand annealing activity of Rad52 [99],

suggesting that the absence of Rad51 might exercise tight control

of the switch from strand invasion to annealing of single strands.

However, the formation of microhomology-mediated Rad51-

independent SDs in yeast was found to be Rad52-independent

[55]. Rad52 is also not required for microhomology-mediated

end-joining [100]. These observations show that microhomology

junction formation can be mediated by a different protein in yeast,

as well as by Rad52.

In summary, we are suggesting that, because stress induces a

reduction in the amount of Rad51 available, while leaving Rad52

unchanged, the amount of homologous interaction that is used for

repair is reduced, leaving annealing of single DNA strands as the

main mechanism available for the repair of collapsed replication

forks. Thus, classical BIR will be reduced, and MMBIR will be

substituted.

Long-Range Discontinuities in Duplications

The idea that there is a cell-wide physiological condition that

favors nonhomologous interactions has further implications. If a

condition prevails that allows one such event, it is possible that

further nonhomologous events will occur in the same cell. The

possibility of multiple rounds of events was suggested for a yeast

system to correct for an inversion that would produce a dicentric

chromosome [66]. We also note that, in human duplications, there

are discontinuities (short regions that are not duplicated) and

triplicated regions within duplications on a scale of hundreds of kb

or Mb apart (Figures 2 and 3). These long-distance interruptions

are not readily explained by template switching during the early

stages of a single BIR event, where switching occurs after one

template is copied for hundreds of bp to a few kb (Figure 2 and

[60]), but rather suggest that more than one BIR event occurred

along the same chromosome. MMBIR requires, in addition to a

cell-wide stress response, a specific DNA structure: a single double-

strand end. To explain why single double-strand ends should

occur serially along the same chromosome, we propose that the

Holliday junction formed during BIR follows the replication fork,

as we have suggested above as the mechanism of separation of the

extended broken end. If the replication fork formed by BIR stalls

for any reason, the Holliday junction might then process through

the fork, separating the newly synthesized DNA from its template,

and so generating a collapsed fork anew (as in Figure 4E and 4F)

and leading to the long range discontinuities seen in duplicated

segments, as illustrated in Figure 3.

Chromosome Structural Consequences of MMBIR

The ways in which MMBIR would lead to the various

chromosomal structural changes are summarized in Table 2.

Translocations would be formed by a switch to a different

chromosome. Duplication would occur when the switch was to

either the sister or the homologue behind the position at which the

fork collapsed (with respect to the direction of movement of the

fork). Deletion happens when there is a switch to a position ahead of

the fork collapse. A switch to a sequence that has already been

duplicated, behind the end of the duplicated sequence, would

produce a triplication. Switching to the same molecule behind the

position of fork collapse has the potential to initiate rolling-circle

replication and consequent amplification. Switching to either the

sister molecule or the homologue in inverted orientation would give

an inverted chromosomal segment. If long-distance replication

follows, this might form a dicentric chromosome, so that this would

have to be followed by a second inversion to allow a cell to be viable.

This need for a second switch has led to the idea that there might be

more than one round of switching events involved in the formation

of some structural changes [66] as discussed above. Alternatively, a

second inverted template switch within a single series of switches

would restore a viable chromosomal structure.

Implications of the Model

We suggest that the replicative mechanism described here

contributes to genomic disorders that show nonrecurrent end-

points, contributes to much of the chromosomal structural

instability that occurs somatically in cancer formation and tumor

progression and also to the origin of the genomic constitutional

structural complexity that underlies NAHR genomic disorders,

and is a driving force in evolution. We offer evidence from diverse

organisms that such a mechanism exists, and suggest that the

model offers directions for future research that will further

elucidate the molecular details.

The mechanism of MMBIR affects human biology at many

levels. First, at the cellular level, the mechanism might apply to the

events underlying much cancer formation and progression. Second,

at the organismal level, we propose that MMBIR acting in the

germline will give rise to CNV, and the accompanying genomic

disorders and chromosomal syndromes. At the same time MMBIR

could create LCRs that provides the homology required for NAHR,

leading to genomic disorders in future generations. Third, at the

species level, we suggest that complex genomic regions generate

secondary structures that increase the likelihood of MMBIR, so that

complex architecture becomes more complex on an evolutionary

timescale, as has been documented for primate evolution [13,16].

We suggest that MMBIR might underlie genomic rearrangements

and CNV associated with the emergence of primate-specific traits

[10,13,101]. Furthermore, MMBIR provides material on which

natural selection and evolution operate: variation in copy number

might change the expression levels of included genes and also

provide redundant copies of genes that could then be mutated and

changed to encode new functions [102–104]. Further, the formation

of nonhomologous junctions might shuffle exons of different genes

to attain new functions (F. Zhang and J. Lupski, unpublished

observations). Indeed, these regions of complex genomic architec-

Table 2. Chromosomal Consequences of Template Switches
during MMBIR.

When Switch Is to: Consequence:

Sister or homologue behind position of fork breakage Duplication

Sister or homologue ahead of position of fork breakage Deletion

Sister or homologue in wrong orientation Inversion

Nonhomologous sequence Translocation

Sequence already duplicated Triplication

On same molecule behind the break Rolling circle

doi:10.1371/journal.pgen.1000327.t002
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ture have been referred to as gene nurseries, i.e., regions in which

new genes are formed [13,14].

The MMBIR model predicts that complex genomic rearrange-

ments will often be accompanied by extensive loss of heterozy-

gosity and, in some cases, by loss of imprinting, because the

chromosome that is copied might be either the sister or the

homologue. Such loss of heterozygosity could lead to regional

uniparental disomy [105] as a potential novel mechanism for

disease. We also predict that the events described here will be seen

in model systems under conditions where the cells are stressed, and

study of DNA repair activities in stressed cells might be a fertile

field for investigation.
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