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1. INTRODUCTION

Caffarelli-Friedman [7] proved a constant rank theorem for convex solutions of semilinear
elliptic equations in R?; a similar result was also discovered by Yau [28] at about the same time.
Shortly thereafter, the result in [7] was generalized to R™ by Korevaar-Lewis [27]. This type of
constant rank theorem is called a microscopic convexity principle. It is a powerful tool in the
study of geometric properties of solutions of nonlinear differential equations and is particularly
useful in producing convex solutions of differential equations via homotopic deformations. The
great advantage of the microscopic convexity principle is that it can treat geometric nonlinear
differential equations involving tensors on general manifolds. The proof of such a microscopic
convexity principle for a oy type equation on the unit sphere S™ by Guan-Ma [17] is crucial
in their study of the Christoffel-Minkowski problem. The microscopic convexity principle also
provides some interesting geometric properties of solutions. For a symmetric Codazzi tensor,
the microscopic convexity principle implies that the distribution of null space of the tensor is of

constant dimension and is parallel.

The microscopic convexity principle has been validated for a variety of fully nonlinear dif-
ferential equations involving the second fundamental form of hypersurfaces ([17, 16, 18, 8]).
Understanding under what structural conditions the microscopic convexity principle is valid is
central. Caffarelli-Guan-Ma [8] established such a principle for fully nonlinear equations of the

form:

(1.1) F(uij(z)) = oz, u(z), Vu(z)).

where F(A) is symmetric and F(A™!) is locally convex in A. Similar results were also proved
for symmetric tensors on manifolds in [8]. Several interesting geometric applications were also
given there. For applications, it is important to consider equations F' involving other variables
in addition to the hessian (u;;). For example, it is desirable to include linear elliptic equations
and quasilinear equations with variable coefficients. In many cases, a solution v to an equation
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may not be convex yet some transformation v = h(v) of it may be convex (see e.g., [6, 7]). If v
is a solution of equation (1.1), then u = h(v) is a solution of equation

(1.2) F(V*u,Vu,u,z) = 0.

A similar situation also arises in the case of geometric flow for hypersurfaces.

In this paper, we study the microscopic convexity property for an equation of the general
form (1.2) and related geometric nonlinear equations of elliptic and parabolic type. The core
idea in the proof of a microscopic convexity principle is to establish a strong maximum principle
for an appropriate auxiliary function. There have been significant contributions in the literature
[7, 27, 17, 16, 18, 8] developing analytic techniques for this purpose. All of these methods break
down for a general fully nonlinear elliptic equation of the form (1.2). The main contribution
of this paper is the introduction of new analytic techniques involving quotients of elementary
symmetric functions near the null set of det(u;;). The analysis is delicate as both symmetric
functions in the quotient will vanish on the null set. This is a novel feature of this paper. It is
another indication that these quotient functions of elementary symmetric functions are naturally
embedded in the study of fully nonlinear equations. In a different context, the importance of
quotient functions has been demonstrated in the beautiful work of Huisken-Sinestrari [22]. We

believe our techniques will be useful in solving other problems in geometric analysis.

To illustrate our main results, we first consider equations in a flat domain. Let ) be a domain
in R" and denote by 8™ the space of real symmetric n x n matrices and S% the space of positive
definite real symmetric n X n matrices. Let F = F(r,p,u,z) defined in 8™ x R™ x R x § be
elliptic in the sense that

oF
(1.3) (

Orag

(V2u, Vu,u,z)) >0, Yz € Q.

Theorem 1.1. Suppose F = F(r,p,u,x) € C*1(S8" x R" x R x Q) satisfies condition (1.3) and
(1.4) F(A™Y, p,u, ) is locally convex in (A, u,z) for each p .

Ifu € C%1(Q) is a convex solution of (1.2), then the rank of the hessian (V2u(x)) is a constant |
in Q. For each xy € Q, there exist a neighborhood U of xg and (n—1) fized directions Vi,...,V,_
such that V2u(z)V; =0 for all1<j<n-—1landz € U.

There is also a parabolic version.

Theorem 1.2. Suppose F = F(r,p,u,z,t) € C*(S" x R" x R x Q x [0,T)) satisfies condition
(1.3) and

(1.5) F(A™Y,p,u,z,t) is locally convez in (A, u,x) for each pair (p,t)



MICROSCOPIC CONVEXITY 3

Suppose u € C%1(Q x [0,T)) is a convex solution of the equation

0
(1.6) 8—1: = F(V?u, Vu,u,z,t) .
For each t € (0,T), let I(t) be the minimal rank of (VZu(z,t)) in Q, then the rank of (Vu(w,t))
is constant I(t) and I(s) < I(t) for all s <t < T. For each 0 < t < T, xp € Q there exist a
neighborhood U of xo and (n—1(t)) fized directions Vi,. .., Vy_i(t) such that V*u(x,t)V; =0 for
all1 <j<n-—1I(t) and x € U. Furthermore, for any to € [0,T), there is a § > 0, such that the
null space of (V2u(x,t)) is parallel in (z,t) for all x € Q,t € (to,to + 9).

An immediate consequence of Theorem 1.1 is the proof of a conjecture raised by Korevaar-

Lewis in [27] for convex solutions of mean curvature type elliptic equation

(1.7) Zaij (V2u(z))ug(z) = flz,u(z), Vu(z)) > 0.

Corollary 1.3. Let Q C R"™ and suppose u is a convex solution of the elliptic equation (1.7). If
(1.8) f(z,u,p) is locally convex in (z,u) for each p,

then the hessian (V2u(x)) is of constant rank in ).

Korevaar-Lewis [27] proved that the Hessian of any convex solution u of an elliptic equation
(1.7) is of constant rank and u is constant in n — [ coordinate directions, provided that ﬁ
is strictly convex for any p fixed. They conjectured that the constant rank result still holds if
ﬁ is only assumed to be convex. They observed that when n = 2, this can be deduced from
the proofs of Caffarelli-Friedman in [7]. Set

1 1
ey @ (Vu(e))uig(@) | (e, ula), Vaz)
Then equation (1.7) is equivalent to F'(V?u, Vu, u, ) = 0. It is straightforward to check that F
satisfies Conditions (1.3) and (1.4) under the assumptions in Corollary 1.3.

F(V?u,Vu,u,z) = —

We now discuss some geometric equations on general manifolds. Preservation of convexity is
an important issue for the geometric flows of hypersurfaces (see e.g., [21, 5] and the references

therein). We have the following general result.

Theorem 1.4. Suppose F(A, X, i) is elliptic in A and F(A™, X,7) is locally convex in (A, X)
for each fized it € S™. Let M(t) C R" be a compact hypersurface satisfying the geometric flow
equation

(19) Xt = _F(gilthy ﬁ)ﬁa te (OuT)v M(O) = MO )

where X, 1, g, h are, respectively, the position vector, outer normal, induced metric and the second
fundamental form of M(t). If My is convex, then M(t) is strictly convex for all t € (0,T).



4 BAOJUN BIAN AND PENGFEI GUAN

Alexandrov in [1, 3] studied existence and uniqueness of solutions of general nonlinear curva-

ture equations,
(1.10) F(g~'h,X,7(X)) =0,VX € M,

where X is the position function of M and 7(X) is the unit normal of M at X. The following
theorem addresses the convexity property of problems studied in [1, 3].

Theorem 1.5. Suppose F(A, X, ) is elliptic in A and F(A™, X, i) is locally convex in (A, X)
for each fizred i € S™. Let M be an oriented immersed connected hypersurface in R" 1 with a
nonnegative definite second fundamental form h satisfying equation (1.10). Then h is of constant
rank and its null space is parallel. In particular, if M is complete, then there is 0 <1 < n such
that M = M' x R"! for a strictly convexr compact hypersurface M' in RIFY (if 1 > 0). If in
addition M is compact, then M is the boundary of a strongly convex bounded domain in R™ 1.

Theorem 1.5 has similarities with the classical result of Hartman-Nirenberg in [20].

The microscopic convexity principle also can be used to prove some uniqueness theorems in
differential geometry in the large. A surface immersed in R? is called a Weingarten surface if its
principle curvatures k1, k2 satisfy a relationship F'(k1, ko) = 0 for some elliptic F' (i.e, F' satisfies
condition (1.3)). Alexandrov [2] and Chern [12] proved that if M is a closed convex Weingarten
surface in R3, then M is a sphere. In higher dimensions, there is an extensive literature (see
e.g., [11, 13]) devoted to showing immersed hypersurfaces are spheres. We prove the following
sphere theorem.

Theorem 1.6. Suppose (M, g) is a compact connected Riemannian manifold of dimension n
with nonnegative sectional curvature which is positive at one point. Suppose F(A) is elliptic,
and W is a Codazzi tensor on M satisfying the equation

(1.11) F(g7'W)=0o0n M.

If either (1) n =2, or
(2) n >3, W is semi-positive definite and F(A™Y) is locally convex for A > 0,
then W = cg for some constant ¢ > 0.

Theorem 1.6 was proved by Ecker-Huisken in [13] under the assumption F' is concave. Refer
to Remark 5.7 for the relationship between concavity of F'(A) and the condition on F in case
(2) of Theorem 1.6. Note that when n = 2, only the ellipticity assumption on F' is needed in
Theorem 1.6. Refer to [17, 18, 8] for other applications of the microscopic convexity principle
in classical and conformal geometry and to [15] for applications in Kahler geometry.

A vast literature exists devoted to the study of the convexity of solutions of partial differential
equations. There is a theory of macroscopic nature, where the problem is always considered in



MICROSCOPIC CONVEXITY 5

a convex domain in R™ with appropriate boundary conditions. In 1983, Korevaar made break-
throughs in [25, 26] where he obtained concavity maximum principles for a class of quasilinear
elliptic equations. His results were improved by Kennington [24] and by Kawhol [23]. The theory
was further developed to great generality by Alvarez-Lasry-Lions [4] in 1997. They established
the existence of a convex solution of equation (1.2) for state constraint boundary values under
conditions (1.3)-(1.4) assuming that F' satisfies a comparison principle. Microscopic convexity
implies macroscopic convexity if there is a deformation path (e.g., via the method of continuity
or parabolic flow). Theorem 1.1 is the microscopic version of the macroscopic convexity principle
in [4].

The rest of the paper is organized as follows. In section 2, we introduce a key auxiliary function
(z) = o142(Viu(z))
a 7111 (VZu(x))
2.1 we demonstrate a key concavity inequality for ¢(x) and in Corollary 2.2, we conclude that

which is well defined by the Newton-Maclaurin inequalities. In Proposition

q has optimal C'™! regularity. In section 3, we establish a strong maximum principle for the
function ¢(z) = o741(V?u(x)) + g(x) which is the main technical tool of the paper. In section 4,
we discuss condition (1.4) and related results. The last section is devoted to geometric equations
on manifolds.

Acknowledgement: We would like to thank Professor Xinan Ma for several helpful discussions.
We are grateful to the anonymous referee for the valuable suggestions and for the help in the
exposition of the paper. It is our pleasure to thank Professor Wilbur Jénsson for proofreading
the paper. Part of work was done while the first author was visiting McGill University. He
would like to thank the Department of Mathematics and Statistics at McGill University for its
warm hospitality.

2. AN AUXILIARY FUNCTION

V2u is of constant rank if and only if oy, 1(V?u) = 0, where [ is the minimum rank of V2u.
It was first shown by Caffarelli-Friedman in [7] that there is a strong maximum principle for
0141(V?u) for any convex solution of Au = f when % is locally convex (see also subsequential
works [27, 17, 16, 18]). When F in (1.1) is a general symmetric function, such a maximum
principle for o;41(V?u) is difficult to prove. A major achievement in [8] is the establishment of
a maximum principle for function o7, 1(V?u) + Aoy o(V>?u) when A > 0 is sufficient large. For
the general equation (1.2), we do not know how to prove the corresponding maximum principle
for the previously known test functions. This lead us to search for a new auxiliary function.
It turns out oy, 1(V2u) + %
analysis of this function near the null set N = {0;,1(V?u) = 0}.

is the function! The rest of this section is devoted to the
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With the assumptions of F' and u in Theorem 1.1 and Theorem 1.2, u is automatically
in C%1. This will be assumed in the rest of this paper. Let W(z) = VZu(z) and | =
mingeq rank(V2u(x)). | < n — 1 may also be assumed. Suppose zg € §2 is a point where
W is of minimal rank /.

Throughout this paper we assume that o;(WW) = 0if j < 0 or j > n. Define for W = (u;;) € "

0'l+2(W) .
(2.1) g(W) = { o) ?f o141 (W) >0
For any symmetric function f(W), we denote
o OO0 OIO0)
auij ’ 8ul]8ukm

For each zg € Q where W is of minimal rank [. We pick an open neighborhood O of zg, for any
x € O, let A\j(z) < A2(x)... < A\p(x) be the eigenvalues of W at x. There is a positive constant
C > 0 depending only on ||u||gs,1, W(z0) and O, such that A, (x) > A\p—1(2)... > Ap_ig1(z) > C
forallz € O. Let G={n—-1+1,n—14+2,..,n} and B = {1,...,n — I} be the “good” and
“bad” sets of indices respectively. Let Ag = (Ap—i41, ..., \n) be the "good” eigenvalues of W at
x and A = (A1, ..., \n_;) be the ”bad” eigenvalues of W at z. For the simplicity, write G = Ag,
B = Ap if there is no confusion. Note that for any ¢ > 0, we may choose O small enough such
that A\i(z) <o foralli € B and z € O.

Set

(2.2) ¢ = o111 (W) +q(W)

where ¢ defined as in (2.1). Use notation h = O(f) if |h(z)| < Cf(z) for z € O with the positive
constant C' under control. It is clear that \; = O(¢) for all i € B.
To get around ;41 (W) = 0, consider for e > 0 sufficient small,

UZ—‘,—Q(WE)
UH—I(WE)’
where W, = W +el. We will also denote Ge = (A\—j41+€,...; Ap+€), Be = (A1 +6€,..., \p_i +€)

We will work on ¢. to obtain a uniform C? estimate independent of e. One may also work

(2.3) q(W) = (W) = 015:1(We) + (W),

directly on ¢ at the points where o;,1(V?u) # 0 to obtained the same results in the rest of this
section (with all relative constants independent of chosen point).
Set

(2.4) ve(x) = ulz) + gw,

then W, = (V2v.). To simplify the notation, we will write v for v, g for g., W for W, G for
G and B for B, with the understanding that all the estimates will be independent of €. In this
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setting, with O is small enough, there is C' > 0 independent of € such that
(2.5) o1 (W(x)) > Ce, and o1(B(z)) > Ce, forallz e O.

Similarly write h = O(f) if |h(z)| < Cf(x) for z € O with positive constant C' under control
independent of e.
The importance of the function ¢ is reflected in the following proposition. Set

(2.6) Via = viia01(B) — vy ( Z vjja>-

JjEB

Proposition 2.1. For each z € O with W(z) is diagonal, for any o, 5 € {1,--- ,n},

ik 0?(B|i) — o2(Bli
Z R O<¢+Z [Vu]) — 2 Z i(Bli) ( |)Uijavjm

2 .
i,5,km i,jeB i€B,jeCG a1 (B)A;
(2.7) e ViaVig | 2ijeB.izj VijaViis
' o}(B) o1(B)

The last two terms in (2.7) will play a key role in estimating linear terms of v;jo (4,5 € B) in
our proof of Theorem 1.1 in the next section.

Corollary 2.2. Let u € C3Y(Q) be a convex function. W(z) = (uij(z)),z € Q and | =
mingeq rank(W(z)). Then the function q(x) = q(W(z)) defined in (2.1) is in CH1(£2).

The rest of this section is devoted to proving Proposition 2.1, and it involves some subtle
analysis of the function q. The proof of Corollary 2.2 will be given at the end of this section.
In preparation, several well known lemmas are listed. For the sake of completeness, proofs are
provided. If W is any n x n diagonal matrix, denote by (W|i) the (n — 1) x (n — 1) matrix with
ith row and ith column deleted, and (W|ij) the (n — 2) x (n — 2) matrix with 4, jth rows and
1, j7th columns deleted.

Lemma 2.3. Suppose W is diagonal. Then we have

By { L1 Worpy W) o142 (W)or(W1i)
q’ =

o (W) , i =J
0 if 147

(a). ifi=m,j=k,i+#j, then

qij,km _ _Ul(W|Zj) n O'lJrQ(W)O'l,l(W‘ij)
o141 (W) ot (W)
(b). ifi =j =k =m, then
qu,km = _9 o (W1i) (o101 (W) o1 (W i) — oy (W i) o0 (W)]

013+1(W)
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(c). ifi=7j,k=m,i#k, then
a(Wlik)  opa(Wli)o(Wk) o (Wk)oy(Wi)

i7,km
g = - -
Ul+1(W) J12+1 (W) 012+1(W)
o2 (W)or-1 (W]ik) +201+2(W)01(W!i)01(W\k)
012+1(W) U?H(W)
(d). otherwise
qij,km -0

Proof. Since W is diagonal, it follows from Proposition 2.2 in [17]

9o, (W) _ { oo (W), it i =

Ovij 0, if i # j
and
%0, (W U’Y*?(Wﬁk".)" ?f?:j,k.: m727ék'
8;;> =9 —oy2(Wlij), fi=m,j=k,i#j
“4g ke 0, otherwise

for 1 <y < n. We obtain thus
ij _ 9o :{ o(Wli), if i=j

71 T 0, it i
and
_1(W]ik) ifi=jk=m,i#k
.. 820'1 1 gl 1( ) 9 )
2.8 igpkm Y OHL ) (Wlid) ifi=m.i=k.i i
( ) JH—l anjawkm o] 1( ’Z]) I 7 m7.7 y 0 7é J
0 otherwise

Direct computation yields

1 Oopo(W)  0142(W) do111 (W)

2.9 W=
( ) 9 O'H_l(W) 8%- 0'12_’_1(W) avij

and

ij,km 1 PPoa(W) B 1 Oopa(W) 0oy (W)

T (W) 0udvgm 02, (W) Buy v

1 aUl+2(W) 80'[+1(W) _ U[+2<W> 82UZ+1<W>
012+1(W) OV 61}1‘]’ U?Jrl(W) a’l)ija’l)km

o142(W) o141 (W) o1 (W)
O-lg—i-l(W) Ovij 8’Ukm

The lemma follows from (2.9) and (2.10).

(2.10) +2
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Lemma 2.4. Suppose W is diagonal, then

i _ o1 (5) L
=95 0(¢), ifi=jeG
0, if i # .

can be computed as follows:

ABN Bl | (g), it i=je B
1

Furthermore ¢ikm™

(1) Ifi,5,k,m € G,
g = 0(9)
(2) If j € G,i € B,
o1 (Bli) — o2(Bli)

Jiij — qi0dt — _ 0
. ¢ 2Bt (¢)
(3) Ifi,j € B,i#3j,
ig.di — _
e o(B) oW
(4) Ifi € B,
£ J%?B) (01(B)o1(Bli) — o2(B)) + O(1)

(5) Ifi € B,k € G,
Pt — itk — O(1)
(6) If i,k € B,i#k,

gk — 205(B) — 07 (B) + (vii + vgr)o1(B)
ai(B)

+O(1)
(7) otherwise
tj.km 0.

q

Proof. From [17], for W = (G, B) and v > [,

and

oy(Wi) = > ox(G)oy_(Bli), for i€ B;
k=0

-1
oy(Wi) = ox(Gli)oy (B), foricG:
k=0
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-2
oy (Wij) =Y ow(Glij)oy_i(B), fori,je G
k=0
-1
oy(Wlij) = ) ow(Gli)oy—k(Blj), fori€G,jeB
k=0

!
oy (Wlij) = Y _ou(G)oy-k(Blij), fori,j€ B,
k=0
where o,_,(B) = 0 if v —k > n —[. The lemma follows directly from lemma 2.3 and above
formulae. O

Next lemma provides an estimate for third order derivatives of convex functions.

Lemma 2.5. Assume v € C31(Q) is a conver function. Then there exists a positive constant
C depending only on dist{O,0Q} and ||v||¢cs1(q) such that

(2.11) [viga(@)] < C(Voul@) + y/v;())
forallz € O and1 < i,j,a <n.
Proof. It follows from convexity of v that for any direction n € R™ with |n| =1
Upy(z) >0
for all z € Q. Tt’s well known that for any nonnegative C*! function h, |Vh(z)| < Ch%(m) for
all z € O, where C depends only on ||A[|c11(q) and dist{O, 00} (e.g., see [29]). Hence
[vma(2)] < Cyfogy ().
where C' is a positive constant depending only on dist{O,9Q} and |vy,||c1.1(q) (Which can be

controlled by [[ullcs1(q)). Now set n =i if i = j and n = %(ei +e;) if ¢ # j. The proof of
Lemma 2.5 is complete. O

Proof of Proposition 2.1. Let us divide Zi%k,mqij’kmvijavkmg into three parts according to

Lemma 2.3:

(2.12) > G W (2))vijatkmp = Tap + Ilap + ITag,
i,5,k,m

where

Ing =Y 477" vijavjis,
i#]

n
I, = Z 4" Viiaviip
i=1
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Il = Z ¢"F* 00
i#£k

Lemma 2.4 yields(using Lemma 2.5 and A\; = O(¢))

(2.13)

= Z + Z + Z + Z )q 050055

i,j€Gi#j i€BJEG jJEBIEG i,jEB,i#j

0@+ O( Y (Vo) = o 3w

Again from Lemma 2.4

(2.14)

and

11,3

(2.15)

11,3

i,jeB i,jEB,i#]
o? (Bli) — o2(B
RS i | (Bl )Uijavjiﬂ-
i€B,jeq 1 B)uj;
= (Z+Z)qii’iiviiaviiﬁ
i€G  i€B
o1(B —o09(B
= 0(¢) + (Z Vs ) —QZ ) ( )Uiiavii,b’
i,JEB 1€EB

Z + Z + Z + Z )q”’jjvl-mvjjg

i,j€Gi#j i€BJEG jEBIEG i,jEB,i#j

209(B —UQB Vig vii)o1(B
Z 2( ) 1( 0)%?‘3() + ]J) 1( )vimvjjﬂ'

) +0( Y [Vl +

ijeB i#j,i,jeB

The algebraic identity

> [209(B) = 07(B) + (vii + vj;)01(B) viiavjjs
i,jEB,i#]
-2 Z 01 01 B’ — Uz(B‘i)]Uiianw

1€EB
(2.16) ==Y (01(B)viia — vii y_ vjja) (01(B)viig — vii »_ vj;3)-
i€B jEB jEB

implies

> ies ViaVip
(2.17) ITog + I1ag = O(6) + O( Y | [Vuyy|) — =EE 222

i,jEB oi(B)

where Vj, defined in (2.6). O

Proof of Corollary 2.2. We only need to consider a small neighborhood O of these points in

2 where that the minimal rank is attained. For such fixed point z € O, we may assume W (z)
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is diagonal by a rotation. Thus, for any fixed o and (3

0%q(2) i ij,km
(2.18) Fratny ~ 0 WV Mg+ 30 @) s
Since 0 < w <1, by Lemma 2.4

o7 (B)
7 (W(2))| < C
for some constant C' under control. This yields the estimate for the first term in (2.18)
lg7 (W (2)uijasll < Cllullesae) < €
Now treat the second term in (2.18). By Lemma 2.5, for i,j € B

(2.19) |uijal < C(Vui(r) +/ujj(x)) < Cy/o1(B).

o1 (Bli)—o2(Bli)

Noting that u;; > C > 0,5 € G and 0 < < 1. From Proposition 2.1 it now follows

a1 (B)
that,
2
PaW)
0x,0xg
for all z € O. O

3. A STRONG MAXIMUM PRINCIPLE

In this section, we prove a strong maximum principle for ¢ defined in (2.2) for equation
(1.2). The same result for equation (1.6) could be proved making Theorem 1.1 a corollary of
Theorem 1.2. However we prefer to work on elliptic case first. With some minor modifications,
the parabolic version will be proved at the end of next section.

Denote by 8™ the set of all real symmetric n x n matrices, and denote by S% C 8" to be the
set of all positive definite symmetric n x n matrices. Let @, be the space consisting all n x n

orthogonal matrices. Define

Sn_lz{Q(g g)qf | VQeO,,VBes! 1,

and for given @ € O,
Si1(@) = {Q ( - >QT | vBes™ !}

Therefore S,,—1,S,-1(Q) C 8™. For any function F(r,p,u, ), we denote

af _ ai U _ aj Ti aj afByn _ 82717 aBu _ 82F
F = , FY = , FPii= , F _ ’ _ ’
87"04/@ du O araﬁar'yn 8rag8u
2 2 2 9
(31) Faﬂ’xk = aiF FwU — O°F Pt — O°F T2 _ 0°F

Orap0zy’ - 9%u’ - Oudz;’ ~ Ox;0x;
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For any p fixed and @ € Oy, (A,u,z) € S$,—1(Q) x R x R", we set
Xp= ((FO‘B(A,p, u,z)), —F“(A,p,u,z), —F" (A, p,u,z), -+, —F"™ (A, p,u,x))
as a vector in S x R x R™. Set
(3.2) T, ={X €8, 1(Q) xRxR" | <X, Xj>=0},
Let B € Sﬁ_l, A=B"!and
-(13) 4-(23)

For any given Q € O, and X = ((X;;),Y, Z1,- -+, Zn) € Sp_1(Q) x RxR", we define a quadratic

form

n n n
Q*(X, X—) _ Z Fij7leinkl +92 Z i (QAQT)leikal + Z FTist; ZiZj
1,5,k,1=1 1,7,k,1=1 t,j=1
(3‘3) _9 Z F”’UXZ']'Y _9 Z FZJﬂckXijZk +9 Z FU“iY 7, + Fu,uy27
ij=1 ijk=1 i=1

where functions F#kl i puu piju fiee Fuei [T are evaluated at (QBQT,p, u, ).

We first state a lemma to be proven in next section (after Corollary 4.2).

Lemma 3.1. If F satisfies condition (1.4), then for each p € R™,
(3.4) Q*(X,X)>0,vX €Ty,

Roughly speaking, the condition Q*(X’ X ) > 0,vX € I‘)l(; is equivalent to the convexity of
level set {(A,u,z)| F(A™Y p,u,x) = 0} for each p fixed (implied in the proof of Lemma 4.1 in
the next section). By restricting A € S,,—1(Q), we reduce dimension requirement for A. This
is useful in some applications, in particular when n = 2. We refer the next section for further

discussions.

The following theorem is the core result of this paper. Theorem 1.1 is a direct consequence
of Theorem 3.2 and Lemma 3.1.

Theorem 3.2. Suppose that the function F satisfies conditions (1.3) and (3.4) and let u €
C3Y(Q) is a convex solution of (1.2). If V*u attains its minimum rank | at certain point xq € 2,

then there exist a neighborhood O of xy and a positive constant C independent of ¢ (defined in
(2.2)), such that

(3.5) > Fas(x) < C(¢(x) + [Vo(x)]), Va€O.
a.p
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In turn, V?u is of constant rank in O. Moreover, for each xo € S, there exist a neighborhood U
of zo and (n —1) fived directions Vi, -+ ,Vu_y such that V?u(z)V; =0 for all 1 < j <n—1 and
relU.

Proof of Theorem 3.2. Let u € C31() be a convex solution of equation (1.2) and W (x) =
(uij(z)). Let 29 € © be a point where W = (V?u) attains minimal rank {. We may assume
I < n — 1, otherwise there is nothing to prove. As in the previous section, pick an open
neighborhood O of zy, for any x € O, let G={n—-1+1,n—1+2,...,n} and B={1,....,n— 1}
be the “good” and “bad” sets of indices for eigenvalues of V2u(x) respectively.

Setting ¢ as (2.2), then we see from Corollary 2.2 that ¢ € C*1(O) |

P(z) >0, ¢(20) =0
and there is a constant C' > 0 such that for all z € O,

%‘71(3)(37) < o1 (W(x)) < Coi(B)().

Fix a point z € O and prove (3.5) at z. For each z € O fixed, letting A; < Aa... < A, be the
eigenvalues of W(z) = (u;;(2)) at z, one may assume W(z) = (u;;(2)) is diagonal with proper

501(B)(x) < 6(2) < Cor(B)(x),

choice of orthonormal coordinates, and u;;(z) = \j,i =1,--- , n.

Again, as in the previous section, we will avoid 0,41 (W) = 0 by considering W, (defined
in (2.3)) for € > 0 sufficient small, with W, = W + eI, Ge = (Ay—i+1 + € ..., Ay + €), Be =
(AM1+¢€, ...; \n—1 +€). Note that W, is the Hessian of function uc(z) = u(x)+ §|z|?. This function

uc () satisfies equation

(3.6) F(V?ue, Ve, ue, ) = Re,
where R.(z) = F(V2ue, Ve, ue, ) — F(V?u, Vu,u,z). Since u € C*!, we have
(3.7) |R(z)| < Ce, |VR(z)|<Ce, |V2R(z)|<Ce, VreO.

We will work on equation (3.6) to obtain the differential inequality (3.5) for ¢, defined in
(2.3) with constant C, Co independent of €. Theorem 3.2 would follow by letting ¢ — 0.

Set v = ue, in the rest of this section. Write W for W, G for G, B for B, q for gq. and ¢
for ¢., with the understanding that all the estimates will be independent of e. Note that (2.5)
implies
(3.8) e < Co¢(z), forallxeO,
and v satisfies the equation
(3.9) F(V*v,Vou,v,z) = R(z),
with R(z) under control as follows:

(3.10) IVIR(z)| < Cé(z), forallj=0,1,2, and forall z € O.
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Then
0%
0x,0x3

9¢

O0xq

ba = = ¢”Uija> bap = = stvijaﬁ + ¢ mvijavkmﬁ'

Differentiate equation (3.9) in z; and then z; and use (3.10) to obtain

(3.11) D FPvagi+ Y Flup + FUv; + F™ = 0(¢),
af k

aB aB n k

+ Z Fqukij + ZU’“(Z Fqk’aﬁ?)aﬁj + Z quqlvlj + quwvvj + F‘Ikvxj)
k

k ) /
+Fv7)z'j + U,(Z Fv’aﬂvagj + Z Fv’qlvlj =+ FU’UUj + Fv’xj)
af l
(3.12) + 3 FTByag; +y T FT gy 4 PRy 4 PR = O(g).
af k

As vagij = Vijag (this will have to be modified later by a commutator formula when we deal

with symmetric curvature tensors on general manifolds), we get

Y P = > FP¢ugas+ Y FOPGTE v
= ) FPI kg — > 0T F %o =Y ¢ [2Y PP g g
FFYi5 + > FW N+ 2 P 00, +2)  FWTi]
_ Z ¢)ij [Faﬁ/mvamij 42 Z Faﬂ’vvaﬂivj +9 Z BT Vagi
(3.13) + ) F 4+ Y FUy 4y FR] 4 O0(¢)

We will estimate the terms in the right hand side of (3.13). The analysis will be devoted to
those third order derivatives terms which have with at least two indices in B. Some of these are
linear. Controlling these linear term is the main challenge. This is the place where the function
q in (2.1) plays key role. The concavity results of ¢ in last section will be used in crucial way.
As for the remaining terms in (3.13), we will sort them out in a way such that condition (4.3)
can be used to obtain appropriate control.

Note that since W = (v;;) is diagonal at z, Lemma 2.3 and Lemma 2.4 imply,

0'1(B)

(3.14)
O(¢), otherwise

02(B|i)—o2(Bli JP .
#9() = { (@) + TGO £ 0(), Hi=jeB



16 BAOJUN BIAN AND PENGFEI GUAN

Hence at z

Y GU[F vy 2 FO Mg+ Y F ooy 42 (F9 P upu; + Fietivg)]
i?j

n
= Z (p“ [F”vii ) Z Faﬁ’qivaﬂivz‘z‘ + F%%iqg,0, + 2F% 0,0, + 2Fqi’xivii]
i=1

=0(¢) + Z¢ZZ[FU + QZ Faﬁ7qivaﬂi + Fiy,; 4 2F%Vy; 4 2F %%y,
i€B
2(Bli) — Bl1
(3.15) <O0(¢)+CY (0u(G) + %i ’2%(3(’)2( “))W- = 0(¢),

1€B
since \; = O(¢),i € B and 0;11(W) > 0y(G)o1(B). This takes care of the third term on the
right hand side of (3.13). For the second term we have
(3.16) D @I FRu = 0() + Y " Flhug = O(¢+ Y [Vuy)

1€B 1,j€EB

For the third term in (3.13), by (3.14) we have,
gbij [Faﬁ”yn’l)aﬁiv,ym’ + 2Fa[3’v’0aﬁivj + 2Fa’g’$jvaﬁ7; + Fv’vvﬂjj + 2FU’$in + Fxﬂj]
_ O(¢) + Z d)“ [Z Faﬁ’wnvaﬁivfmi ) Z Faﬁwvaﬁivi
i€EB
+2) " PP Tiygg; + FUV0F 4 2F Vi, + FU]

o?(Bli) — o 1
00+ 3 [Vugh + o) + T 220,

i,jEB icB 01
[ Z Faﬁ”mviaﬁviﬂm‘FQ Z Faﬁ’vvmgvi—l-Q Z Faﬁ’mviaﬁ
aﬂy%UGG a,ﬂeG O{,ﬁEG
(3.17) +FVy2 4 2QF Y Tig; 4 PO,

Now deal with the term > Faﬁ¢ij’kmvijavkm5 in (3.13). Note that

¢ij,km _ Ulzi,llcm + qij,km.

Since o;_1(Wlij) = O(¢) for i,j € G,i # j, for «, 8 fixed, by (2.8),

> o Vigakms = Y 0)5y ViiaVkks + D 0103 Vijavjis
itk itg
= Z o1—1(Wik)viiaviks — Z o1-1(Wij)vijavjis
itk ity

= 06+ Y Vo) =2 3 ora(Gliviaviss.

i,jEB i€B,jeG
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As 01-1(Glj) = Jl/\(jc),j € G, we have
- 1
o vijavkms = 0@+ Y [Voigl) =201(G) D ~vijavige.
ijeB i€B,jeG "/

By Proposition 2.1,

3 of(Bli) — o2(Bli)

Z qij,kmvijavkmﬁ = O((Z) + Z |VUz]|) UZ(B)/\' VijaVjig
i,5,k,m i,j€B i€B,j€G 1 J
ZiEB ViaViB 1
_ _ ViiaViig,
O_i)) (B) o1 (B) ZJG‘;L¢J 1y ]’Lﬁ

where Vj, is defined in (2.6). We conclude that

. ViV i s
ZFQﬁ¢ZJ’kmvijavkmﬂ = O(¢o+ Z |Vvijl) — ZFQB[Zleg oVip | Zougenizs Viatii
i5eB " o3 (B) o1(B)

ot (Bli) — o2(Bli), 1
(3.18) +QZ (o1(G o2(B) )rjvijavjiﬁ]'
i€EB

Combining (3.15)-(3.18), one reduces (3.13) to

a > i ViaVi Zi,‘ B,ij VijaVjip
D Fas =00+ 3 [Vuyl) = D FOP (SRt 4 SRR e

ijeB B oi(B) 1(B)
B — o9(Blt
a Z Ol |0?2(B) ( | )][ Z Faﬁ”yn(A)Uiaﬂvi’yn
i€EB 1 a,8,7neG

+2 Z Faﬁz Ulﬂavmﬁ +2 Z F0%0i050;

apfeG jEG o,feG

(3.19) +2 3 FOPTiyg + FUO0 + 2F i, 4 0],
avﬂeG

At this point, we have succeeded in regrouping the terms involving third order derivatives in
terms of " B” and ”G”. First consider the last term on the right hand side of (3.19). For each
i € B, let

Ji = | Z FOP 0105010 + 2 Z Fo0 Z ”wavw,@
a,B8,ynEG a,BEG ]EG
(3.20) 42 ) P00 +2 Y FP g+ FUV0] 4 2FV i, 4 FP07),
a,BeG o,peG

By Condition (1.3), since v € C3!(so F*# € C%!) and O C €, there exists a constant &y > 0,
such that

(3.21) (FB) > 601, Yy € O.
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In particular F™ > §y. If G # (), so n € G. Since v, = d;p\; at z, (3.11) implies, for i € B

Z Faﬁvagi + Fv; + F* = O(¢ + Z | Vi)

a,BeG i,jEB
If G =0, (3.11) also yields
F™ i + Fv + F* = O(¢+ > V),
i,jEB
In any case, set X,3 =0 if eithern—1>acBorn—-1>p¢€ B,
1 , .
Xonn = Vipn — W[ Z Faﬁvam + FYvi+ F%], i G#0
o,BEG

1 ) .
Xnnzvinn_W[FUvi+F$z]v 1fG:®7

Xop = Viap otherwise, Y = —v; and Z = —d;. Thus (X,p5) € Sp—1(identity matrix) and
X = (Xap), Y, 21, ,Zn) € Fﬂ‘(}. Condition (3.4) implies

—Clp+ Y |Vugl).

i,j€EB

Since C' > 01(G) + w > 0, thus we obtain
o1

Via Vi Vi Vis
B2 o < Clo 3 Ve~ 3 sty Sttt
i,jEB

The object of the final stage of the proof is to control the term >, . 5 [Vvjj| in (3.22) using
the remaind terms on the right hand side.
By (3.21),

n
ZF ﬂ‘/;a‘/lﬁ > 50 Z (1%l ZFaﬁUijavijﬁ Z 60 Z U’iZja'
o, a=1

Inserting above 1nequaht1es into (3.22), we then obtain

(323) Y Fha5 < Clop+ Y [Vuyl) — do zn:[zieB Vi n 2oijeB it ‘Uijoc|2].
B N ijeB 1 a}(B) o1(B)

From Lemma 2.4, it follows that

20 S e B U>2—Bo)2<B|i>)%
i€B 1

The key differential inequality (3.5) is the consequence of (3.23) and the following lemma.
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Lemma 3.3. Suppose M > X\; >0, M > ~; > ﬁ,Vz’ =1,---,m for some M > 0, and suppose
that vijo = Vjia,V1,j = 1,--- ,m,a=1,--- ,n. Then there is a constant C depending only on n
and M, such that for each o, for any D >0, § >0

2D 5 intg |Vi C Y, Ve
(3.25) Z [vija| < C(1+ 5 + D)(o1(N) + | Z%U“a| D i i#J JOt’ i 72171

P a0 D o)
m
where Vz’a = Uimdl()\) — Ai ( Z ’Ujja> .
j=1
Proof of Lemma 3.3. Use a trick devised in [14]. For each a = 1,--- ,n fixed,
Z [Vija| = Z |Vijal + Z |Viial
i,j=1 i#]
If i # j, for any D > 0, the Cauchy-Schwarz inequality yields
D __ 5 |vijal?
2 ol < =07lor(N) + — o
The linear terms involving v, @ = 1,--- ,m still need to be controlled. Set

P = {i] vija > 0}, N = {i| vjia <0}, R = {i| vjia = 0},

and consider two separate cases.
Case 1. Either P = () or N = (). In this case, v;;, has the same sign for alli =1,--- ,m. We
derive easily

m
(3.27) |Viia| < C1| Y Yiviial,
=1

with C under control.
Case 2. P # (), N # (. We may assume ), pvj; > ZjeN vj; (changing vijo to —vjjq if
necessary). For i € P,

(328) Vija < Z Vkka < CQ Z’szuoc‘ Z Ujja)v

keP JEN

for some positive constant Cy under control. At this point, we have reduced the estimation of
Viia, © € P to the estimation of —vjjo, j € N.

Claim: If P#0, N #0, >, pvii > > ey vjj, then

(Z%a)Q— ” 5 2 Ve

JEN zEB
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Assuming the Claim is true, we get for all k € N,

(Ziew vjja)2
e

A2y, 5 Via
SDUI()\)_Fw‘

(3.29) —Vkka < — Z Vjja < Do1(A) + Da3(\)

JEN
Consequently we also control terms involving v;;q, @ € P by (3.28).
We now validate the Claim.

Proof of Claim. First, by the Cauchy-Schwarz inequality
2 m
(X Vi) sy v2<n?Y V2
ieEN ieN i=1
It follows from the definitions of the sets P, N, R and V;, that

D Via = > (MZ Vija+ D Ukka) — Viia(D_ A+ D N+ D )\k))

iEN 1EN JEN keP JEN JER keP
o (S (S ) (X ) (S
1EN keP ke PUR iEN

Since in this case

Z)\i>0azvkka >O,Zvjja§0,

iEN keP JEN
all the terms on the right hand side of (3.30) are nonnegative, hence

(Zv) 2 (2 ) (So)’z o) (Sew) = T (S e

1EN 1EN 1EN

The lemma is proved. O

By Lemma 3.3 and (3.23), there exist positive constants C1, Cy independent of €, such that
(3.31) Y Fus < Ci(p+|Ve) = Co2 Y |Vuyl.
o, i,jEB
Taking € — 0, (3.31) is proven with v replaced by u. By the Strong Maximum Principle, ¢ =0
in O. Since  is flat, following the arguments in [7, 27], for any z € €2, there is a neighborhood
U and (n — 1) fixed directions Vi,---,V,,_; such that V2u(:1c)Vj =0forall<j<n-1and
x € U. The proof of Theorem 3.2 is complete. U

Remark 3.4. The main step in the above proof is to control linear terms of v;jq,1,j € B. If F
is symmetric in (1.1), all terms involving v;jo (i, € B) are quadratic. In [8], a test function
é(x) = 0101(V2u(x)) + Ao (V2u(z)) was introduced. For § = Aojo(V2u(z)), it was proved
in [8] that

(3.32) Z G701 vkms = O(¢) — A Z VijaVij3-

ij.k,m ijE€B
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The terms on the right hand side of (3.32) was used there to overcome quadratic terms of vjjq
(i,7 € B). For general F'in (1.2), we encounter linear terms of v;jq,%,j € B. (3.32) is not good
enough. The function ¢ introduced in (2.1) produces (2.7) in Proposition 2.1 which was used in
a crucial way in the proof here. It should also be noted that, with Lemma 2.5, the quadratic
terms of v;jq,1,j € B can in fact be controlled by o;41(V?u(x)). Therefore, all the arguments
in [8] can carry through for simpler test function ¢(x) = o741 (V?u(z)).

4. CONDITION (1.4) AND DISCUSSIONS

We discuss the convexity condition (1.4) in this section. Write A~! = (A%) for the inverse
matrix A~! of positive definite matrix A.

Lemma 4.1. F satisfies Condition (1.4) if and only if

n n
Z Fij’kl(Aapa U, iU)XUXkl +2 Z FZJ(Aapa U, x)AlelkX]l + Fu,uYZ
i7j7k7l:1 i7j7k7l:1

n n n n
(4.1) —2) FUUXuY -2 Y FUTX;Zp 42 FUUYZi+ Y FUNZ,7; >0
ij=1 i,j.k=1 i=1 ij=1
for every X = (X;;) € 8", Y € R and Z = (Z;) € R™.

Proof. From the convexity of F'(B,u,z) = F(B~!,p,u,x) (for each p fixed),
n

n
> FN(Bu,a)XapXyy +2 Y FOOUXGY 4 UMY

avﬁv’%n:l a,ﬁ:l
n - ~ n 5 n 5
(4.2) +2 Z FobeX o7, + 2 Z FY“Y 7, + Z F*% 7,7 > ()
a,B,k=1 k=1 ij=1

for every X e S*, Y € R, Z = (Z;) € R™ and B € S}. A direct computation yields
Faﬁ(B,uja:) = —F9(B™ ! p,u, :E)BmBjﬁ,
Fo%"(B,u,x) = —F7"(B~!, p,u,z) B B/,
FeO0(B,u, ) = FH(B™Y, p,u,x) B B/ B*Y B
+FI (B p,u, x)(BYBIP B"™ + B> BInBAY).

Other derivatives can be calculated in a similar way. Substituting these into (4.2), equation
(4.1) follows directly. O

Let Q € O,,, define
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for (A,u,z) € 7' x R x  and fixed p. Condition (1.4) implies the following condition
(4.3) Fgo(A,u,z) is locally convex
in Sﬁ_l X R x € for any fixed n x n orthogonal matrix Q.
The approximation Lemma 4.1 yields
Corollary 4.2. Let Q € O,. Assume F satisfies condition (4.3), then
(4.4) Q*(X,X) >0,
for every X = (X35),Y, Z1,- -, Zy) € Sp—1(Q) x R x R™, where Q* is defined in (3.3).

In particular, by Corollary 4.2, condition (4.3) implies (3.4). Since condition (1.4) implies
(4.3), Lemma 3.1 is a consequence of Corollary 4.2.

Condition (4.3) is weaker than condition (1.4). In particular condition (4.3) is empty when
n = 1. There is a wide class of functions which satisfy (4.4). The most important examples
are o and g—i (I > k). If g is non-decreasing and convex, Fy,---, F,, are in this class, then
F = g(Fy,---,Fy,) is also in this class. In particular, if F; > 0 and F5 > 0 are in the class, so
is ' = F} + Fzﬁ for any o« > 1, 8 > 1. Another property of condition (4.3) is the following

Corollary 4.3. If F' satisfies (4.4), then so does the function G(A) = F(A + E) for any

nonnegative definite matriz E.
We also have the following lemma.

Lemma 4.4. Suppose n =2 and F(A) > 0 is symmetric and homogeneous of degree k. If either
k<0 ork>1, then F satisfies (4.4).

Proof. Since n = 2, condition (4.4) is equivalent to F*2*2 > 0. By homogeneity, we have

> PN =k(k - 1)F.
i,j=1
n =2 and A\; = 0 yields F*2*2)3 = k(k — 1)F(0, A\2) > 0. O

The simple example u = Y 1 |z}, F(A) = 01(A) indicates that some condition is needed in
Theorem 1.1. If F is independent of z,u, one may ask if the convexity assumption of F(A™!, p)
for A in condition (1.4) (or condition (3.4)) is necessary for Theorem 1.1. As remarked earlier,

when n = 1, this assumption is not necessary. For general n > 2, there is the following theorem.
Theorem 4.5. Suppose F(A,p) is elliptic and u is a convex solution of
(4.5) F(V?u,Vu) =0,

then W = (V?u) is either of constant rank, or its minimal rank is at least 2. In particular, if

n =2, then W is of constant rank.
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Proof. The proof follows the same lines of proof as Theorem 3.2 with the following observations:
condition (4.3) was only used to control J; as defined in (3.20). Let [ be the minimum rank
of W. If Il = 0, that is G = (), the proof of Theorem 3.2 works without any change since F is
independent of (u,x) in our case. This leaves the case | = 1 i.e. |G| =1 and we may assume
a =n € G. Note that (3.19) still holds. Since F(V?u, Vu) = 0, and

0= ViF(Vu, Vu) = F" Ui + 00+ Y V).
i,jEB

This gives
Jtnni] < C(6+ D [Vuyy)).

i,j€B
Of course, the treatment of terms involving wu;;g for 7, j € B follows the same way as in the proof
of Theorem 3.2. One may deduce that W is of constant rank. Finally, if n = 2, the only other
case is | = 2. In this case, W is of full rank everywhere. g

Remark 4.6. The above proof of Theorem 4.5 indicates that if the minimal rank of W is either 0
or 1, then the rank of (V2u) is the same everywhere. There is no structure condition imposed on
F except the ellipticity condition (1.3). This observation will be used in the proof of Theorem
1.6 in the next section. In general, for a nonlinear eigenvalue problem F(V2v) = \v, the function
u = —logv satisfies equation (4.5) if F' is of homogeneous degree of one. This is useful in the
study of the log-concavity property (c.f. [6, 28, 10]) of nonlinear eigenvalue problem.

We conclude this section with the proof of Theorem 1.2. We have the following.

Proposition 4.7. Let F and u as in Theorem 1.2. For each 0 < tog < T, if V?u attains
minimum rank | at certain point xg € §Q, then there exist a neighborhood O of xg and a positive
constant C' independent of ¢ (defined in (2.2)), such that for t close to to, oy(us;(x,t)) >0 for
x €O, and

(4.6) > F¢ap(m,t) — di(a,t) < C(d(a,t) + [Vo(z,t)]), Ve O.
a8

Proof of Proposition 4.7. The proof is similar to the proof of Theorem 3.2. Since u € C3,
the assumptions on F automatically imply u € C*. Suppose (V2u(z,ty)) attains its minimal
rank [ at some point xg € (2. We may assume [ < n — 1, otherwise there is nothing to prove. By
continuity, o;(u;j(z,t)) > 0 in a neighborhood of (zg,tp). With u; = F(V?u, Vu,u,z,t), using
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the same notations as in the proof of Theorem 3.2, equation (3.12) becomes

aB aB n k

+ Z Fqukij + ka’(z Fqk,oéﬁvaﬁj + Z Fqk’ql"l)lj + F%,vvj + F%:%5)
k k af l

+Fvvz'j + U,(Z Fv’aﬂvagj + Z Fv’qlvlj + FU’U’Uj + Fv’xj)
af l

(4.7) + Z F‘ri’aﬁ’l}aﬁj + Z in’qukj + F”i’“vj + F*% = O(¢) + Vijts
af k

and accordingly, equation (3.13) becomes
Y P = > FP¢Uvias+ Y FPOTE 000
= Y PP ks — Y ¢ F gy — Y ¢U[2) PPty gy
+F v + Z Fl v + 2 Z F1%yp05 + 2 Z F%%iy,]
= IFP g0y +2Y L FOPPuggiv5+ 2 FOP i,
(4.8) + Z F"Yvv; + Z Fo%uy; + Z F*% 4+ 0(¢) + Z v 4
Note that since ¢ = > ¢“v;;,, equation (4.8) can be written as
Y Fap—dr = Y F I 0000 — Y 6Y PPk
- Z ¢ [FYv;j + 2 Z FOP ey, g0y + Z FaUyivy,
+2 Z F1 05 + 2 Z FTig,)
- Z G [FP My ivmi + 2 Z FPy, v 4 2 Z FOBTig s,
(4.9) + 3 FUuy + Y FUTy 4+ FT] 4 O(¢)

The right hand side of (4.9) is the same as the right hand side of (3.13). Using Corollary 4.2 in
place of Lemma 3.1 in the proof of Theorem 3.2, the same analysis yields

(4.10) Y FPag(a,t) — di(x,t) < Cr(d(x,t) + [Vo(x, 1)) = C2 Y [Vl
1,jEB
O
Proof of Theorem 1.2. It follows from Proposition 4.7 and the Strong Maximum Principle
for parabolic equations that ¢ = 0 locally. That is V2u(z,t) is of constant rank [(t) for each
t > 0. Since Q is flat, by the arguments in [7, 27|, for each 0 < t < T, xy € {2, there exist a
neighborhood U of xy and (n — I(t)) fixed directions Vi, -, V,,_y4 such that Vu(z,t)V; =0
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forall 1 <j <n-—I(t) and x € U. Going back to (4.10), we have >_, .. 5 [Vu;;(z,t)| = 0 and
therefore the null space of V2u is parallel. O

Remark 4.8. Examining the proof of Theorem 1.1 shows that the local convexity condition in
(1.4) is only needed near the set ' = {det(V?u) = 0}. Vo € N, we let
(4.11) Dy(y) = {r diagonal| r = Q(V?u(z))QT  for some Q € O(n)}.
For each § > 0, set Ii(r) ={s| |s—wu(z)] <d}, and
[)i(x) = {A| [|[A™! — || <6, for some r € Dy(a)}-
The condition (1.4) in Theorem 1.1 can be replaced by: there is § > 0 and for p = QVu(z)
(@ € O(n)),
(4.12) F(A_l,p,u, x) is locally convex in (A,u,z) in [?g(x) X Ii(x) x O.

Similarly, condition (1.5) and condition (4.3) only need to be valid for (A, u, z) in Dg(x) X IS(I) xO
for each t. Note that the regularity assumptions on v and F' in Theorem 1.2 and Theorem 4.7

can be reduced to C2.

5. GEOMETRIC APPLICATIONS

We discuss geometric nonlinear differential equations in this section.

Proposition 5.1. Suppose F(A, X,ii,t) is elliptic in A and satisfies condition (4.4) for each
fized € S”, t € [0,T] for someT > 0. Let M(t) be an oriented immersed connected hypersurface
in R™ with a nonnegative definite second fundamental form h(t) satisfying equation (1.9).
Then h(t) is of constant rank I(t) for each t € (0,T] and l(s) < I(t) for all0 < s <t < T.
Moreover the null space of h is parallel for each t.

Proof. For ¢ > 0, let W = (gimhmj + €d;5), where h = (h;j) is the second fundamental form
of M(t). Let I(t) be the minimal rank of h(t). For a fixed tg € (0,7, let z9 € M such that
h(to) attains minimal rank at xg. Set ¢(z,t) = o741 (W (z,t)) + %(W(x, t)). By the results of

section 2, ¢ is in C1'. The proposition will follow if we can establish that there are constants
(1, Cy independent of € such that

(5.1) Fijgbij — ¢ < Crp+ Co|Vo|, near (xo,tp).

X = (X!,---, X" 1) be the position vector and let h? = (h}hé) We note that under (1.9),
the Weingarten form hé- = g™ h,y,; satisfies the equation

(5.2) Ohs = V'V, F + F(h?)..

The same arguments used in the proof of Theorem 3.2 carry through with some modifications
to prove a parabolic version of (3.12) using (5.2). In this case, Wijkm and Wi, may be different.
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But as W is Codazzi, the commutator term can be controlled using the Ricci identity. Here 77
replaces p and the Gauss equation will be used. All these terms are controlled by CW;;. Notice
that W;; < ¢ for all ¢ € B, so we have the following formula corresponding to (3.19):

ZFQBQbaﬂ—ﬁbt O(p+ > VW) — Z > PP Wis

i,JEB a,B 1,jEBi#]

o35 Z Z F%(Wiiao1(B) — Wi Z Wija) Wiigo1(B) = Wi ) Wijp)

01 a,3 i€B jeB jeB
(Bli) — 02(B]t) o
=2 oG o%(B) L. FOMA)WiagWigy + > FX X
ZEB 1 ayﬁ:’Y:’?GG «
n+1 n+1
(53) 42> P Z WWWW +2 > Y PP WX + Y FXIX].
aBeG ]GG a,BEG =1 v.n=1

The term involving Xj; is controlled by Ch;; (and in turn by CWj;) using the Weingarten

formula. We obtain

ZF‘”%ag =000+ Y [VWyl) — Z >, FUWiaWisg

i,j€B B i,jEB,i#j

53B) ZZFa Wiiao1(B) — Wi ZWjja)(Wiwal(B) — Wi Y Wiip)

01 a,8 i€EB jeB jeB
— o09(B
= (G |a) 2(B) NS E A Wi Wi
i€B 1 o,B,y,nEG
n+1 n+1
(54) 42 ) P Z WWWW +2 > Y PP WX + Y FAXIX].
afeCG ]GG a,BeG y=1 v,m=1

The right hand side of (5.4) is the same as in (3.19) and the analysis in the proof of Theorem 3.2
can be used to show the right hand side of (5.4) can be controlled by ¢+[V|—C >, 5 [VWi;l.
The theorem follows by the same argument as in the end of the proof of Theorem 4.7. U

Note that Theorem 1.5 follows directly from Proposition 5.1 (since equation (1.10) is a special
case of equation (1.9) by making M independent of ¢) and a splitting theorem for complete
hypersurfaces in R"*'. We now prove Theorem 1.4. In fact, the local convexity condition on F
in that theorem can be weakened to condition (4.4).

Theorem 5.2. Suppose F(A, X,1,t) is elliptic in A and satisfies condition (4.4) for each fized
i €S, tel0,T] for some T > 0. Let M(t) C R"" be a compact hypersurface satisfying (1.9).
If My is convex, then M(t) is strictly convex for allt € (0,T).

Proof of Theorem 5.2. First, My may be approximated by a strictly convex M{. By con-
tinuity, there is 6 > 0 (independent of €), such that there is a solution M€(t) to (1.9) with
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Me€(0) = Mg for t € [0,6]. We argue that M€(t) is strictly convex for t € [0,0]. If not, there
is t9p > 0 so that M€(t) is strictly convex for 0 < t < ty. But there is one point zy such that
(hij(zo,t0)) is not of full rank, contradicting Proposition 5.1. Taking e — 0, we conclude that
M (t) is convex for all ¢ € [0,0]. This implies that the set ¢ where M () is convex is open. It is
obviously closed. Therefore, M(t) is convex for all ¢ € [0,T]. Again, by Proposition 5.1, M(t)
is strictly convex for all ¢t € (0, 7. O

Remark 5.3. If n = 2, by Lemma 4.4, if F(A) is homogeneous of degree k for either k > 1 or
k <0, then F' satisfies condition (4.4) automatically.

Let (M, g) be a Riemannian manifold (not necessary compact). A symmetric 2-tensor W is
called a Codazzi tensor if w;j;, is symmetric with respect to indices ¢, j, k in local orthonormal
frames. One of the important examples of the Codazzi tensor is the second fundamental form
of hypersurfaces.

Theorem 5.4. Let F(A,z) is elliptic and F(A™L, x) is locally convez in (A, ). Suppose (M, g)
is a connected Riemannian manifold with nonnegative sectional curvature, and W is a semi-
positive definite Codazzi tensor on M satisfying equation

(5.5) F(g7'W,2) =0 on M,
then W is of constant rank and its null space is parallel.

Proof. Since the proof is similar to the proof of Theorem 1.1 and we only indicate some
necessary modifications.

We use the same notations as in the proof of Theorem 1.1. As before, we set ¢(z) =
o1(W(x)) + % as in (2.2). As before, we want to establish corresponding differen-
tial inequality (3.5) in this case for the Codazzi tensor W. We note that all the analysis in
Section 3 carries through without any change if we use local orthonormal frames, except for the
commutators of derivatives. Since W is Codazzi, we only need to take care of commutators of

the form Waa 83 — W5g,aa- The Ricci identity states
(56) Waa,ﬂﬁ = Wﬁﬁ,aa + Raﬁaﬁ(Waa - Wﬁﬁ)’

where R34 are the sectional curvatures of (M, g). Following the same lines of the proof of

Theorem 3.2, we have the corresponding differential inequality

(5.7) Y F@ap(x) < Ci(d(x) +|Vo(@)]) = 0(G) Y F*“RapapWaa —Ca Y [VWyl.
af acG,BeEB i,jJEB

Since Rogap > 0, the strong maximum principle implies ¢ = 0 in M. Therefore W is of constant
rank [. Again, by (5.7), >_; ;5 [VWi;| =0, so the null space of W is parallel. O
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Proof of Theorem 1.6. Deal with case (2) of the theorem first. Let ¢ = mingeps Ws(x), where
W(z) is smallest eigenvalue of W at 2. Set W = g~ (W — ¢g). Then W is also a Codazzi
tensor, it’s rank is strictly less than n at some point, and it satisfies

(5.8) F(W) = F(g~'W + cI) = constant.

By our assumption, ¢ > 0, it follows from Corollary 4.3 that F satisfies condition (1.4). For
o(z) = o (W (x)) + %, inequality (5.7) is valid. It follows from the proof of Theorem
3.2 that ¢ = 0 in M . This implies that the left hand side of (5.7) is identically 0, so is the right
hand side. By assumption, R,g,3 > 0 at some point. It follows that G’ must be empty, that is
W =0.

In case (1) we follow the arguments in the proof of Theorem 4.5 and Remark 4.6. Let
W defined as before (¢ may not be nonnegative in this case). Then W is a semi-positive
definite Codazzi tensor with minimal rank strictly less than 2 at some point, satisfying F (W) =
F(g7'W 4 ¢I) = 0, F is elliptic. If [ = 0, the proof for case (2) carries through without
change. Assume [ = 1, |G| = 1. At the given point, we may assume W is diagonal and n € G.
Differentiate equation F(W) =0, as in the proof of Theorem 4.5, to obtain

ViWon = 0( ) VW),
1,jEB
Therefore, VW, can be controlled. It follows from the proof of Theorem 3.2 that inequality

(5.7) is valid. In turn, we get ¢ =0 in M. As in case (2), Ragap > 0 forces W = 0. O

Remark 5.5. In spirit, our results are similar to Hamilton’s strong maximum principle [19] for

the tensor equation
(5.9) Wiy =AW + &(W),

under the assumption that V7'®(W)V > 0 for any null direction of W. In our situation, the
tensor equation for W is more complicated. For example, in the case of Theorem 4.7, W = (V2u)

satisfies
(5.10) Wy = F9N,V;W + &(VW, W, Vu,u, z,t),

where @ involves VW, W, Vu, u, z,t. Our main aim is to show that ® is controlled by ¢ + |V

near the null set of ¢.

Remark 5.6. Assume F in (1.9) is nonnegative and depends only on A. Set

Amin(t) = m]\}[l’(l ){smallest eigenvalue of h(x,t)}, W = (h;-(x, t)) — Amin(8)1.
zeM(t
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If W has zero eigenvalue at some time ¢ > s, using Corollary 4.3 and (5.2), the above argument
above can be used to show that

(5.11) > F¢ag(x) — ¢ < Cro(z) + Co| V()| — 00(G) Y F*RoagasWaa.
af a€eG,pEB

By Theorem 1.4, the sectional curvature of M (t) is strictly positive and therefore the last term
in (5.11) must vanish, that is W = 0. In turn, Theorem 1.4 can be strengthened as follow:

Amin(t) > Anin(s), Y0 <s<t<T,

and if equality holds for some s < tg, then (h; (x,t)) = Amin(s)I is constant for all s < ¢ and for
all z, that is M(t) is a sphere for all t > s.

Remark 5.7. Applying the same argument as in Remark 4.8, we can weaken the local convexity
condition on F' in Theorem 1.6 and Theorem 5.4. Let

Dy (z) = {r diagonal| r = Qg N (x)W (2)QTfor some Q € O(n)},
Dy = {Al A7 = 7|| <6, for some r € Dy(p)}-
In this case, we only need the condition: there is § > 0,
(5.12) F(A7!, z) is locally convex in ng(z) x O .

Note that when M is compact, for given Codazzi tensor W on M, there exists A > 0 such that
W = \g — W > 0 everywhere. If F(W) is concave in W, then F(g~'W) = —F(A — g~ 'W)
satisfies condition (5.12).
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