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A Micromechanics Based
Constitutive Model for Brittle
Failure at High Strain Rates
The micromechanical damage mechanics formulated by Ashby and Sammis, 1990, “The
Damage Mechanics of Brittle Solids in Compression,” Pure Appl. Geophys., 133(3), pp.
489–521, and generalized by Deshpande and Evans 2008, “Inelastic Deformation and
Energy Dissipation in Ceramics: A Mechanism-Based Constitutive Model,” J. Mech.
Phys. Solids, 56(10), pp. 3077–3100. has been extended to allow for a more generalized
stress state and to incorporate an experimentally motivated new crack growth (damage
evolution) law that is valid over a wide range of loading rates. This law is sensitive to
both the crack tip stress field and its time derivative. Incorporating this feature produces
additional strain-rate sensitivity in the constitutive response. The model is also experi-
mentally verified by predicting the failure strength of Dionysus-Pentelicon marble over
strain rates ranging from �10� 6 to 103s� 1. Model parameters determined from quasi-
static experiments were used to predict the failure strength at higher loading rates.
Agreement with experimental results was excellent. [DOI: 10.1115/1.4005897]

1 Introduction

The deformation of brittle materials like rocks, concrete or
ceramics is known to be sensitive to internal fractures, which are
commonly characterized as damage. Tensile cracks induced by
grain-boundary sliding are a major source of inelastic deformation
in these materials. The effects of damage are especially important
in phenomena that involve high levels of stress, and a wide rage
of strain-rates, such as earthquakes, underground explosions, and
meteorite impacts. At the high loading rates that typify these phe-
nomena the evolution of damage is sensitive not only to the initial
damage, but also to the rate at which the load is applied.

Behavior typical of such materials includes : (a) nonlinear stress-
strain relations (b) a failure mode that depends on confining pres-
sure (mean stress) ranging from axial splitting to shear localization
to pseudoplasticity as confining pressure increases (c) decrease of
elastic moduli with increasing damage, and (d) permanent residual
strains associated with micro-crack opening and sliding.

Modeling the constitutive response of these materials requires
taking into account the mechanics of micro-cracks and their over-
all response to applied loading. One approach is to appeal to aver-
aging schemes that determine elastic constants like the self-
consistent schemes [1]. Another approach is to calculate the
continuum response of micro-crack filled brittle materials from
the Gibbs free energy function [2–9]. Although these models
account for the physical mechanisms associated with cracks, they
lack a physical crack growth law and hence a physical representa-
tion of the evolving damage. A common law used here is the
Charles law [10] where the crack speed is proportional to some
power of the crack tip stress intensity factor. Unfortunately such
laws are valid for sub-critical crack growth (see Ref. [11] for a
review) but are clearly not valid in the dynamic range. Thus any
attempt to develop a model valid over a wide range of loading
rates requires a more physical (crack growth) law. Rate effects are
particularly important at high loading rates where crack growth
lags the loading. We note here that [9] have attempted to model
crack growth in this loading regime by solving for a crack-speed

that ensures that the dynamic stress intensity factor of the crack
always equals the fracture toughness. However their work did not
account for the fact that the fracture toughness of the material is
itself sensitive to loading rate.

The micromechanical damage mechanics formulated by Ashby
and Sammis [12] models the nucleation, growth, and interaction
of a mono-sized distribution of cracks having a fixed orientation.
We use this model as a template to develop our micromechanical
damage model. The main features/assumptions of their formula-
tion were:

(1) The starter cracks all have the same radius a and are all ori-
ented at the same angle W, to be specified later, relative to
the axis of principal compression r1. In the dynamic prob-
lem this changes with time and so do populations of acti-
vated cracks. There are NV such starter flaws per unit
volume. Sliding on the starter cracks is inhibited by Cou-
lomb friction characterized by coefficient f.

(2) All additional crack damage is in the form of tensile “wing
cracks” that nucleate at the tips of the starter flaws and
grow parallel to r1 axis. They open in the direction of the
least compressive principal stress r3.

(3) The stress at which the wing cracks nucleate is taken from
results in the literature and may be expressed as

r1c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2
p

þ f
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2
p

� f

 !
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ffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2
p

� f

 !

KIC
ffiffiffiffiffiffi

pa
p (1)

where KIC is the fracture toughness.

(4) The stress intensity factor KI at the tips of the growing wing
cracks (of length l) is approximated as that at the tip of a
tensile crack of radius lþ aa that is loaded by a point force
at its center. The point force is taken as the r3 component
of force generated by frictional sliding on the starter flaw.
The geometrical factor a is the projection of the starter flaw
on the r1 axis. This approximation was tested against the
numerical solution and found to be poor for small l but
asymptotically better as l increases. An adjustable parame-
ter b was introduced to improve the fit of the approximate
KI to the numerical calculations of KI at small values of l.

(5) The failure stress r�1ðr3Þ is defined as the maximum value
of r1 versus l curve at constant r3.
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There are thus four crack related parameters in the model:

(1) a ¼ cosW where W is the angle between the starter crack
and the r1 axis.

(2) b adjusted to make the approximate expression for KI agree
with the full numerical simulation when the wing cracks
are short.

(3) a¼ radius of the starter flaws. It is found by fitting the
nucleation equation above to the observed onset of nonli-
nearity in the stress strain curve or the onset of acoustic
emissions.

(4) NV¼ number of favorably oriented (active) starter flaws per
unit volume. It is found by fitting the uniaxial strength.

Despite these apparently crude approximations, [12] found that
this approximate model gave a very good fit to the failure surfa-
ces, r�1ðr3Þ, of a wide range of rocks for reasonable values of a
(approximately the grain size) and NV. It was later shown by [13]
that the inclusion of size distribution of cracks and allowance for
multiple crack orientations did not significantly effect the failure
strength predicted by the model. We thus retain the single-crack
single-orientation assumption of [2,12].

The model is based on the growth and interaction of tensile
“wing cracks” nucleated at the tips of an initial distribution of
micro-cracks. It incorporates results from many studies of mode I
wing cracks nucleated and driven by mode II sliding (for example
see [3,4,14–16] and references therein). By approximating the
interaction between growing wing cracks [12] found a positive
feedback that led to mechanical instability and failure. They dem-
onstrated that their model gave an adequate description of the fail-
ure envelope (r1 versus r3 at failure) for a wide range of rocks
loaded in triaxial compression (r1< r2¼ r3, where compression
is taken as negative). However since quasi-static crack growth
was assumed (the stress intensity factor is always at its critical
value) their formulation does not include effects of loading rate.
Ref. [2] introduced Charles crack growth law [10] into Ref. [12]
in order to simulate impact loading of ceramic armor plates. How-
ever, as described above, such laws are typically used to describe
stress corrosion and do not contain the known physics of dynamic

crack growth. In this paper, we extend the damage mechanics for-
mulation in [2,12] by incorporating theoretical and experimental
dynamic crack growth laws that have been shown to be valid over
a wide range of loading rates. We then compare the model predic-
tions with uniaxial experiments in marble over a wide range of
loading rates ( _e � 10�6 to 103s� 1).

2 Development of the Constitutive Model

In most brittle materials, micro-crack nucleation, growth and
coalescence is driven by local sliding at micro-cracks or grain
boundaries [17] as shown schematically in Fig. (1(a)). This micro-
crack physics produces inelastic dilatancy, modulus reduction and
strain-rate sensitivity of failure strength. Thus any realistic consti-
tutive model of brittle materials should take into account the
micromechanics of fracture.

2.1 Continuum Constitutive Model From Micro-Scale
Deformations Based On J. R. Rice, 1975. Following the frame-
work laid out by Refs. [18,19] we use an energy-based approach
to determine the constitutive relationship of the damaged solid.
As in Ref. [19], let S denote the current damaged state of the ma-
terial in the sense that variations in stress at constant S induce a
purely elastic response. Then the stress-strain relationship and the
compliance tensor in terms of a Gibbs free energy function, W,
under isothermal conditions are given by

eij ¼
@Wðr; SÞ

@rij
; Mijkl ¼

@2½Wðr; SÞ�
@rij@rkl

(2)

where W is symmetrized in the components of r (notations in
bold represent tensorial quantities).

Let dW denote the change in the free energy function when the
solid undergoes deformation that takes it from the state S to
Sþ dS at constant rij. Therefore the inelastic strain associated
with dW is given by

Fig. 1 Geometry in the [12] micromechanical damage mechanics model. Sliding on an
array of penny-shaped cracks having volume density of NV and radius a produces a wedg-
ing force Fw that drives tensile wing cracks to open in the direction of the smallest principal
stress r3 and propagate parallel to the largest principal stress r1. Growth of wing cracks is
enhanced by r1, retarded by r3, and enhanced by a global interaction that produces a mean
tensile stress r

i
3. The positive feedback provided by this tensile interaction stress leads to

a run-away growth of the wing cracks and ultimate macroscopic failure.
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deij ¼
@ðdWÞ
@rij

(3)

Let C be the locus of all crack fronts in the damaged solid and let
ds be a function of position along C describing the amount of local
advance of the micro-cracks. Then the change in the free energy
function is given by

dW ¼
ð

C

f½Gðr; SÞ � 2cs�dsgdC (4)

where G is the elastic energy release rate and cs is the surface
energy. The inelastic strain in now given by

deij ¼
@

@rij

ð

C

Gðr; SÞds dC
� �

� @ðDWÞ
@rij

(5)

From linear elastic fracture mechanics, the energy release rate, G
is related to the stress intensity factor by

Gðr; SÞ ¼ 1� �2

E
K2
I ðr; SÞ þ K2

IIðr; SÞ þ
K2
IIIðr; SÞ
ð1� �Þ

� �

(6)

The above expression is valid as long as the crack has continu-
ously turning tangent planes, i.e., without sudden kinks, forks or
branches. Thus,

DWðr; SÞ ¼ 1� �2

E

ð

C

K2
I ðr; SÞ þ K2

IIðr; SÞ þ
K2
IIIðr; SÞ
1� �

� �

ds dC

(7)

where � is the Poisson’s ratio and E is the Young’s modulus.
Therefore the Gibbs free energy can be written as the sum of

the elastic contribution and the inelastic one due to the presence
of micro-cracks.

Wðr; SÞ ¼WeðrÞ þ 1� �2

E

ð

C

K2
I ðr; SÞ þ K2

IIðr; SÞ
�

þK2
IIIðr; SÞ
ð1� �Þ

�

ds dC (8)

where We is the elastic strain energy. The stress-strain relation and
the compliance tensor are then given by Eq. (2). The precise defi-
nition of S will be laid out later.

2.2 Evaluation of the Stress Intensity Factors. The purpose
of this work is to use the framework describe above and evaluate
the Gibbs free energy, Eq. (8), and hence the stress-strain relation-
ship and the compliance tensor, for a particular micro-crack
model. In this work, following Refs. [12] and [2], we begin by
considering an isotropic elastic solid that contains an array of
penny shaped cracks all of radius a (micro-cracks or grain boun-
daries) and all aligned at an angle W to the largest (most negative)
remote compressive stress r1 (Fig. 1(b)). By aligning the cracks
with respect to the maximum principal stress, we only take into
account cracks that are optimally oriented, the precise criteria will
be discussed later, for growth. We also assume that the population
of cracks that exist prior to loading has the volume density, Nv,
and remains fixed during loading. No new cracks nucleate during
loading. The size and density of these initial flaws are character-
ized by initial damage defined through a scalar variable as

Do ¼
4

3
pNVðaaÞ3 (9)

where aa is the projection of the crack radius in a vertical plane
parallel to the direction of r1; a ¼ cosW.

Refs. [2,12,13] calculate the shear (s) and normal (r) stresses
on each penny crack from the remote compressive stress field.

s ¼ r3 � r1

2

� �

sin 2W

r ¼ r3 þ r1

2

� �

þ r3 � r1

2

� �

cos 2W

(10)

For ease of numerical implementation, Ref. [2] rewrote these
equations in terms of stress invariants by making the assumption
that r2¼ (r3þ r1)/2. We remove this restriction on the intermedi-
ate principal stress by assuming that the shear stress, s, is repre-
sented by the second invariant of the deviatoric stress tensor and
the normal stress, r, is calculated from the first invariant of the
stress tensor, i.e.,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
SijSij

r

and r ¼ rkk

3
(11)

where Sij¼ rij � rdij and dij is the Kronecker d. This operation is
analogous to Ref. [20] where the Mohr-Coulomb failure criterion
was extended to a generalized stress state. Sliding on the cracks is
controlled by a coefficient of friction f. We only consider flaws
that are optimally oriented from a Coulomb friction perspective.
This impliesW¼ tan�1 (1/f). Note that Eqs. (10) and (11) coincide
when r2¼ (r3þ r1)/2 and f¼ 1.0. However, typical values of f in
brittle solids are closer to f¼ 0.6.

As in Ref. [2], we delineate three deformation regimes for the
micro-cracked solid based on the remote loading state. In Regime
I, the remote loading is compressive and is not large enough to
overcome the frictional resistance on the penny shaped cracks.
The solid thus behaves like an isotropic linear elastic solid. In Re-
gime II the frictional resistance on the micro-cracks is overcome
by the remote compressive load leading to the nucleation and
growth of wing-cracks. In Regime III the remote loading stresses
turn tensile leading to the opening of both the penny crack and
wing-cracks. The criteria for transition between regimes will be
laid out later in the text.

Regime II: Following [2,12] we evaluate the Mode-I stress in-
tensity factor, KI, at the tip of the wing-cracks (of length l) that
emanate from the periphery of the sliding penny cracks. Note that
any Mode-II and Mode-III contributions are relevant only during
the nucleation phase of the wing cracks and are hence ignored.
We also neglect any opening of the penny crack induced by the
tensile wing cracks (see Ref. [16]). Since the wing cracks are
aligned with respect to the maximum principal stress, r1, any rota-
tion in the principal stress field would also implicitly result in the
rotation of a wing crack so that it always follows the principal of
local symmetry.

The Mode-I stress intensity factor has three contributions: (1)
Sliding on the penny cracks leads to a wedging force, Fw, on the
wing-cracks. This wedging force is simply the component of the
sliding force resolved normal to the direction of the maximum prin-
cipal stress, i.e., Fw¼ (sþ fr)pa2 sin W. (2) The remote confining
stress, characterized by r, tends to close the wing-cracks and, (3)
the wedging force, Fw, creates tension r(i) on the unbroken liga-
ments between neighboring wing-cracks (see Fig. 1) thus producing
a global interaction between micro-cracks. Therefore the Mode-I
stress intensity factor in this regime, KR�II

I , is given by

KR�II
I ¼ ðsþ frÞpa2 sinW

½pðlþ baÞ�3=2
þ 2

p
rþ rðiÞ
� �

ffiffiffiffi

pl
p

(12)

where

rðiÞ ¼ ðsþ frÞpa2 sinW
Acrack � pðlþ aaÞ2

; Acrack ¼ p1=3
3

4Nv

� 	2=3
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Here, Acrack is the average area occupied per crack, p(lþ aa)2 is

the total crack area projected parallel to r1 and sinW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

.
The factor b(¼ 0.1) was introduced by Ref. [12] to give a limiting
value of KI when the wing-crack length, l, vanished to zero.

We now define a scalar damage parameter that accounts for the
current size of each crack and the volume density of such cracks.
As in Eq. (9), we define

D ¼ 4

3
pNVðlþ aaÞ3 (13)

This scalar damage parameter represents the state of the micro-
structure, S, as described by Ref. [19].

By rewriting Eq. (12) in terms D and D0 we obtain

KR�II
I ðr;DÞ ¼

ffiffiffiffiffiffi

pa
p

½AðDÞrþ BðDÞs� (14)

AðDÞ ¼ fc1ðDÞ þ ð1þ f Þc2ðDÞc3ðDÞ

BðDÞ ¼ c1ðDÞ þ c2ðDÞc3ðDÞ
(15)

and

c1ðDÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

pa3=2½ðD=D0Þ1=3 � 1þ b=a�3=2

c2ðDÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

a2

 !

D
2=3
0

1� D2=3

 !

c3ðDÞ ¼
2
ffiffiffi

a
p

p
½ðD=D0Þ1=3 � 1�1=2 (16)

Since Eq. (14) is now written in terms of D and D0, which account
of the current size of each crack and the volume density of such
cracks, it represents a measure of the stress intensity factor for all
cracks of size lþ aa in a unit representative volume. This step
thus effectively homogenizes KI. The above expressions for KI

also puts a limit on the maximum value of D. As D approaches 1,
KI becomes unbounded representing the limit when neighboring
wing-cracks coalesce.

Regime III: As in Ref. [2], we also allow for the possibility of
the overall remote loading stress turning tensile. In this case, fol-
lowing [1,5,21] we write the Mode-I stress intensity factor, KR�III

I ,
as a quadratic function of stresses,

KR�III
I ðr;DÞ ¼

ffiffiffiffiffiffi

pa
p

½C2ðDÞr2 þ E2ðDÞs2�1=2 (17)

where C(D), E(D) will be related to A(D), B(D) by ensuring that
the elastic strains match when transitioning from a remote com-
pressive stress state to a remote tensile one.

2.3 Constitutive Relationship. We start with the evaluation
of the Gibbs free energy function in Regime’s I, II and III using
the stress intensity factors calculated in the previous section and
eqn. (8). We then differentiate the Gibbs free energy function as
shown in eqn. (2) to obtain the stress-strain relationship and the
compliance and modulus tensors. Thus,

Regime I: The stress-strain relationship is given by

rij ¼ 2leij �
2lv

ð1� 2vÞ edij (18)

Regime II: The Gibbs free energy function is given by

Wðr;DÞ ¼ WeðrÞ þ 1

4l
½A1rþ B1s�2 (19)

In performing the integral in Eq. (8), following Ref. [2], we
assume A and B to be functions of only l/a (and not l and a sepa-
rately), and thus treating them as constants. This is only approxi-
mately true but this assumption renders an analytical closed form
for W. Differentiating the above expression with respect to stress
(see Eq. (2)) we obtain the stress-strain relation,

eijðr;DÞ ¼
1

2l
1þ A1B1r

2s
þ B2

1

2

� 	

rij




� 3�

ð1þ �Þ þ
A1B1r

2s
� A2

1

3
þ B2

1

2

� 	

rdij þ
A1B1

3

� 	

sdij

�

(20)

Differentiating the Gibbs free energy function twice with respect
to stress (see Eq. (2)) we obtain the compliance tensor

Mijklðr;DÞ ¼
1

2l

1

2
þ B2

1

4
þ A1B1r

4s

� 	


ðdkidlj þ dlidkjÞ

� �

ð1þ �Þ þ
B2
1

6
� A2

1

9
þ A1B1r

2s
þ A1B1r

3

2s3

� 	

dijdkl

þ A1B1

6
þ A1B1r

2

4s2

� 	

ðr̂ijdkl þ dijr̂klÞ

� A1B1r

4s

� 	

r̂ijr̂kl

�

(21)

where r̂ij ¼ rij=s and

A1 ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pD0

a3ð1þ �Þ

s

B1 ¼ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pD0

a3ð1þ �Þ

s

(22)

Equation (19) can be recast in terms of conjugate strains, e and c,
where e ¼ ekk, c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2eijeji
p

and eij ¼ eij � eij � edij=3. Differenti-
ating the modified Gibbs free energy function with respect to
strain we obtain

rijðe;DÞ ¼ 2l 1þ 2A1
�B1e

c
þ 2 �B2

1

� 	

eij




þ �

ð1� 2�Þ�
2 �A1

�B1e

3c
� 2 �B2

1

3
þ �A2

1

� 	

edijþ �A1
�B1ð Þcdij

�

(23)

The damage dependent constants �A1 and �B1 are given by

�A1ðDÞ ¼
1

2
ðA1a1 þ B1b1Þ

�B1ðDÞ ¼
1

2
ðA1a1 þ B1b2Þ

(24)

where

a1 ¼
1

C
1þ B2

1

2

� 	

b1 ¼ � 1

C

A1B1

2

� 	

b2 ¼
1

C

A2
1

2
þ 3ð1� 2�Þ

2ð1þ �Þ

� �

C ¼ 3ð1� 2�Þ
2ð1þ �Þ þ 3ð1� 2�ÞB2

1

4ð1þ �Þ þ A2
1

2

� �

The modulus tensor is obtained by differentiating Eq. (23) with
respect to stress,
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Cijklðe;DÞ ¼2l
1

2
þ �B2

1 þ
�A1

�B1e

c

� 	

ðdkidlj þ dlidkjÞ
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ð1� 2�Þ �
2 �B2

1

3
þ �A2

1 �
2 �A1

�B1e

c
� 4 �A1

�B1e
3

9c3

� 	

dijdkl

þ 2 �A1
�B1

c
þ 4 �A1

�B1e
2

3c2

� 	

ðêijdkl þ dijêklÞ

� 4 �A1
�B1e

c

� 	

êijêkl

�

(25)

where êij ¼ eij=c.
Regime III: The Gibbs free energy function is given by

Wðr;DÞ ¼ WeðrÞ þ 1

4l
½C2

1r
2 þ E2

1s
2� (26)

Differentiating the above expression with respect to stress (see
Eq. (2)), we obtain the stress-strain relation

eijðr;DÞ ¼
1

2l
1þ E2

1

2

� 	

rij




� 3�

ð1þ �Þ þ
E2
1

2
� C2

1

3

� 	

rdij

�

(27)

Differentiating the Gibbs free energy function twice with respect
to stress (see Eq. (2)) we obtain the compliance tensor

Mijklðr;DÞ ¼
1

2l
1þ E2

1

4

� 	

ðdkidlj þ dlidkjÞ



� �

ð1þ �Þ þ
E2
1

6
� C2

1

9

� 	

dijdkl

�

(28)

where

C1 ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pD0

a3ð1þ �Þ

s

E1 ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pD0

a3ð1þ �Þ

s

(29)

Equation (26) can be recast in terms of conjugate strains, e and c,
where e ¼ ekk, c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2eijeji
p

and eij ¼ eij � edij=3. Differentiating
the modified Gibbs free energy function with respect to strain we
obtain

rijðe;DÞ ¼ 2l 1þ 2 �E2
1

� 

eijþ
� �

ð1� 2�Þ �
2 �E2

1

3
þ �C2

1

� 	

edij

�

(30)

where e ¼ ekk, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2eijeji
p

and eij ¼ eij � edij=3. The damage de-

pendent constants �C1 and �E1 are given by

�C1ðDÞ ¼
C1

3ð1� 2�Þ
ð1þ �Þ þ C2

1


 �

�E1ðDÞ ¼
E1

f2þ E2
1g

(31)

The modulus tensor is obtained by differentiating Eq. (30) with
respect to strain to obtain

Cijklðe;DÞ ¼ 2l
1

2
þ �E2

1

� 	

ðdkidlj þ dlidkjÞ



þ �

ð1� 2�Þ �
2 �E2

1

3
þ �C2

1

� 	

dijdkl

�

(32)

As in Ref. [2], ensuring the work conjugate strains, e and c, are
continuous when transitioning from Regime II to Regime III gives

E2 ¼ B2C2

C2 � A2
(33)

C is obtained by matching the stress intensity factors in Regime II
and Regime III under pure hydrostatic tension, which gives

C ¼ Aþ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
D

D0

� 	1=3
s

(34)

where X is a crack shape factor and is set to be 2.0.
The criteria for transition between regimes can be obtained as

follows. In Regime I the stresses are not large enough to allow for

sliding or opening of the micro-cracks. This implies KR�II
I (or

equivalently KR�III
I since C and E are related to A and B) is

negative.
Therefore, in Regime I (from Eq. (14))

Arþ Bs � 0 (35)

Transition criteria from Regime II to Regime III are obtained again
by ensuring continuity of conjugate strains, e and c.

Thus, in Regime II,

Arþ Bs > 0 and ðA2 � C2Þrþ ABs < 0 (36)

And finally in Regime III,

Arþ Bs > 0 and ðA2 � C2Þrþ ABs > 0 (37)

2.4 Damage Evolution Law. To complete the constitutive
model described above, we need to prescribe an evolution law to
the scalar damage parameter, D. Differentiating D with respect to
time we obtain

dD

dt
¼ 3D2=3D

1=3
0

aa

 !

dl

dt
(38)

where dl/dt: v is the instantaneous wing-crack tip speed. This is
a geometric relation connecting the wing crack tip speed with the
evolution of the damage parameter D. Completing this process
will now necessitate the introduction of additional physics relating
dl/dt to local stress conditions at the vicinity of the micro-cracks.
This is typically done through the notion of a micro-crack stress
intensity factor and its critical values (toughness) for both initia-
tion and growth.

If the history of the crack-tip motion is specified, then the sur-
rounding mechanical fields in an elastic body can be obtained
using linear elastic continuum mechanics, as long as the configu-
ration of the body and the details of the loading are specified.
However, since the motion of crack-tip is totally controlled by the
deformation state inside the surrounding material, the motion of
the crack-tip should not be specified a priori. Due to the fact that
the constitutive equation for the material does not include the pos-
sibility of material separation, we need a mathematical statement
of a crack growth criterion to be added into the governing equa-
tions. Such a criterion must be stated as a physical postulate on
material failure at the same level as the kinematical theorems gov-
erning deformation, momentum balance principles, as well as the
constitutive relation describing material response.

Thus, to properly solve this problem, one needs to understand
the state of stress around a crack-tip (both stationary and propa-
gating) under various loading conditions. These values then need
to be compared with experimentally determined fracture tough-
ness of the material, under similar conditions, to develop crack
initiation and growth criteria. The most common form for such
criteria is the requirement that the crack must grow in such a way
that some parameter (e.g. the dynamic stress intensity factor, Kd

I )
defined as part of the crack-tip field maintains a value that is spe-
cific to the material. This value, representing the resistance of the
material to the advance of the crack, is called the dynamic fracture
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toughness ðKd
ICÞ of the material, and it can be determined through

experimental measurements only. Thus, in its most general form
this can be represented as

Kd
I ½lðtÞ; vðtÞ;PðtÞ; t� ¼ Kd

IC½vðtÞ;…� (39)

where the left hand side is the solution obtained from elasticity
and the right hand side represents the material property deter-
mined experimentally. Here l, v and P are the instantaneous crack
length, crack speed and applied load respectively. Equation (39) is
a complete statement of a crack growth criterion whose solution
provides an equation of motion for the crack tip under appropriate
initial conditions [22,23]. We will first consider the characteristics
of the left hand side of Eq. (39).

2.4.1 Dynamic Stress Intensity Factor, Kd
I . The physical

problem at hand involves transient loading of the existing frac-
tures in the damage mechanics framework. Several authors have
studied the problem of transient loading of a crack using analyti-
cal and numerical techniques [22–43]. The stress intensity factor
for transient loading of cracks, referred to as the dynamic stress
intensity factor, Kd

I (see left hand side of Eq. (39)), has two impor-
tant general characteristics:

(1) For a stationary finite crack (dl/dt : v¼ 0) under transient
loading conditions, Kd

I evolves with time following the
application of loads. It rises sharply with time, overshoots
the equivalent quasi-static value Kst by a considerable
amount, and then oscillates around the static value with
decreasing amplitude. This oscillation is due to the Ray-
leigh waves traveling back and forth along the surface of
the crack with decreasing intensity (for, e.g., see Refs.
[22,23]). This generalized behavior can be summarized by
the relationship

Kd
I ðtÞ
Kst

¼ K
cRt

b

� �

(40)

where K is a function of a dimensionless, crack-length-
related time cRt/b, describing the oscillation of Kd

I ðtÞ
around its quasi-static value, Kst. Here, cR is the Rayleigh
wave speed of the material and b is the half-length of the
crack. After an early steep increase, K reaches a maximum
value (up to about 30% more than its quasi-static value),
then oscillates around the value 1 with diminishing ampli-
tude, becoming equal to the average value of 1 for longer
times. The increase in K, before the arrival of reflections, is
known analytically [34] and is given by

Kd
I ðtÞ
Kst

¼
ffiffiffiffiffiffi

cpt

b

r

(41)

where cp is the dilatational or the P-wave speed of the me-
dium. This initial increase and subsequent oscillations can
be approximated as

K
cRt

b

� �

� 1� eðcRt=2bÞJ0ð4cRt=bÞ (42)

where J0(x) is the zeroth order Bessel function.

We ignore this effect since our crack sizes are much smaller
than any model dimension. This means that any numerical
computation will have to be temporally resolved to capture
this transient effect occurring at time scales much smaller
than the time scale associated with the larger model itself
making the problem computationally expensive.

(2) For a dynamically growing crack tip (dl/dt: v= 0), a sec-
ond key result was obtained by Ref. [29] who showed that
for an unbounded body subjected to time independent load-

ing, the dynamic stress intensity factor at the running
crack-tip can be expressed as a universal function of instan-
taneous crack-tip speed, v(t), multiplied by the equilibrium
stress intensity factor for the given applied loading and the
instantaneous amount of crack growth, i.e.,

Kd
I ½vðtÞ� ¼ k½vðtÞ�KI ½lðtÞ� ; kðvÞ � ð1� v=cRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=cp
p (43)

While this result holds only for a single crack under condi-
tions described above, we nevertheless invoke it as an
approximation to obtain the dynamic stress intensity factor
of the micro-cracks in our model. We will now examine the
right hand side of Eq. (39) which represents the fracture
toughness of the material.

2.4.2 Dynamic Initiation Toughness. As a material parameter
the fracture toughness, KIC (for quasi-static loading), KD

IC (for
dynamic initiation) and Kd

IC (for dynamic propagation) can only
be obtained through experimental measurements and is found to
vary with loading rate. Under impact loading conditions, high
loading rates occur at the pre-existing crack-tip. A parameter _KI

characterizing the loading rate is defined as

_KI ¼
KIC

tC
(44)

where KIC is the mode-I critical stress intensity factor at the
instant of crack initiation (fracture toughness) and tC denotes the
time from the beginning of loading to the instant at which fracture
initiation occurs. Usually, the crack-tip loading rates range
from _KI � MPa

ffiffiffiffi

m
p

s�1 for quasi-static loading to as high as
_KI � 108MPa

ffiffiffiffi

m
p

s�1 for impact loading.
One can view the initiation of a stationary crack as a process

where the defects in the vicinity of the crack tip develop into small
secondary cracks, and these secondary cracks coalesce with the
original crack so as to enlarge it further. The formation of the sec-
ondary cracks in the vicinity of the crack tip is controlled by the
stress level at that location. This process is also closely connected
to how the stress level reaches the critical value, i.e., the loading
history at the location of the defects. The authors of Ref. [37] stud-
ied this problem of fracture initiation at the tip of a crack in terms
of activating a single flaw at some distance away from the tip of a
semi-infinite crack in an unbounded two-dimensional solid sub-
jected to spatially uniform but temporally varying crack-face pres-
sure. Fracture initiation was assumed to be synonymous with
attaining a critical stress at the fracture site. Their results agreed
well with typical experimental data of dynamic crack initiation in
nominally brittle solids. Thus, due to material inertia a solid may
exhibit totally different fracture initiation resistance (initiation
toughness) from those under quasi-static loading conditions
[44,45]. This, according to Ref. [37], is related to the finite time it
takes to establish a sizable region of KI field dominance at the vi-
cinity of the main crack tip. This material property, that depends on
the loading rate, is thus called the Dynamic Initiation Toughness,

KD
IC, and its quasi-static limit is KSS

IC . This can be represented as

KD
IC ¼ f ð _KIÞKSS

IC where f ð _KIÞ ð	 1Þ takes into account the increased
initiation toughness due to loading rate (Fig. 2). Since this is a iner-
tia dominated phenomenon, for this work we assume the following

functional form for fDð _KIÞ that best fits the data (as shown by the
dashed line in Fig. 2)

fDð _KIÞ ¼ 1þ
_KI

KSS
IC

� 	


 2
 10�5 (45)

2.4.3 Dynamic Propagation Toughness. Once the crack-tip
starts propagating, the material resistance ahead of the crack-tip
has been shown to depend on the crack-tip speed [43,44]. This
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crack-speed dependent resistance is called Dynamic Propagation
Toughness, Kd

ICðvÞ and has been discussed earlier as the right hand
side of Eq. (39); Refs. [44,45] explain this in terms of the inter-
play of nonlinear and inertial effects associated with the propagat-
ing crack-tip. This effect of increasing fracture resistance with
speed was demonstrated numerically by Ref. [46] for Mode-III
crack growth and by Ref. [47] for Mode-I crack growth under
plane stress conditions in an elastic-perfectly plastic material by
means of small scale yielding calculations. They showed that as
the crack speed was increased, the interaction of inertia and local
near tip nonlinearities necessitated the monotonic increase of
Kd
ICðvÞ in order to keep satisfying a local critical crack opening

displacement criterion.
Beyond a critical crack speed further increase in Kd

ICðvÞ
becomes energetically unfavorable and the single initial crack pre-
fers to branch into one or more cracks; each of these cracks in
turn follow the same crack growth resistance criteria. This limit-
ing speed is called the branching speed, vm. This speed varies
from material to material and decreases with increasing material
ductility. For, e.g., 2024-T3 Aluminum vm � 0.03cR, for 4340
steel vm � 0.32cR and for Glass vm � 0.55cR. These experimental
observations have been summarized in Fig (3). We represent this
with the following functional form,

Kd
ICðvÞ ¼ KSS

IC

1þ ðv=vmÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=cp
p

( )

(46)

2.4.4 Crack-Tip Equation of Motion. Based on the experi-
mental observations discussed above whose most important impli-
cation is that for either initiation or propagation, very similar
trends are observed regardless of material, and we are now in a
position to write an expression that describes both the initiation
and growth of fractures at high loading rates.

Initiation Criterion: The crack will initiate motion when

Kd
I ðv ¼ 0; _KIÞ ¼ KD

ICð _KIÞ (47)

where KI is the stress intensity factor from Eqs. (14) or (17)
depending on the remote loading regime.

Growth Criterion:
During the process of crack growth, if small scale yielding con-

ditions prevail, the fracture criterion stipulates:

Kd
I ðtÞ ¼ Kd

I ½lðtÞ; vðtÞ;PðtÞ; t� ¼ Kd
ICðvÞ (48)

where the left-hand side is the dynamic stress intensity factor or
otherwise known as the “driving force,” which in principle is
entirely determined through an analysis of a boundary/initial value
problem. The right-hand side represents the material “resistance”
to dynamic fracture at various speeds, called the dynamic fracture
toughness which can only be determined through experiments.
The above equation is in general a first order nonlinear differential
equation for l(t) and provides the evolution equation for crack
growth, i.e., a crack-tip equation of motion. For the specific prob-
lem at hand, the dynamic stress intensity factor for the propagat-
ing crack is given by

Kd
I ðtÞ ¼ kðvÞKI where kðvÞ � ð1� v=cRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=cp
p (49)

where KI is the quasi-static stress intensity factor of an equivalent
crack of the same length but growing at zero speed. It is obtained
from Eqs. (14) or (17) depending on the remote loading regime.
Combining Eqs. (46), (48) and (49), we obtain a nonlinear equa-
tion for crack-tip speed as,

KIð1� v=cRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=cp
p ¼ KSS

IC

1þ ðv=vmÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=cp
p

( )

(50)

This expression is solved to obtain the crack speed which is then
used in Eq. (38) to complete the damage evolution equation.

3 Results and Discussion

3.1 Experimental Results and Observations for Dionysus-
Pentelicon Marble. The authors of Ref. [48] have conducted
uniaxial experiments, over a wide range of strain-rates, on
Dionysus-Pentelicon marble which is a high quality white marble

Fig. 2 (a) Normalized dynamic initiation toughness KD

IC
for frac-

ture initiation as a function of loading rate for several materials
(from Ref. 48])

Fig. 3 Normalized dynamic propagation toughness K d

IC
for frac-

ture propagation as a function of crack-tip velocity for various
materials (from Ref. 48])
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that was originally used in the construction of the classical Parthe-
non. Low strain-rate experiments ð_e � 10�6 � 10�3Þ were con-
ducted using a conventional load frame apparatus whereas high
strain-rate experiments ð_e � 102 � 103Þ were conducted using
split Hopkinson bar technique. In addition to these fracture and
fragmentation studies were conducted using high-speed photogra-
phy in conjunction with a variety of interferometric techniques.
The marble is composed of approximately 98% calcite with less
than 1% quartz. This marble has a density of 2750 kg/m3, Young’s
Modulus of 78 GPa and its Poisson’s ratio is 0.31. Figure 5 shows
optical micrographs of the marble specimens used in the experi-
ments. The average size of these grains were measured and found
to be 400 lm in each orientation with the largest grains having
dimensions of �1 mm.

The authors of Ref. [48] observed extreme strain-rate sensitivity
in the dynamic uniaxial compressive loading of marble (see Fig. 6).
The compressive strength was found to increase by a factor of 7
when strain rate was increased from the quasi-static regime to the
regime corresponding to impact and explosive loading. Unexpect-
edly high crack-tip speeds during dynamic crack growth in marble.
In certain orientations maximum speeds reached and even exceeded
the Rayleigh wave speed. Failure involved complex crack-tip
branching phenomena as well as dynamic coalescence of multiple
micro-cracks with the dominant cracks.

3.2 Model Parameters. We now we will use the parameters
from the experiments described above to test the constitutive
model developed in the previous section. We set the size of our
penny crack, a¼ 1mm and we assume the friction coefficient
between the faces of the penny crack is f¼ 0.7. Following Ref.
[12], we determine the initial damage, D0 and hence the flaw den-
sity NV, from the quasi-static stress-strain curve for marble
(Fig. 6). This involves solving for the value of D (in the uniaxial
version of the stress-strain curve in Eq. (23)) corresponding to the
lowest nonlinear stress value from the experiments. By this

method we obtain D0¼ 0.1. The only remaining parameter is the
branching speed vm and we assume this to be equal to 0.35cR since
no detailed experimental results exist. This is a mean branching
speed for brittle materials that have some amount of ductility.

3.3 Numerical Implementation and Convergence
Studies. A constitutive time-integration procedure for the model
described in the previous section has been implemented in the fi-
nite element program ABAQUS-Explicit by writing a USER MA-
TERIAL (VUMAT) subroutine. Integration of the damage
evolution equation (Eq. (38)) is carried out using a fifth order
Runge-Kutta scheme with adaptive step-size control [49]. The
crack-tip equation of motion (Eq. (50)) is solved using the bisec-
tion method. The continuum constitutive law developed in the
previous section contains no direct length scale. The micro-
mechanical definition of the scalar damage parameter involves a
length scale, the size of the penny crack a. However, in the contin-
uum form of the constitutive law it is simply a scalar dimension-
less state variable that determines the evolution of the modulus
tensor and the stress-strain relationship. However, the damage
evolution law, Eq. (38), depends on the size of the penny crack a.
We thus use this length-scale to discretize our model. For compu-
tational ease we conducted axisymmetric calculations on a cylin-
drical specimen of radius, R¼ 6 mm and height, H¼ 10 mm. A
constant velocity, V, boundary condition was applied on one end

Fig. 5 Optical micrographs of the Dionysus-Pentelicon marble

Fig. 6 Stress-strain curves for marble under compressive
loading at strain rates differing by more than eight orders of
magnitude (from Ref. [48])

Fig. 4 Graphical representation of the solution to Eq. (50)
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of the specimen. The average applied strain rate is then given by
_e ¼ V=H. As one can see from Figs. 7 and 8, the numerical
scheme does indeed converge for the evolution of damage, D and
for the most part of stress evolution. Instabilities develop when
the material reaches its peak failure strength and begins to soften.
These instabilities develop at values of D< 1 and correspond to
the loss of ellipticity in the constitutive description. We plan to
carefully study the onset of these instabilities and their effect of
the bulk response of the material in the future.

3.4 Comparison With Experimental Results. We again
conducted axisymmetric calculations on a cylindrical specimen of
radius, R¼ 6 mm and height, H¼ 10 mm as used by Ref. [48] in
their high-strain rate experiments. A constant velocity, V, boundary
condition was applied on one end of the specimen. The average
applied strain rate is then given by _e ¼ V=H.

We conducted numerical experiments for strain-rates ranging
from 1 s� 1 to 5000 s� 1. We chose an element size Ds such that
a¼ 10Ds. Since an explicit time-integration procedure was used,
we limited ourselves to high-strain rate experiments. The uniaxial
stress-strain curves are shown in Fig. 9. The results are shown
only up to peak failure strength. The strong strain-rate sensitivity

of the constitutive law is apparent in this figure. This rate depend-
ence is a direct consequence of dynamic initiation and propaga-
tion criteria for the micro-cracks. The evolution of the scalar
damage variable, D, depends not only on the micro-crack tip
stress field but also the time rate of this field. The rate sensitivity
for the micro-crack directly translates to strain-rate sensitivity of
the continuum constitutive law.

Another interesting feature that manifests uniquely, due to the
crack growth law incorporated in this work, is the evolution of
the scalar damage parameter D, at various strain rates, as seen in
Figs. 10 and 11 . As we can see from the insets Z1 and Z2 in
Fig. (10), the damage evolution is delayed but still quite rapid and
D jumps quite dramatically over a few microseconds. This physi-
cally means that even if the loading rate is relatively slow the
onset of failure could still be quite sudden due to rapid accelera-
tion of the micro-cracks leading to the fast evolution of D. For the
case of _e ¼ 10s�1, we see a slow evolution of D from t� 100 ls
to t� 160 ls followed by a rapid evolution over a few ls. The
slow evolution phase corresponds to micro-crack loading being
just large enough to barely violate the crack growth resistance cri-
terion resulting in small values of crack speeds that translate to
the slow evolution phase of D. Physically, this could be inter-
preted as “acoustic emission” signatures that are experimentally

Fig. 7 Effect of grid resolution on the temporal evolution of
the scalar damage parameter, D. Here Ds is the size of the finite
element and a is the size of the penny crack.

Fig. 8 Effect of grid resolution on the temporal evolution of
uniaxial stress. Here Ds is the size of the finite element and a is
the size of the penny crack.

Fig. 9 Numerically obtained stress-strain curves at different
strain-rates for marble based on the constitutive model
developed

Fig. 10 Temporal evolution of the scalar damage parameter D
for lower strain rate simulations ( _e ¼ 1s�1 and 10 s

2 1)
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observed to increase prior to the onset of failure. For higher load-
ing rates, D attains its maximum value over a period of 0.5 to
1.0 ls signaling a rapid failure event (Fig. 11). As expected dam-
age evolution occurs earlier and in a shorter period of time as the
loading rate increases.

Finally, we would like to compare our results with the experi-
ments, conducted by Ref. [48], described earlier in the paper. We
do not directly compare the stress-strain curves as the amount of
strain predicted by our constitutive law is about a factor of 2-3
smaller than that measured in the experiments. We suspect this is
because we do not take into account any plastic deformation of
the calcite grains in the constitutive description. We plan to rectify
this in the future. We thus plan instead to compare the peak stress
at failure under uniaxial compression. Since this data exists in
Ref. [48] for a wide range of strain-rate ( _e � 10�6s�1 to 103s� 1)
we consider this as the best metric for comparison of the constitu-
tive law over a wide range of strain-rates. These results are sum-
marized in Fig. 12. Our model predictions are a very good fit to
the experimental data for strain rates ranging from 1 s� 1 to 5000
s� 1. Our success in predicting the increase in strength with load-
ing rate clearly related to the proper modeling of crack growth
dynamics.

We would like to emphasize that in obtaining this fit we only
needed the elastic constants (determined experimentally), penny

crack size (estimated to be of the order of measured average grain
size), initial damage D0 (estimated from the quasi-static stress-
strain curve) and the branching speed (approximated to be 0.35cR).

4 Dynamic Earthquake Rupture Application

One of the important questions in earthquake source physics is
to understand the effect of dynamic earth-quake ruptures and the
associated high loading-rate effects in the generation of new dam-
age, in the medium hosting earthquake faults, and, at the same
time, to explore the effect of damage generation on the rupture
propagation. Specifically, some of these questions are: (1) What is
the spatial extent of a dynamically generated off-fault damage?
(2) How is a propagating rupture affected by pre-existing off-fault
damage? (3) How does the off-fault damage contribute to asym-
metric rupture propagation?

The constitutive model we have developed can now be used to
address these questions. To that end, we simulate an earthquake
rupture as a dynamic Model-II rupture propagating along an inter-
face that has damaged rock, following the constitutive law devel-
oped here, on one side and an undamaged rock following linear
elastic constitutive law on the other side. The interfacial strength is
governed by a linear slip-weakening law as shown in Fig. 13. We
use the elastic constants of granite (E¼ 75 GPa, �¼ 0.25). The

Fig. 11 Temporal evolution of the scalar damage parameter D
for higher strain rate simulations ( _e ¼ 1600s�1 to 5000 s

2 1)
Fig. 12 Variation of peak or failure stress with strain rate.
Experimental results are compared with numerical simulations.

Fig. 13 Snapshot of a bilateral rupture propagating on the boundary between dam-
aged and undamaged rock. Note the generation of dynamic damage in the tensile lobe
of the right rupture tip. Rupture tips are denoted by the inverted triangles.
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initial flaw size was assumed to be 25 m corresponding to large
scale damage influenced by the medium from previous earthquake
events and initial damage, D0, was set to be 0.007. Branching speed
vm was assumed to be 0.35cR. To speed up the computation we set
the element size to be the same as the flaw size. The process zone
size (or equivalently the cohesive zone size) at zero rupture speed
for the assumed friction law parameters is 2 km.

Figure 13 shows a snapshot of bilateral rupture propagating
along the interface between an undamaged material above and a
damaged material below. Since the rupture is right-lateral, the tip
propagating to the left puts the damaged material in compression
(which we define as the C direction) while the tip propagating to
the right puts the damaged material in tension (the T direction).
Note that most of the new damage is generated in the tensile lobe
of the tip propagating to the right and, as expected, the tip traveling
in the T direction is slower than that traveling in the P direction. In
addition, we observe the formation of localized damage zones that
could mature ultimately into branched faults. We would like to note
that we have not fully explored the localization phenomenon and at
this stage do not have an insight on mesh dependence. We plan to
conduct detailed studies of this phenomenon in the future.

5 Summary

We have developed a micro-mechanically motivated constitutive
law that is an extension of [2,12]. A unique feature of this new con-
stitutive law is the incorporation of crack growth dynamics that is
consistent with recent theoretical and experimental studies of high-
speed crack propagation. The resultant crack growth law relates the
crack speed to the instantaneous value of the stresses at the crack
tip and also their time rates. This translates directly (and naturally)
into strain-rate sensitivity in the constitutive description.

The constitutive model was tested by predicting experiments on
Dionysus-Pentelicon marble [48]. All the parameters of the model
were experimentally derived or inferred from quasi-static data.
These parameters were then used to predict the failure strength at
higher loading rates. We have shown that incorporation of proper
crack growth dynamics is the key to correctly represent brittle
failure over a wide range of loading rates.
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