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Abstract—WiFi fingerprinting has received much attention for
indoor mobile phone localization. In this study, we examine
the impact of various aspects underlying a WiFi fingerprinting
system. Specifically, we investigate different definitions for fin-
gerprinting and location estimation algorithms across different
indoor environments ranging from a multi-storey office building
to shopping centers of different sizes. Our results show that the
fingerprint definition is as important as the choice of location
estimation algorithm and there is no single combination of these
two that works across all environments or even all floors of a
given environment. We then consider the effect of WiFi frequency
bands (e.g., 2.4GHz and 5GHz) and the presence of virtual access
points (VAPs) on location accuracy with WiFi fingerprinting. Our
results demonstrate that 5GHz signals are less prone to variation
and thus yield more accurate location estimation. We also find
that the presence of VAPs improves location estimation accuracy.

I. INTRODUCTION

In this paper, we take a microscopic look at the well-

known WiFi fingerprinting approach when applied for indoor

mobile phone localization. Specifically, we examine the impact

of various aspects underlying a WiFi fingerprinting system,

including: the definition of a fingerprint, run-time location

estimation algorithms, frequency band and presence of virtual

access points (VAPs). Our investigation considers several

different real indoor environments ranging from a multi-storey

office building to shopping centers of different sizes. Seven

different definitions of fingerprints are considered that span

RSSI based, AP visibility based and combinations of both.

With respect to location estimation algorithms, we compare

three different deterministic techniques (including the often

used Euclidean distance based nearest neighbor method) with

two probabilistic techniques that use Gaussian and Log-normal

distributions for RSSI modeling.

Our findings are summarized as follows:

• Section IV: Our analysis shows that the fingerprint def-

inition is at least as important as the choice of location

estimation algorithm; the latter has received significantly

more attention in the literature till date. Moreover, there

is no single combination of fingerprint definition and

localization algorithm that always yields the optimum

localization result across all the different environments
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we considered. In fact, even different floors within the

same building have different optimum combinations.

• Section V: We consider the impact of frequency band

used (2.4GHz vs. 5GHz) on WiFi fingerprinting and find

that 5GHz offers relatively better location accuracy due

to lower RSSI variation.

• Section VI: We also consider, for the first time, the effect

of virtual access points (VAPs), which are now becoming

commonplace in most indoor environments. Contrary to

intuition, we find that the presence of VAPs significantly

improves WiFi fingerprinting accuracy which we believe

is due to two reasons: VAPs have a substantial influence

on the AP density, a factor known to affect accuracy

with WiFi fingerprinting; and fingerprints obtained from

different co-located VAPs operating on the same channel

are somewhat dissimilar, capturing the temporal variabil-

ity inherent to wireless signal propagation and providing

robustness against it.

II. RELATED WORK

WiFi fingerprinting has emerged as a popular WiFi based

localization technique in the past 10-15 years since the idea

was first put forth in the RADAR system [1]. The attractive

thing about WiFi based localization approach is that it exploits

the prevalent WiFi infrastructure in many indoor environments

and the presence of WiFi interfaces now common in smart-

phones. With fingerprinting there is the added advantage of not

having to go through the process of accurate radio propagation

modelling which can be quite challenging in multipath rich

indoor environments. Instead the idea is to use the signal char-

acteristics at each location (usually signal strength from visible

APs) as a signature to infer location. Generally speaking,

fingerprinting systems consist of two phases. The first phase

involves building a fingerprint database or constructing a radio

map through measurements associated with known locations.

This phase is sometimes referred to as site survey / offline /

training phase. Then in the second phase, variously referred

to as online / runtime / positioning / tracking phase, signal

measurement samples collected by a user’s device are used to

“look up” the closest matching samples in the database / radio

map to infer the user’s location. Early WiFi fingerprinting

systems including RADAR [1] and Horus [2] rely on an initial

training phase to construct fingerprint database for use as a
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reference in the positioning phase later but training phase can

be quite time consuming and expensive. More recent WiFi

fingerprinting systems make this training phase automated

via crowdsourcing using various mechanisms with increasing

sophistication (e.g., Redpin [3], OIL [4], Zee [5]).

More closely relevant to this paper are the studies com-

paring different WiFi fingerprinting techniques (e.g., [6]) and

analyzing the properties of WiFi signals as they pertain to

location fingerprinting (see [7] and references therein). A

number of factors are now recognized to have an impact on the

accuracy of WiFi fingerprinting systems to varying degrees,

including user orientation, temporal and spatial variations of

WiFi signals, device hardware, transmit power, number of

measurement samples [1], [2], [7].

Our work differs from and advances the previous work in

the sense that it considers factors such as fingerprint definition,

effect of frequency band and VAPs that are beyond those have

been previously considered in the context of smartphone based

WiFi fingerprinting in diverse environments. Concerning our

investigation on the effect of frequency band, [8] have also

come up the same conclusions although they do not analyze

the underlying reasons. Specifically, [8] studied the effect of

different device hardware types on RSSI behavior including

some dual-band WiFi interfaces. The authors observed that

5GHz exhibits relatively low standard deviation of RSSI and

they conjecture that it could be possibly be due to low

interference and propagation effects in 5GHz band without

any experimental validation.

III. METHODOLOGY

A. Data Collection

We obtain WiFi fingerprinting data for our study using An-

droid phones and IndoorScanner, a custom mobile application

we developed for this specific purpose. For each measurement

position, which we note as the ground truth, IndoorScanner

relies on the Android API (specifically, the getScanResults()

method in the WifiManager class) to do multiple (20) scans,

each taking approximately 1 second. Information gathered

from each scan includes service set identification (SSID), basic

service set identification (BSSID), RSSI, channel and UNIX

timestamp. Scan results are annotated with the corresponding

ground truth position and stored in a MySQL database, in a

separate table for each different environment. We use either

Samsung Galaxy S3 or HTC Nexus One phones, both Android

based, to generate the various datasets.

B. Environments

We consider a multi-storey office building and three differ-

ent shopping centers as representative set of diverse environ-

ments. Layout of these different environments is shown for

reference in Figure 1 and Figure 2.

Multi-storey office building. As a representative office build-

ing, we consider the Informatics Forum building in the Uni-

versity of Edinburgh which houses the School of Informatics.

We focus on five floors of this building which constitute the

main areas with staff/student offices, common spaces and labs.

Figure 1 shows the floor plan for two of the floors. Note that

the grey area in the middle is empty across all floors. Also

note that two of the floors, including the second floor shown in

Figure 1(b), are slightly different with an open plan common

space in place of some rooms. As a result the number of

sampled measurement locations are different between floors —

floors with open spaces have more number of measurement lo-

cations. There is a university run wireless LAN service across

the whole building with several APs installed per floor. Each of

these physical APs function as two virtual APs corresponding

to two wireless networks with different user authentication

mechanisms. In addition, a number of other APs can be seen

across the building, some installed by various research groups

in the building while others from surrounding buildings. The

WiFi fingerprint dataset for this building was generated by

measurements using our IndoorScanner app described above

along the corridors and in common spaces at a granularity of

1 square meter cells, colored cyan in Figure 1.

Shopping centers. Besides the office building described

above, we also consider three shopping centers of different

sizes in Edinburgh, UK as shown in Figure 2. We use WiFi

scan results with our IndoorScanner app along with a dis-

tinct id we manually assigned for each measurement position

(shown as purple colored cells in Figure 2 to produce the

individual datasets for each of these environments. Note that

compared to the office environment described above, sampling

of these shopping environments is sparser as they are public

spaces with less flexibility in choosing measurement location

and also given their size. These measurements were collected

during busy shopping times to better capture a realistic usage

scenario.

C. Fingerprint Definitions

What constitutes a WiFi fingerprint, i.e., the fingerprint

definition, potentially influences the accuracy of a WiFi fin-

gerprinting system even if other aspects such as the location

estimation algorithm are kept fixed.

As a starter, a vector of mean1 signal strength values from

different WiFi APs seen at a location can be taken as the

WiFi fingerprint for that location, as in [1]. We refer to this

fingerprint definition as the Default fingerprint definition in

the rest of this paper. However, as shown in section IV,

we observe that this default definition yields poor location

accuracy when compared to some of the alternative and

“shorter” fingerprint definitions we consider in our study (7

in total). These other definitions are outlined below and share

a common characteristic that they involve choosing a subset

of APs (5 in our implementation) for each location that satisfy

a particular criterion (e.g., highest strength).

1) RSSI based: Received signal strength (RSSI) of beacons

from APs is a key feature commonly considered in WiFi

fingerprinting. We consider the following three different fin-

gerprint definitions based on RSSI:

1This could be some other summary statistic (e.g., median).
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(a) First Floor (b) Second Floor

Fig. 1: Floor plans for first and second floors of Informatics Forum, University of Edinburgh (office environment). Sampled locations
during data collection are shown as cyan colored cells.

(a) Gyle (Shop. Ctr. 1) (b) St. James (Shop. Ctr. 2)

(c) Ocean Terminal (Shop. Ctr. 3)

Fig. 2: Layouts of three shopping centers in Edinburgh (shopping center environments). Purple colored cells represent the locations
sampled during data collection.

Strength: In this definition, for each location in the training

data, the subset of APs with highest mean RSSI values are con-

sidered along with the runtime fingerprint data corresponding

to those chosen APs for estimating the location using one of

the algorithms described in section III.D.

Stability: This definition focuses on the most stable subset

of APs based on the standard deviation of their RSSI values.

The rationale for considering this definition is two-fold: (i) as

received signal strength is inherently time varying, the signals

that vary less would more likely result in better accuracy of

localization; (ii) [7] conclude from their analysis that RSSI

standard deviation is the most influential factor determining

the accuracy of a WiFi fingerprinting system.

Variance: This definition is based on the observation that

it is ideal for a fingerprinting based localization system if

fingerprints from different cells are sufficiently distinct from

each other, i.e., fingerprints serve as unique location signatures.

Specifically, with the variance fingerprint definition, the subset

of APs in each cell (i.e., a sampled location in the radio

map construction phase) that have the highest variance, across

all cells with respect to their mean RSSI values, are chosen

to compare with the corresponding set of APs from runtime

fingerprints to find the closest matching cells.

2) AP Visibility based: The visibility of APs is an important

aspect for WiFi fingerprinting systems that has so far received

less attention in the literature. Some proposals assume that

identical set of APs are seen across the whole space of interest,

whereas others implicitly suppose that the visibility of an AP

is constant over time. These assumptions often do not hold in

practice. To capture the impact of AP visibility on the accuracy

with WiFi fingerprinting systems, we consider the following

two different definitions:

Constancy: At a given location, there may be differences

between different APs in terms of how often they are seen in



2013 International Conference on Indoor Positioning and Indoor Navigation, 28-31st October 2013

fingerprint measurements because of weak signals, small-scale

fading, beacon loss due to co-channel interference etc. The

constancy definition essentially captures this aspect. Specifi-

cally, for each cell, we select those APs which appear the most

number of times across multiple site survey measurements at

that cell during radio map construction. The mean RSSI of

this subset of APs is then compared with the runtime RSSI

measurements of the same set of APs for location estimation.

Coverage: This definition captures a different spatial aspect

of AP visibility. It picks, for each cell, the subset of APs that

are most widely seen across all cells in the space of interest

for pattern matching during location estimation.

3) Hybrid Definitions: Recall that we select a subset of

APs satisfying a certain property in our alternative set of

fingerprint definitions. However when using the constancy

definition, we observed that often several APs are seen in a

cell the same number of times. We randomly break ties with

the vanilla constancy definition described above, whereas here

we consider hybrid definitions that combine constancy with

other similar definitions. We focus on constancy combined

with either strength or stability as strength and stability show

good correlation with constancy (see Table I). Based on this,

we consider the following two fingerprint definitions:

Constancy+Strength: With this definition, we first rank the

APs seen in a cell in the decreasing order of their constancy.

Between APs with the same constancy, we prefer those with

a higher strength as indicated by their mean RSSI value in the

fingerprint database.

Constancy+Stability: As with the previous definition, APs

seen in a cell across all measurements in the radio map con-

struction phase are ordered based on their relative constancy

so that APs with higher constancy appear earlier in the order.

Then stability of the APs as defined above is used to choose

among the APs with the same constancy.

TABLE I: Pearson correlation coefficient computed between
constancy and strength / stability for different floors in our Forum

office environment.
Floor Constancy-Strength Constancy-Stability

1st Floor 0.4050907 0.1883634
2nd Floor 0.6191411 0.3272367
3rd Floor 0.6430674 0.3887892
4th Floor 0.6001379 0.35482358
5th Floor 0.6507656 0.45762849

D. Location Estimation Algorithms

In our study, we consider five different location estimation

algorithms. The first three belong to the deterministic tech-

niques (e.g., RADAR [1]) whereas the other two fall under the

category of probabilistic techniques exemplified by Horus [2].

1) Deterministic or Nearest Neighbor (NN) Techniques:

The use of nearest neighbor techniques is quite common with

WiFi fingerprinting systems. Essentially, the idea is to compute

the distance in signal space between pre-collected, location

tagged fingerprints in a database and a runtime fingerprint to

find the closest match or matches. Different NN techniques

differ in the distance computation methods used. We consider

three representative methods as outlined below.

Euclidean Distance: This method used in [1] and other WiFi

location fingerprinting systems uses equation 1 to compute the

distance between fingerprints from the database, each with

an associated location and denoted by S, with a runtime

fingerprint R. In equation 1, n is the number of APs considered

in the fingerprints; in our study, this is total number of APs

in the environment with the default fingerprint definition and

5 for the other definitions. And si is the mean RSSI value of

AP i in the fingerprint from the database, whereas ri is AP

i’s RSSI in the runtime fingerprint.

EucDist(S,R) =

√

√

√

√

n
∑

i=1

(si − ri)2 (1)

Manhattan Distance: Manhattan distance, which is also men-

tioned in [1], is another well-known NN method. It is defined

as the sum of the absolute differences of values between

fingerprint from database and runtime fingerprint as indicated

by the following equation:

ManDist(S,R) =
n
∑

i=1

|si − ri| (2)

Mahalanobis Distance: Mahalanobis distance is yet another

NN method considered in the WiFi fingerprinting literature

(e.g., see [7] and references therein). It is more sophisticated

compared to the previous two methods and accounts for

correlations between compared vectors. An interesting feature

of Mahalanobis distance is that it is based on assumptions of

stable patterns of RSSI distributions and it also takes into ac-

count variance in RSSI as done in probabilistic techniques [9],

[10]. Mathematically, Mahalanobis distance computation is

shown by equation 3 where S is the covariance matrix of

S and P of the same distribution.

MahalDist(S,R) =
√

(S− R)TS−1(S− R) (3)

2) Probabilistic Techniques: This class of techniques infer

the probability that a user is at a certain location based on

modeling RSSI measurements in each cell from the radio

map construction phase as a probability distribution. In simple

terms, they select the cell x that maximizes the conditional

probability P (x/R) given an online fingerprint R as the user’s

most likely location. Different techniques differ in the type

of distribution used for RSSI modeling. We focus on two

commonly considered distributions: Gaussian (as in [2]) and

Log-Normal.

IV. IMPACT OF FINGERPRINT DEFINITION AND LOCATION

ESTIMATION ALGORITHMS

In this section, we assess the relative importance of finger-

print definition in relation to location estimation algorithms

for different environments. Throughout we use at least 15
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Fig. 3: CDF of estimated location errors with different fingerprint definitions and location estimation algorithms across all floors in the
office environment.
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Fig. 4: Summary statistics (median and 3rd quartile) location
estimation error for the best combination of fingerprint definition

and location estimation algorithm for various floors separately and
together in the office environment.

measurement samples (WiFi scans) per location for the refer-

ence fingerprint database, and 5 samples for runtime location

estimation.

We look at the office environment first and then the various

shopping center environments.

Office Environment. Figure 3 shows the cdf of location

estimation errors with all possible combinations of fingerprint

definitions and location estimation algorithms when all 5 floors

in the office building are seen as one whole. We see that

various fingerprint definitions appear clustered in two separate

groups with significant difference in accuracy between them.

Constancy, strength and the two hybrid definitions fall in the

best performing group. Surprisingly, stability and variance

yield poor performance for all algorithms as does coverage.

As mentioned earlier in section III, default is also in the same

group providing poor location accuracy.

Now turning attention to the various location estimation

algorithms, we see that Manhattan distance performs slightly

better among the deterministic techniques. It is noteworthy that

probabilistic techniques yield poor accuracy compared to all

three deterministic techniques; this is more apparent if results

are compared near the right end of the plots near 10m error.

We believe this is because the true RSSI distribution differs

from the one chosen to model it (Gaussian or Lognormal).

Overall we can also observe that the choice of fingerprint

definition has as much or more impact than the location

estimation algorithm. Table II summarizes the best combina-
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Fig. 5: CDF of estimated location errors with different fingerprint definitions and location estimation algorithms for first floor in the office
environment.

tion of fingerprint definition and location estimation algorithm

which turns out to be Strength with Manhattan distance for

the whole building case. The best combination is obtained

by first identifying the combination providing least median

estimation error; in case there are several such combinations

then their performance is compared in terms of 3rd quartile

estimation errors; if there are still multiple candidates then

the one providing the smallest maximum error is chosen as

the best combination.

When each floor is seen in isolation, Table II also shows

that the best combination is different between floors. This is

also evident when we look at the median and 3rd quartile

estimation errors in Figure 4. We see that the second floor has

higher errors. This is because of the open area on that floor

where all combinations have difficulty telling apart different

cells within that open area. CDFs of location estimation

errors for the first and second floors shown in Figure 5 and

Figure 6, respectively, further illustrate this point. We also

notice that differences between different fingerprint definitions

and location estimation algorithms become more apparent at

the individual floor level.

Shopping Centres. Different shopping centers are quite dif-

TABLE II: Office Environment: best combination of fingerprint
definition and location estimation algorithm
Floor Loc. Est. Algo Fingerprint Defn.

1 Manhattan Strength
2 Mahalanobis Constancy+Strength
3 Manhattan Constancy
4 Manhattan Constancy+Stability
5 Manhattan Strength
All Manhattan Strength

ferent in terms of their location estimation error statistics as

shown in Figure 7. We can see that shopping center 3 is the

easier of the three to localize as it is more compact and rich

in multipath.

Notice also that errors in Figure 7 are also higher compared

to Figure 4, partly because of the sparser location sampling in

the former as mentioned in section III. As with the office

environment, we see from Table III that best combination

changes from one environment to the other. This is true even

between floors within shopping center 3, the only one spanning

2 floors in our study. But interestingly, Mahalanobis distance

always emerges as the location estimation algorithm in all best

combinations cases.
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Fig. 6: CDF of estimated location errors with different fingerprint definitions and location estimation algorithms for second floor in the
office environment.
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Fig. 7: Summary statistics (median and 3rd quartile) location
estimation error for the best combination of fingerprint definition
and location estimation algorithm for different shopping center

environments.

V. THE IMPACT OF FREQUENCY BAND

In this section, we explore the impact of frequency band

(2.4GHz vs. 5GHz) on WiFi fingerprinting accuracy. While

2.4GHz was the only band originally used for WiFi, increas-

ingly 5GHz is also being used despite its relatively poorer

propagation characteristics resulting from higher frequency

TABLE III: Shopping centers: best combination of fingerprint
definition and location estimation algorithm

Environment Loc. Est. Algo Fingerprint Defn.

Shop. Ctr. 1 Mahalanobis Stability
Shop. Ctr. 2 Mahalanobis Constancy+Stability
Shop. Ctr. 3-GF Mahalanobis Constancy
Shop. Ctr. 3-FF Mahalanobis Constancy+Stability
Shop. Ctr. All Mahalanobis Constancy

operation. This is because 5GHz band is less crowded and

also there is far more spectrum available in 5GHz band.

From a WiFi fingerprinting system perspective, in a typical

environment today with APs using both 2.4GHz and 5GHz

bands, a measurement sample (WiFi scan) obtained either

during the radio map construction phase or subsequent runtime

phase will likely include a mix of 2.4GHz and 5GHz APs. This

in turn could impact the accuracy of the WiFi fingerprinting

system as signals from these two bands behave differently.

To study the impact of frequency band on WiFi fingerprint-

ing, we used a smart phone that supports both 2.4GHz and

5GHz bands (Samsung Galaxy S3) to collect multiple samples

for each measurement location shown in Figure 1(a) for the

first floor of the Forum office environment.
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Fig. 8: CDF of estimated location errors across 2.4GHz and 5GHz bands and together for different fingerprint definitions and Euclidean
distance method for the first floor in the office environment.

Figure 8 shows the CDF of location estimation errors for

the cases where only APs from one band are considered as

well as the case considering APs from both bands. We show

results for only one location estimation algorithm (Euclidean

distance) for brevity as the results are qualitatively similar

for other algorithms. Results in Figure 8 show that the cases

including APs from 5GHz band show a clear and significant

benefit compared to using only the 2.4GHz band even though

the number of APs in the environment are evenly distributed

across the two bands.

To better understand the reasons behind the improvement

in WiFi fingerprinting accuracy obtained using 5GHz band,

we setup an AP with a multiband WiFi card and had a client

in the form of laptop with AirPcap USB dongle2 listening

to beacons sent from the AP on channels from both bands.

Figure 9 shows the mean and standard deviation of RSSI of

AP beacons, separately for each band. While the lower mean

RSSI in the 5GHz is expected, the relatively higher standard

deviation in RSSI in 2.4GHz is interesting and we believe is

also the key reason why using APs for 2.4GHz band alone

results in poor location accuracy. We also conducted a similar

experiment in two shopping centers using a AirPcap equipped

laptop listening to beacons from already existing multiband

APs for 1.5 hours and find that beacons received on 2.4GHz

consistently show greater variation in RSSI.

From inspecting the packet logs in the above experiments,

we find that beacons in 2.4GHz are transmitted at 1Mbps

802.11b DSSS bit-rate, whereas 5GHz beacons are sent at

OFDM based 6Mbps bit-rate. This difference may explain the

high variation in RSSI seen for beacons on 2.4GHz. Note

that RSSI is measured only for the PLCP header of received

frames. The 48 bits long PLCP header for DSSS 1Mbps BPSK

modulation takes 48us to transmit whereas the same length

PLCP header takes only 4us at OFDM 6Mbps rate. The shorter

duration for RSSI sampling in 5GHz makes it relatively less

affected by temporal signal variations due to people movement

etc., thereby resulting in a more stable RSSI.

We also carefully examined whether low RSSI variation in

2http://www.metageek.net/products/airpcap/
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Fig. 9: Mean and standard deviation RSSI of beacons received on
2.4GHz and 5GHz bands from the same AP.

TABLE IV: Best combination of location estimation algorithm and
fingerprint definition including and excluding VAPs.

Case Loc. Est. Algo Fingerprint Defn.

Including VAPs Manhattan Strength
Excluding VAPs Mahalanobis Constancy+Strength

5GHz is due to low co-channel interference. Towards this end,

we setup an AP transmitting beacons in a channel of 5GHz

band and an interfering node (on the same channel) with a

modified device driver with CCA (Clear Channel Assessment)

disabled so that it can continuously transmit without regard to

whether channel is idle or busy. By measuring loss and signal

strength of beacons at a client station associated with the AP,

we find that increase in traffic intensity from the interfering

node only increases the beacon loss but does not affect RSSI.

We have also obtained similar qualitative results comparing

different bands for shopping centers but we do not include

them due to space limitations.

VI. THE EFFECT OF VIRTUAL ACCESS POINTS

In this section, we study, again for the first time in the

literature, the effect of virtual access points (VAPs) on WiFi

fingerprinting accuracy. VAP is a way to realize multiple APs,

each potentially using a different security mechanism and

targeting a different set of users, with a single physical AP

via time sharing. It is the wireless counterpart of VLANs. The

http://www.metageek.net/products/airpcap/
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Fig. 10: Summary statistics (median and 3rd quartile) location
estimation error for the best combination of fingerprint definition

and location estimation algorithm with VAPs included and excluded
for the first floor of the office environment.

BSSIDs of VAPs corresponding to a physical AP are typically

derived from the BSSID (MAC address) of the physical AP.

From our study of WLAN deployments in offices and public

spaces, we observe that VAPs are common today.

Our interest here is to study the impact of the pres-

ence/absence of VAPs on WiFi fingerprinting. Towards this

end, we studied the effects of VAP presence of both office

and shopping center environments. However for the sake of

brevity, we focus on the results for the first floor of the Forum

office environment. As noted earlier in section III.B, each of

the physical APs in the university WLAN network advertise

two VAPs. On the first floor there are 33 university run APs

resulting in 66 VAPs, plus 10 other non-VAP APs. Thus in

total there are 76 APs in total when VAPs are counted, and 43

otherwise. In this environment we find that BSSIDs of VAPs

share the first ten digits with the BSSID of their corresponding

physical AP. It is relevant for WiFi fingerprinting to understand

how the beacons of VAPs are transmitted. By capturing all

beacons in the air with a laptop running Kismet application,

we find that beacons for each of the VAPs corresponding to

a physical APs are sent within a short period of 100ms, the

default beacon transmission interval. This suggests all VAPs

can be usually detected via passive scanning as the time spent

on a channel before hopping to another channel is 100ms by

default.

To study the effect of VAPs, we consider two cases, one with

VAPs included and the other in which VAPs are excluded.

The case with VAPs included simply treats each VAP as a

separate physical AP; this is what we did so far in this paper. In

contrast, only one VAP per physical AP is retained in the latter

case. Figure 10 differentiates between these two cases in terms

of their median and 3rd quartile errors considering the best

combination of fingerprint definition and location estimation

algorithm for each case (see Table IV). Clearly, including

VAPs significantly reduces location estimation error, especially

in terms of median. Figure 13 demonstrates the benefit from

considering VAPs in more detail.

We attribute the gain seen from including VAPs to two

reasons. Firstly, including VAPs increases the AP density
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Fig. 11: Relative differences in signal coverage between each pair
of VAPs corresponding to a physical AP in terms of cells where

they are seen.
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Fig. 12: Differences in mean and standard deviation of RSSI of
each pair of VAPs as seen from a cell that shows maximum

improvement in location accuracy from including VAPs.

which tends to have a positive correlation with higher location

accuracy for WiFi fingerprinting systems. For the results

shown here, the case with including VAPs has 76 APs in

total whereas excluding VAPs brings that down to 43, both

for the same area. Secondly, even though we may expect

VAPs corresponding to a physical AP to have identical signal

characteristics, this is not always the case as beacons from

different VAPs are separated in time each capturing a slightly

different time-varying environment context as demonstrated by

Figure 11 and Figure 12.

VII. CONCLUSIONS

We have examined the impact of fingerprint definitions

along with location estimation algorithms on WiFi finger-

printing location accuracy across diverse environments. We

find that the combination of fingerprint definition and location

estimation algorithm that yields best location accuracy is

highly dependent on the environment and even specific floor

within a given environment. We also find that the choice of

frequency band (2.4GHz vs. 5GHz) and inclusion of VAPs

has a significant impact on the location accuracy of WiFi

fingerprinting systems; we analyze the potential reasons to

explain these findings.
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Fig. 13: CDF of estimated location errors including and excluding VAPs for different fingerprint definitions and Manhattan/Mahalanobis
distance methods for first floor in the office environment.

REFERENCES

[1] P. Bahl and V. Padmanabhan. RADAR: An In-Building RF-based User
Location and Tracking System. In Proc. IEEE INFOCOM, 2000.

[2] M. Youssef and A. Agrawala. The Horus Location Determination
System. Wireless Networks, 14(3), 2008.

[3] P. Bolliger. Redpin – Adaptive, Zero-Configuration Indoor Localization
through User Collaboration. In Proc. ACM MobiCom MELT Workshop,
2008.

[4] J. Park et al. Growing an Organic Indoor Location System. In Proc.

MobiSys, 2010.
[5] A. Rai et al. Zee: Zero-Effort Crowdsourcing for Indoor Localization.

In Proc. ACM MobiCom, 2012.
[6] V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Piche. A Comparative

Survey of WLAN Location Fingerprinting Methods. In Proc. 6th

Workshop on Positioning, Navigation and Communication (WPNC’09),
2009.

[7] K. Kaemarungsia and P. Krishnamurthy. Analysis of WLANs Received
Signal Strength Indication for Indoor Location Fingerprinting. Pervasive

and Mobile Computing, 8(2), 2012.
[8] G. Lui, T. Gallagher, B. Li, A. G. Dempster, and C. Rizos. Differences

in RSSI Readings Made by Different Wi-Fi Chipsets: A Limitation of
WLAN Localization. In Proc. International Conference on Localization

and GNSS (ICL-GNSS), 2011.
[9] P. Mahalanobis. On the Generalised Distance in Statistics. Proceedings

of the National Institute of Sciences of India, 2(1), 1936.
[10] H. Shin and H. Cha. Wi-Fi Fingerprint-Based Topological Map Building

for Indoor User Tracking. In Proc. 16th IEEE International Conference

on Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2010.


	Introduction
	Related Work
	Methodology
	Data Collection
	Environments
	Fingerprint Definitions
	RSSI based
	AP Visibility based
	Hybrid Definitions

	Location Estimation Algorithms
	Deterministic or Nearest Neighbor (NN) Techniques
	Probabilistic Techniques


	Impact of fingerprint definition and location estimation algorithms
	The Impact of Frequency Band
	The Effect of Virtual Access Points
	Conclusions
	References

