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Abstract. Several scoring metrics are used in different search procedures for learning probabilistic networks.
We study the properties of cross entropy in learning a decomposable Markov network. Though entropy and related
scoring metrics were widely used, its ‘microscopic’ properties and asymptotic behavior in a search have not been
analyzed. We present such a ‘microscopic’ study of a minimum entropy search algorithm, and show that it learns
an | -map of the domain model when the data size is large.

Search procedures that modify a network structure one link at a time have been commonly used for efficiency.
Our study indicates that a class of domain models cannot be learned by such procedures. This suggests that prio
knowledge about the problem domain together with a multi-link search strategy would provide an effective way
to uncover many domain models.
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abilistic networks

1. Introduction

A probabilistic network (Charniak, 1991; Hajek et al., 1992; Neapolitan, 1990; Pearl,
1988) combines gualitativegraphic structure which encodes domain dependencies, with

a quantitative probability distribution which encodes the strength of the dependencies.
The network structure can be a directed or undirected graph. A Bayesian network (BN)
structure is a directed acyclic graph and a decomposable Markov network (DMN) structure
is an undirected chordal graph. As many effective probabilistic inference techniques have
been developed (Henrion, 1988; Jensen et al., 1990; Lauritzen & Spiegelhalter, 1988; Pearl,
1986; Xiang et al., 1993) and the applicability of probabilistic networks have been amply
demonstrated in many artificial intelligence domains (Charniak, 1991), many researchers
turn their attention to automatic learning of such networks from data.

Chow and Liu (1968) pioneered learning of probabilistic networks. They developed
an algorithm to approximate a joint probability distribution (jpd) by a tree-structured BN.
Rebane and Pearl (1987) extended their method to learn a polytree-structured BN. However,
many real world domain models cannot be represented adequately with a tree-structured
network. The following algorithms are all applicable to learning a multiply connected
network. Herskovits and Cooper (1990) developed the Kutato algorithm to learn a BN from
a database of cases by minimizing the entropy of the distribution defined by the BN. Their
method starts with an empty graph (no links) and adds one link at each pass during search.
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Later, they proposed the K2 algorithm (Cooper & Herskovits, 1992) that learns a BN based
on a Bayesian method which selects a BN with the highest posterior probability given a
database. A similar algorithm was independently developed by Buntine (1991). Recently,
Heckerman et al. (1995) applied the Bayesian method to learning a BN by combining prior
knowledge and statistical data. Spirtes and Glymour (1991) developed the PC algorithm
thatlearns a BN by deleting links from a complete graph. Lam and Bacchus (1994) applied a
minimal description length (MDL) method to learning a BN. A BN is evaluated as the best if

it has the minimal sum of its own encoding length and the encoding length of the data given
the BN. Instead of learning a BN, Fung and Crawford (1990) developed the Constructor
algorithm that learns a DMN. Dawid and Lauritzen (1993) studies ‘hyper Markov laws’ in
learning numerical parameters of a DMN with a given decomposable graph. Madigan &
Raftery (1994) proposed algorithms for learning a set of acceptable models expressed as
BNs or DMNs. A more extensive review of literature for learning probabilistic networks
can be found in (Buntine, 1994; Cooper & Herskovits, 1992; Heckerman, 1995; Herskovits
& Cooper, 1990).

In this paper we consider learning a DMN from a database. Pearl (1988) showed that
directionality makes BNs a richer language in expressing dependencies. For instance, an
induced dependence can be expressed by a BN but not by a DMN. In general, fewer numer-
ical parameters are required to specify a BN than those required to specify a corresponding
DMN. However, learning of DMNs is useful for several reasons.

One important application of BNs is to compute posterior probabilities. One efficient
exact algorithm (Jensen et al., 1990) for doing that in a sparse multiply connected network
uses a DMN, in terms of its junction tree (JT), as the run time representation of a BN.
The method can be extended to probabilistic inference with multiply sectioned Bayesian
networks in a single agent oriented system (Xiang et al., 1993a; Xiang et al., 1993b) as
well as in a multi-agent distributed interpretation system (Xiang, 1996). The run time
representation is a set of DMNs (in terms of a set of JTs). It has been shown (Wong
et al., 1995; Wong et al., 1994) that computation of posterior probabilities of a BN can
be performed using an extended relational database once the BN is converted into its
corresponding DMN. This implies that once a probabilistic model is expressed in terms of
a DMN, inference can be performed using standard relational DBMSs. Most importantly,
as BNs and DMNs are so closely related, knowledge gained in learning one of them will
benefit the learning of the other.

It has been shown that learning probabilistic networks is NP-hard (Bouckaert, 1994;
Chickering et al., 1995). Therefore, using heuristic methods in learning is justified. Many
algorithms developed use a scoring metric and a search procedure. The scoring metric
evaluates the goodness-of-fit of a structure to the data, and the search procedure generate
alternative structures and selects the best based on the evaluation.

Out of many possible scoring metrics, Bayesian metridescription length metrics
and entropy metrics have been used and studied by several researchers (Bouckaert, 199-
Buntine, 1991; Cooper & Herskovits, 1992; Heckerman et al., 1995; Herskovits & Cooper,
1990; Lam and Bacchus, 1994; Madigan & Raftery, 1994; Wong & Xiang, 1994). In many
common cases, a Bayesian metric can be constructed that is equivalent to a description lengtl
metric, or at least approximately equal. See for instance (Cheeseman, 1993; Cheesemal
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& Oldford, 1994) for a more detailed discussion. Lam and Bacchus (1994) showed that,
in their scheme for learning a BN based on the MDL principle, the encoding length of the
data is a monotonically increasing function of the Kullback-Leibler cross entropy between
the distribution defined by the BN and the true distribution. It has also been shown (Wong
& Xiang, 1994) (see Section 3) that the cross entropy of a DMN can be expressed as the
difference between the entropy of the distribution defined by the DMN and the entropy
of the true distribution which is a constant given a static domain. Entropy has also been
used as a means to test conditional independence in learning BNs (Rebane & Pearl, 1987)
Therefore, the maximization of the posterior probability of a network given a database
(Cooper & Herskovits, 1992; Heckerman et al., 1995), the minimization of description
length (Lam & Bacchus, 1994), the minimization of cross entropy between a network and the
true model (Lam & Bacchus, 1994), the minimization of entropy of a network (Herskovits
& Cooper, 1990; Wong & Xiang, 1994), and conditional independence tests are all closely
related. A better understanding of any of them will lead to a better understanding of all of
them.

In all the methods mentioned above, a heuristic method with a single-link lookahead
search is adopted in order to avoid the exponential complexity of exhaustive comparison
of all possible networks. However, as far as we know, the interplay of the scoring metric
and the search process has not been analyzed. Many questions have not been answere
For example, how does the current score determine the next link (dependence) that will be
selected? How does the inclusion of a new link change the score and why? Is it possible that
once a superfluous link is added, the search may continue until a complete graph structure is
generated? We have already had a good ‘macroscopic’ perspective about which network(s)
should be chosen if an exhaustive comparison is possible according to a particular scoring
metric. However, in viewing the search process as a chain that connects the initial network
to some learned network, we do not seem to have a satisfactory ‘microscopic’ understanding
about what is occurring during the transition from one link to the next on the chain. We
do not seem to know how good or how bad the learned network is relative to the global
optimal. As pointed out by Spirtes and Glymour (1991) and acknowledged by Cooper and
Herskovits (1992), the “asymptotic reliability of the procedure is unknown”.

In this paper we provide such a ‘microscopic’ study under the context of learning
a DMN from a database by using an entropy scoring metric and a minimum entropy
search procedure. The ‘microscopic’ understanding leads to the identification of draw-
backs of a single-link lookahead search which is commonly used in learning probabilistic
networks.

It is well known thatparity functions cause failure of many decision tree learning al-
gorithms (see John et al., 1994; Pagallo & Haussler, 1990; for example). We show that
a class of probabilistic domain models, that forms a generalization of parity functions,
cannot be learned by a single-link lookahead search procedalttough our observa-
tion is based on the entropy scoring metric, because of the close relationship between
the entropy metric and other metrics described above, the results we obtain are valid for
other algorithms as well. We demonstrate that these domain models cannot be learned by
many learning algorithms (Herskovits & Cooper, 1990; Lam & Bacchus, 1994; Spirtes &
Glymour, 1991). We therefore propose a multi-link lookahead learning algorithm. We will
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analyze the computational complexity of this algorithm and suggest solutions to alleviate
the problem.

This ‘microscopic’ study also establishes the ‘asymptotic’ behavior of the minimum
entropy search algorithm. We will show that, when the number of cases in a database
becomes very large, the algorithm will halt and return an I-map of the domain model.

In practice, learning is performed on a database of a finite size. A finite database may
containfalsedependencies that do not exist among the domain varfablé®y cause the
learning algorithms to generate superfluouslinks. These links and their associated numerical
probability values tend to encode ‘noise’ and bias the jpd of the learned networks. Even
when the database is very large and contains no false dependencies, learning using heuristi
search may generate superfluous links that do not reflect the true domain dependencies
These superfluous links tend to make the inference using the resultant network unnecessarily
more complex. Fortunately, after we classify superfluous links generated under different
conditions, it is revealed that the entropy metric has the built-in resistance to adding some
superfluous links. Thus, learning a triviaimap is unlikely.

Section 2 provides the background and terminology. We present in Section 3 the rational
of the minimum entropy approach. In Section 4, we study the ‘microscopic’ mechanism of
the minimum entropy search in learning a decomposable Markov network lasap of
a domain model. We will also discuss the built-in partial resistance of the entropy metric
to adding superfluous links. In Section 5, we demonstrate the limitation of a single-link
lookahead search. We present in Section 6 a multi-link lookahead algorithm based on the
minimum entropy search. Experimental results are presented in Section 7, followed by a
concluding discussion.

2. Background and terminology
2.1. Graph related terminology

A chordin an undirected graph is a link that connects two nonadjacent nodes. A graph
is chordal if every cycle of length>3 has a chord. The undirected gra@h in figure 1

is not chordal since the cycla, (a, b), b, (b, d), d, (d, ¢), ¢, (c,a), a of length 4 has a

pair of nonadjacent noddsandc that are unconnected. If we add the chdodc) to G4,

(abo)
(bed P,

Figure 1 Gj: a non-chordal graphG,: a chordal graph with a single compone@sz: a chordal graph with
two componentsT,: a junction tree 0f5,, where nodes are drawn as ovals and sepsets are drawn as Bgixes.
a junction forest ofG3.

b b b

G d f Gy d f G; d f
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it becomesG;, which is chordal. Aclique of a graph is a maximal set of nodes pairwise
linked. G, has four cliquega, b, ¢}, {b, c, d},{c, e} and{c, f}. A componenbf a graph is
a maximal subgraph that is connected. In figur&1has a single component a3 has
two components. An undirected gra@hof a setN of nodes iscollapsibleontoZ N if
every component oN\ Z has complete boundary i@. We shall refer taZ as acore In
figure 1,{b, c, f} is a core 0fG3, and so isp.

Let G be a connected chordal graph.junction tree(JT) T of G is a tree whose nodes
are labeled by cliqgues d& such that for each pair of nodes ®f their intersection is
contained in every node on the unique path between them. A connected graph has a JT
iff (if and only if) the graph is chordal (Golumbic, 1980). In figureT, is a JT ofG,.
Without confusion, we sometimes refer tmmade Cin T as aclique when the nodes of
G contained inC are of interest. For instance, we may say fhiahas a cliquga, b, c}.
The intersection of two adjacent cliquesTnis called thesepsebf the two cliques. In
general,G may not be connected. jnction forest(JF) F of G is a set of JTs each of
which is a JT of one component &. In figure 1,F3 is a JF ofGz and F3 consists of two
JTs. T, is a (trivial) JF of G,. Extending the relation between chordal graphs and JTs to
JFs, we have that a graph has a JF iff it is chordal. Due to the equivalence relation, we
shall switch freely between the two graphical representations (chordal graphs and JFs) at
convenience.

Let X, Y andZ be three subsets of nodes in a graph. We(X3&|Y) to mean that nodes
in Z intercept all paths between nodesXfand nodes off. In G, of figure 1, we have
({a}I{b, c}|{d}). In a JF, we uséX|Z|Y) to mean tha¥ is a sepset or a clique or the union
of a set of cliques which intercept the unique path between the clique that coXtaims
the clique that containg. For example({a}|{b, c}|{d}) and{{e}|{b, c, d}|{f}) are true in
T, and({a, b, c}|¢|{ef}) is true inTx.

2.2. Dependency graphs

Let N be a set of discrete variables in a problem domainrid N. A configuration xof X

is an assignment of values to every variabl&inA probabilistic mode[PM) overN is an
encoding of probabilistic information that determines the probability of every configuration
of X for everyX € N. A PM overN can be specified by a jpd ovét. The entropy ofX
defined by a probability distributioR over X is H(X) = — >, P(x) log P(x).

We will denote a PM byM. Our task is to learn a probabilistic network from the data
generated byM. In practice, we usually have less data than what is hecessary to reliably
estimate the jpd oveN. However, we may be able to estimate reliably the marginal
distribution overX c N if | X]| is small. Therefore, the jpd ovét is mainly used in this
paper as a conceptual entity.

Let X, Y andZ be three subsets &f. X andY areconditionally independergiven Z,
denoted IndX, Z,Y), iff P(x |y 2 = P(x | z) wheneverP(y 2 > 0.

Since we use graphs to represent independence relations among variables, we will
use nodesand variablesinterchangeably. An undirected gragh is anindependence
map (I-map) of M over N if there is an one-to-one correspondence between nodes
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of G and variables inN such that for all disjoint subset&, Y and Z of N, we have
(X]Z1Y) = Ind(X, Z,Y). That is, in anl -map, variables that are graphically separated
are independent. Variables not graphically separated, however, are not necessarily de-
pendent. See Pearl (1988) for more details on graphical representation of dependence
models.

Let G = (N, E) be a chordal graph be a JF ofG, and M be a PM oveN. LetC be
a clique ofF andSbe a sepset df. Let Py, (C) andP,,(S) be the marginal distributions
overC andS, respectively, defined byt. The jpd

P) = (H PM(C)>/<H PM(S)> wheneverP(v) > 0
C S

is called theprojected distribution of\ on G (or on F), wherev is a configuration oN,

cis the projection ob to C, ands is the projection ob to S. Note that since the structure
of a DMN is chordal, positivity is not required (Dawid & Lauritzen, 1993; Hajek et al.,
1992). The paifG, P) is adecomposable Markov netwafRMN) obtained by projecting
M to G, whereG is the structureof the DMN andP is the distribution of the DMK

For simplicity, we shall calG, P) a DMN from M. In practice,P,,(C) is estimated
from the data generated by!. Note that(G, P) defines a PM which may or may not be
equivalent toM. The entropy ofN defined byP can be shown (Wong & Xiang, 1994)
to be

H(N) =) "H(C) - ) H(S. €)
C S

Whenever(X|Z|Y) holds inG (or F), Ind(X, Z, Y) must hold inP. Therefore, we say
that Ind' X, Z, Y) isimpliedby G (or F).

3. The rational of the minimum entropy approach

This section briefly reviews the rational behind the minimum entropy approach originally
presented in Wong and Xiang (1994).
Given a probabilistic modeM over a setN of variables, we would like to learn a
DMN (G, P) that is an approximation of1. To measure thelosenessf (G, P) to M,
we adopt the Kullback-Leibler cross entropy (Kullback & Leibler, 1994} Py, P) =
> Pu(v) log(Pr(v)/P(v)), whereP, is thetrue jpd defined byM andv is a configura-
tion of N. A DMN that minimizesK (P,,, P) will be considered as thgestapproximation
of M. It has been shown (Wong & Xiang, 1994) that

K(Pum, P) = H(N) — Hu(N), 2

whereH (N) is the entropy olN defined byP andH,,(N) is defined byM. We include
the proof here to make the paper self-contained.
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SinceK (Puy, P) = =Y, Pu(v)log P(v) — Hu(N), it suffices to show- )" Py(v)
log P(v) = H(N). From the definition oP(N), we obtain

—~ Z Py logP(v) = — Z PM(U)<; log Pr(c) — zsj log PM(S)>
=_ XC:Z Pri(v) log Pu(c) + XS:Z Pr(v) log Py (s)
= XC: Xc: Pri(C) log Pu(C) + XS: XS: Pr(s) log Pu(s)
ZXC:H(C)—XS:H(S),

wherec (s) is the projection ok to C (S). The result follows from (1).

According to (2), minimizingK (P, P) can be achieved by simply minimizirdg(N).
We call this theminimum entropy approach

In Section 4.1, we will show that a DMN that minimiz&g P,,, P) is actually an -map
of M. Thus, the best DMN is minimal I-map, i.e., arl -map that contains no superfluous
links. The problem of learning a minimatmap is NP-hard (Bouckaert, 1994). Therefore,
using heuristic methods in learning is justified. We can design a learning algorithm by
combining the entropy metric with a single-link lookahead search strategy. We will refer to
such an algorithm agarning by minimum entropy searcne such algorithm (Wong &
Xiang, 1994) starts with an empty graph. Ateach pass, it searches all possible links and adds
to the current graph the link that minimizes the entropy. It terminates when no additional
link can decrease the entropignificantly In Section 5, we identify a class of PMs that
cannot be learned by such a single-link lookahead search. A multi-link lookahead search
is required to discover the dependencies in these PMs. In the following discussion, we will
assume a more general search procedure with the single-link lookahead as a special case

4. The minimum entropy search

In this section, we analyze how the dependence relations in a DMN are derived in the
minimum entropy search.

Recall that the pai(G, P) is a DMN from M. That is, P is defined by the marginals
of Px on cliques ofG. In practice, we can only estimate these marginals from a database
of cases, e.g., using the maximume-likelihood estimator (the relative frequencies) or the
Bayes’s estimator (Cooper & Herskovits, 1992). According tol#we of large numbers
the relative frequency of each configuration approaches its true probability as the size of
the database approaches infinity. Since our objective here is to analyze the ‘microscopic’
mechanism of the minimum entropy search and its asymptotic behavior, one may assume
that P is obtained directly from the projection &f,,. As we move from the theoretical
analysis to practical implementation in Section 6, we will discuss the related issues.

Let us outline the theorems to be presented in this section. Theorem 2 establishes the
relationship between the entropy of a DMN and ismapness. Theorem 3 identifies a false



72 Y. XIANG, S.K.M. WONG AND N. CERCONE

independence relation in a DMN if its entropy is not the minimum. Theorem 5 says that if
the inclusion of one or more links can remove a false independence relation, the entropy of
the DMN will decrease. Together, Theorems 3 and 5 state that the process of decreases ir
entropy closely parallels the process of removal of false independence relations contained
in the intermediate DMNs. Theorem 6 summerizes Theorems 2, 3 and 5. It asserts that the
minimum entropy search algorithm will produce bxmap.

4.1. Characterization of the search space

Let us first show that the entropy of a DMN cannot be smaller than that of the underlying
M. This means that the search space of DMNs is lower-bounded in terms of the entropy
scoring metric as indicated by the following corollary.

Corollary 1. Let M be a probabilistic model over a set N of variables. @&t P) be a
decomposable Markov network froi. Let Hy(N) be the entropy of N defined byt
and H(N) be the entropy of N defined by P. TheNy > Hp(N).

Proof. Let Py be the jpd defined byv1. The cross entropi (P, P) > 0 (Kullback &
Leibler, 1951). Sinc& (Py(, P) = H(N) — Ho(N) by (2), we obtainH (N) > H(N).
O

The following theorem says that the lower bound of the search space can only be reached
by a DMN that is anl -map of M. Therefore, it shows clearly that the minimum entropy
search targets anmap.

Theorem 2. Let M be a probabilistic model over a set N of variables. (&t P) be a
decomposable Markov network fraoi. Let Hy(N) be the entropy of N defined byt
and H(N) be the entropy of N defined by P. ThetN) = Hx(N) iff G is an I-map
of M.

Proof: The cross entropK (Py, P) =0 iff P = Py (Kullback & Leibler, 1951). Ac-
cording to (2),H(N) = H(N) is equivalent toP = P,,. Since(G, P) is a DMN, we
form a JF of G and have = [[; Px(C)/ [[s Prm(S) = Pu. This means that every inde-
pendence relation implied b is true inM, namely,G is an I-map ofM. O

4.2. Construction of an I-map

Theorem 2 implies that if the entropy of a DMN is not the minimum, it must contain a
false independence relation. The next theorem describes such a false independence relatio
more specifically in terms of its topological features.

Theorem 3. Let M be a probabilistic model over a set N of variables. &t P) be a
decomposable Markov network fratl. Let Hy(N) be the entropy of N defined bt
and H(N) be the entropy of N defined by P.
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Then H(N) > H,((N) iff there exists a core XJ Y U Z in G such that In¢X, Z,Y)
holds in P but notinM, where X Y and Z are disjoint subsets of, X # ¢, Y # ¢, and
Z isalsoacoreinG.

Proof: The sufficiency is an immediate result of Theorem 2. We prove the necessity by
contraposition. SincéG, P) is a DMN from M, G implies a set of independence relations

of the form Ind X, Z,Y) where X, Z andY are defined as in the theorem. Note that
(X]Z]Y) in G follows from the condition thaZ and X U Y U Z are cores irG. If every

such Ind X, Z, Y) holds in M, then we have

P= 1:[ PM<C>/];[ Pum(S) = Pur.

namely,H(N) = Hu(N). O

Proposition 4 provides a method to augment the structure of a DMN such that a false
independence relation as identified in Theorem 3 can be removed, and the resultant grapt
is chordal.

Proposition 4. Let G be a chordal graph of a set N of nodes. LetX U Z be a core
in G such that X|Z|Y) holds in G where X Y and Z are disjoint subsets of, X # ¢,
Y # ¢, and Z is also a core in G. Let e a graph obtained from G by completing
Z U {x, y}, where x and y are selected as followthere exist xe X and ze Z such
that x and z are connected in,en select x. Otherwise selecexX arbitrarily. Select
y € Y similarly.

Then G is chordal and({X|Z|Y) is false in G.

Proof: WhenZ = ¢, X andY are in different components. The proposition is trivially
true in this case. We consid&r# ¢ (X, Y andZ are in the same component) below.

To showG’ is chordal, we first modifyG into G; by completingZ if Z is not already
complete. Sinc& is chordal andZ is a core, it follows tha6G; is chordal.

Next, we modifyG; into G, (F; into F;) by completingZ U {x} if they are not already
complete. Sinc& andZ are connected but not complete, there existsky 3 G in which
X is in a clique adjacent to the clique that contaihsThe three exhaustive and exclusive
consequences of completiyu {x} are (1) the two adjacent cliques are joined into one
(e.g., figure 2, top), (2) the smaller of the two is enlarged (e.g., figure 2, middle), and (3) a
new clique is generated on the path between the two (e.g., figure 2, bottom). Which one of
them occurs depends on the composition of the two cliques. In all cases, the junction forest
property is unchanged and herfegis a JF, which implies thab; is chordal.

Using a similar argument to completinfu {x, y}, we conclude tha®&’ is chordal. O

Now we want to show that if a DMN is augmented such that a false independence relation
is removed, then the augmentation will decease the entropy. This implies that the minimum
entropy search is precisely a process of removal of false independence relations.
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Figure 2 Three cases of completi§U {x}. In each box, the upper-left is a chordal graph whet& |y) holds.

The lower-left is a JT of the chordal graph. The upper right is the chordal graph obtained by adding the dashed
ink to the upper left graph such thatu {x} is completed. The lower-right is a JT of the augmented graph where
the modified or newly created clique is shown in dashed oval. Top box: two cliques are joined into one. Middle
box: the smaller clique of the two involved is enlarged. Bottom box: a new clique is created.

Theorem 5. Let M be a probabilistic model over a set N of variables. (@b, Py) and
(Gy, Py) be two decomposable Markov networks\dfwhere G is a subgraph of G. Let
Hi (N) (i =0, 1) be the entropy defined by.P

Then H(N) < Hp(N) iff there exist three disjoint subsetsX ¢, Y # ¢ and Z of N
such that IndX, Z,Y) is implied by G but not by G and M.

Proof: First, we showH;(N) < Hg(N). Note that(G4, P;) defines a PM and therefore
(Go, Pp) is a DMN of (G4, P1) sinceG is a subgraph o6;. From Corollary 1H;(N) <
Ho(N). The equality holds iff5¢ is anl -map of(G1, P;) due to Theorem 2. That is, every
independence relation implied 16y, must be implied byG;, otherwise the relation must
hold in M. O

Theorem 6 says that, started with an arbitrary DMN, if the entropy of the current DMN
is not the minimum, a sequence of DMNs can be found which monotonically decreases the
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entropy to its minimum. This therefore establishes the asymptotic behavior of the minimum
entropy search.

Theorem 6. Let M be a probabilistic model over a set N of variables. (&t P) be

a decomposable Markov network frav. Let H(N) be the entropy of N defined by
P, and Hy(N) defined byM. If H(N) > Hu(N), there exists a sequenc¢6, P) =
(Go, Po), ..., (Gy, Py of decomposable Markov netwotksom M with the corresponding
sequence of entropies (M) = Hp(N) > --- > Hx(N) = Huy(N), where G (i =
1,...,k) is constructed by adding links to;G, and the last graph ¢is an I-map ofM.

Proof: Supposéd (N) > H,(N). By Theorem 3, anindependence relationlddz, Y)
that holds inP but not in M can be found, wher¥ # ¢, Y # ¢ andZ are disjoint,Z is a
coreinGandsoisXUY U Z.

By Proposition 4, a chordal grapB; can be obtained by augmentirg such that
Ind(X, Z,Y) is false inG;.

ProjectingP, to G;, we obtain a new DMNG, Py). Since Ind X, Z, Y) is implied by
G but not byG; (a supergraph o6) and M, according to Theorem %G, P;) satisfies
Hi(N) < Ho(N). If H1(N) > H,((N), the above arguments lead(®®,, P,) that satisfies
H2(N) < Hi(N). Since only a finite number of links can be addeda@nd the entropy
of a DMN with a complete graph is equal kb, (N), the sequenc€Go, Py), ..., (Gk, Px)
of DMNs does exist. By Theorem By is anl -map of M. O

Theorem 6 illustrates the ‘microscopic’ working mechanism of the minimum entropy
search. The entropy acts as amotor that drives the search for identifying a false independenct
relation. The removal of the false independence moves the current state forward in a chain
leading the starting DMN to the go&tmap.

4.3. Superfluous links

Theorem 6 ensures that the minimum entropy search halts and produicesam It does
not, however, eliminate the possibility of producing a trivialhap. Now we want to show
that in practice halting at a trividkmap rarely occurs. We identify two types of superfluous
links that may be added. In fact, the entropy scoring metric has some built-in resistance
to adding these two types of superfluous links. However, the entropy scoring metric has
no resistance to adding a third type of superfluous links. We discuss this third type in
Section 6.

We start the search with an empty DMN. At each pass, links are added to correct a false
independence relation and thus the entropy is reduced. Eventually we will obtaimap
of M. To examine the possibility of halting at a trivieimap, we ask the following two
questions:

1. Will those links that do not correct a false independence reduce the entropy?
2. Can the entropy scoring metric distinguistiigect dependence from andirectdepen-
dence?
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Figure 3 Left: A minimal | -map of a PM. Right: An intermediate structure during learning.

The first question concerns the possibility of adding what we refer tnaalled-for
links. For example, suppose the graph in the left of figure 3 is the minimap of a PM.
Assume that the current learned structure is the graph in the right with the(tin®sand
(d, f) missing. If the link(a, c) is added next, it is an uncalled-for link since it does not
correct any false independence in the current structure. The answer to the first question is
definitelyno, which is a direct result of Theorem 5.

The second question concerns the inclusion of what we refer tecasidantlinks.
Redundant links repair a false independence but not in the most direct way. In figure 3
(right), sincee is disconnected from the rest of the graph, it implies thatindependent
of every other variable. This is a false independence sirniseconnected to every other
variable in the minimal -map (left). In figure 3 (right), if the linka, e) is added next, it
is a redundant link. It repairs the false independence betaesmde. Since it does not
repair the false independence betweamnde, the link (c, ) must eventually be included,
rendering(a, e) redundant.

Note that the classification of a particular superfluous link into uncalled-for versus re-
dundant depends on the current structure. If the current structure already cgotajns
the link (a, ) would be classified as uncalled-for rather than redundant.

An intermediate structure may imply many false independence relations. In order not to
include too many redundant links, we must not correct just any false relation. Proposition 7
shows that the number of redundant links can be reduced if we choose to correct the false
relation that maximizes the decrement of entropy. It says that, given three sAb8etsnd
C of variables, ifA andB are dependent, anilandC are either marginally independent or
conditionally independent give3, then including links betweeA and B reduces entropy
more than including links betweeA andC. This result formally justifies the use of a
greedysearch and provides a partial answer to the second question.

Proposition 7. Let M be a probabilistic model over aset N of variables. LetGN, E)
be a chordal graph A, B and C be three distinct cliques of G and A be disconnected from
B and C. Let G be a chordal graph formed by only adding links to G such that B
becomes a clique. Letfbe a chordal graph formed by only adding links to G such that
AU C becomes a clique. Let;KN) and H(N) be entropies defined by decomposable
Markov networks fromi\t with structures G and G,, respectively.

Then H(N) < Ha(N) if (1) Ind(A, ¢, B) does not hold inM and(2) either Ind A, ¢, C)
holds inM, or Ind(A, B, C) holds in M but Ind(A, C, B) does not.

Proof: In G4, a new cliqueAB replaces clique#\ and B. Hence, we havéd;(N) =
H(N) + Hx(AB) — Hy(A) — Ha(B), whereH (N) is the entropy of the DMN with
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the structures, andHy (AB) is the entropy of the new clique defined . Similarly,
Hz(N) = H(N) 4+ Hy(AC) — Hx((A) — Hx((C). Therefore, we have

Ha(N) — Hi(N) = Hy(AC) — Hu(C) — HM(AB) + Huy(B).
Using the well knowraverage mutual informatiobetween two setd andV of variables,

V) = _PWV)
| (U:V) = UXV: PUV)log PPV

we obtain

H2(N) — Hi(N)
= [HMm(A) + Hy(C) — 1y (A; C)] — Hy(C)
— [HMm(A) + Hp(B) — 1y (A; B)] + Hu(B)
= lm(A; B) — Tm(A; C).

If Ind(A, ¢, C) holds inM, thenl ,(A; C) = 0. Since IndA, ¢, B) does not hold in
M, we haveH>(N) — Hi(N) = I ((A; B) > 0.

Ontheotherhand, ifIn@dA, B, C) holdsinM, thenl »(A; B) = 1 y,((A; C) + 1 \((A; B |
C) (Gallager, 1968) (equation 2.3.18), whék&\; B | C) is theaverage conditional mutual
informationbetweenA andB givenC,

P(A|CB)

I(A;B|C)=ZP(ACB)I09 PATC)

ACB

Hence,l v (A; B) — I\(A;C) = Iy(A; B | C) > 0, with equality iff Ind A, C, B)
holds inM. Since IndA, C, B) does not hold by assumptioh,(A; B) — 1 ,(A; C) > 0.
O

Proposition 7 answers the second question partially. It only asserts that redundant links
will never be added under certain conditions, but it does not guarantee the total avoidance
of such links. Since finding the minim&étmap is NP-hard, it is unlikely that any heuristic
search using any scoring metric would be able to eliminate all redundant links.

5. When will a single-link search fail?

Theorem 6 states that as long as the current DMN is not yétmap, a set of links can
always be added such that the new DMN is closer to-amap. No upper bound is given

for the number of links that must be added each time. If we use a greedy algorithm as
suggested by Proposition 7, a single-link lookahead search needs only to e|brg)

links before one link is added. The number of links to be explored increas@s h|?)

for ani-link lookahead (see Section 6). The single-link lookahead search has been adopted
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by several learning algorithms (Buntine, 1991; Cooper & Herskovits, 1992; Herskovits &
Cooper, 1990; Lam & Bacchus, 1994; Spirtes & Glymour, 1991; Wong & Xiang, 1994) for
computational efficiency. However, an important question is unanswered: What might be
compromised by using a single-link lookahead search?

With the understanding of the minimum entropy search, we answer the above question
in this section. Theorem 8 shows the existence of a class of PMs that displays a special
pattern of dependence relations. Theorem 9 shows that a single-link lookahead search is
unable to learn thé-map for this class of PMs.

Theorem 8. For any integery > 3, there exists a collectiofi of probabilistic domain

models over a set N @fbinary variables such that the following holds for eath € C.

(S1) Foreach Ye N, Py (N\{Y}) = ]‘[XeN’X;éY P (X).

(S2) Foreach pair XY € N and X+ Y, Ind({ X}, N\{X, Y}, {Y}) does not hold inM.
We shall refer to eaclM as apseudo-independent (PI) model.

Before proving the theorem, we intuitively describe the dependency pattern displayed
by the Pl models. S2 implies that no pair of variabledNodire independent given all other
variables. Therefore, in anymapG ., of M, there must be directline between each pair
of them, i.e.,.G,, is a complete graph. We say that variables in such PMsdallectively
dependentOn the other hand, S1 implies that variables in any subshkt of sizen — 1
arepairwise marginally independent

Proof: It is sufficient to construct a parameterized jpd givesuch that both S1 and S2
hold and the parameter can take on infinite possible values.

Let Xy, ..., X, denoten binary variables inN and P(Xj o) = P(Xij1) = 05 ( =
1,...,n) whereX; and X ; are the two outcomes of;. There are exactly distinct
subsets ofN of sizen — 1. For each subsdf;,, ..., X; ,} where 1<i; <, Slis
equivalent to

P(Xi,, ..., Xi, ) = 0.5"%,

We have omitted the second index because the particular configuration does not affect the
probability value. Models that satisfy S1 do exist. A BA(N) = P(Xy, ..., X;) = 0.5"
is one example. HoweveR*(N) does not satisfy S2. We will construct a jpd.et which
satisfies both S1 and S2.

We can view the above condition, which is equivalent to S1, as a constraint

P(Xiys o s Xi ) = PXiy, ooy Xi, 1 Xi0) + P(Xiy, .., Xi, 4, Xi, 1) = 05771

on the subsetX;,, ..., X, _,}. We therefore have constraints, one for each such subset.

To construct a desired jpd, we assign a probability value to each of"tlerffigu-
rations, each of which is denoted by a binaryuple. For example, the configuration
(X1,0, - -, X;,0) is denoted(, ..., 0). We group the tuples according to the number of
1's contained in each tuple and index the group&d, ..., GP,. For exampleG PR,
has a single tupl€0, ..., 0), GP, hasn tuples(0,...,0,1), (0,...,0,1,0), ..., and
1,0,...,0.
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We assign probability values to the configurations group by group in ascending order of
the group index. To make a new assignment, we check the configurations whose probability
values have been assigned, determine how many of twnstraints are involved in the
assignment, and ensure that the new assignment conforms to the constraints.

We start by assigning the single configuratiorGi®: P(0, ..., 0) = 0.5""1q, where
g € [0, 1] andg # 0.5. This assignment does not violate any constraints. We then assign
a configuration irG Py:

P(05 ceey 05 1) = P(X1,07 L] Xn—l,O) - P(X1,05 ceey Xn—1,05 Xn,O)
=05"11-q.

Note that this assignment involves only one constraint and involves the only configuration
whose value has been assigned. We will say that the assignment of probability value to
configuration(O, . . ., 0, 1) involves the constraimelative tothe configuratioro, .. ., 0, 0).

We make the following observation: df is a configuration whose probability has been
assigned and; is a configuration whose probability is to be assigned, then the assignment
involves a constraint relative 1 if and only if ¢; andc; differ by exactly one attribute.

This observation leads to two implications. First, the assignmegyt cdnnot involve a
constraint relative to another configuration in the same group, since configurations in the
same group differ by at least two attributes. For examle,. ., 0, 1) and(O, ..., 1,0)in
GP,and(0,...,0,1,1) and(, ...,1,0,1) in GP,.

Second, iftc, € GR, the assignment af,; can only involve a constraint relative to con-
figurations inGR_;. This is because configurations@P; (j < i — 2) differ from ¢,
by at least two 1's. Therefore, when we assign a configuration, we only have to check
configurations in the very last group assigned. Note that the assignment may still involve
multiple constraints each relative to a distinct configuration. For example, the assign-
ment of (0,...,0,1,1,1) in GP; involves three constraints relative €6, ...,0, 1, 1),
©,...,0,1,1,0 and(0,...,0,1,0,1) in GP,, respectively. We show that all of the
constraints involved can be satisfied simultaneously.

Each configuration is Py involves a single constraint relative to the single configuration
(0, ...,0) in GRy. To satisfy each constraint, we assign the configuratisfr(1 — q)
as we did in the second assignment above. Hence all configuratioB$irhave the
sameprobability value, since all distributions @f— 1 order have the same values0 .
Therefore, for each configuratiane G P,, even though it involves two constraints, each
relative to a different configuration i@ Py, the assignmen®(c) = 0.5"'q satisfies both
simultaneously.

Thus, by following this procedure, we can construct a jpd.fdrby alternating the
assignment of ®1q and 05"1(1 — q) to configurations in successive groups. The
resultant jpd clearly satisfies S1.

To show that the jpd also satisfies S2, we need to show, for an arbitraryKpaft;

(i # j)andW = N\{X;, Xj}, that P(X; | Xj, W) # P(X; | W), or equivalently,
P(Xi, Xj, W) # P(X; | W)P(Xj, W). SinceP(X; | W) = 0.5 andP(X;, W) = 0.5""1
by S1, we haveP(X; | W)P(X;, W) = 0.57. However, P(X;, Xj, W) has the value
0.5""1q or 0.5""1(1 — q), whereq # 0.5.
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Table 1 A Pl model.

(X1, X2, X3, Xa) P (X1, X2, X3, Xa) (X1, X2, X3, Xa) P(X1, X2, X3, X4)
(0,0, 0,0) 0.125 (1,0,0,0) 0
©,0,0,1) 0 (1,0,0,1) 0.125
©,0,1,0) 0 (1,0,1,0) 0.125
©,0,1,1) 0.125 (1,0,1,1) 0

©, 1,0, 0) 0 (1,1,0,0) 0.125
(0,1,0,1) 0.125 (1,1,0,1) 0
©,1,1,0) 0.125 1,1,1,0) 0
©,1,1,1) 0 (1,1,1,1) 0.125

Table 2 A Pl model where variables have different marginals.

(X1, X2, X3) P(X1, X2, X3) (X1, X2, X3) P(X1, X2, X3)

(0,0,0) 0.024 (1,0,0) 0.056
(0,0, 1) 0.216 (1,0,1) 0.104
(0,1,0) 0.096 (1,1,0) 0.024
,1,1) 0.264 1,1,1) 0.216

We have now constructed a jpd that satisfies both S1 and S2, and has a patameter
Sinceq can take any value in the intervals [@5) and(0.5, 1], the theorem is proven.O

Consider the following example of a Pl model. Suppose we have a digital gate with three
inputs X; (i = 1,2, 3) and an outpuiX;. The outputXy = 1 whenever any two inputs
are 0 and a third input is 1, or all inputs are 1. Suppose the three inputs are independent to
each other and each of them has equal chance to be 0 or 1. Table 1 shows the jpd of thes
four variables. It can be easily verified that (1) the marginal distribution of each variable
is 0.5, (2) any subset of two or three variables are mutually independent, and (3) the jpd is
not 05* = 0.0625.

In the PI models constructed in the proof of Theorem 8, the marginal of each variable is
equalto 0.5. However, PImodels are not restricted to 0.5 marginals. Table 2 provides a jpd of
three variables that have different marginals, in which (1) the marginaR@¢go) = 0.6,

P(X20) = 0.4 andP(X3p) = 0.2, (2) any two variables are marginally independent, and
(3) the jpd is not equal to the produei X,) P(X2) P(X3).

Among all the PMs, PI models represent one extreme. The other extreme is represented
by models which display a totally different pattern of dependence relations. In the I-map
of those models, no pair of variables connected by a link displays marginal independence.
Between these two extremes, a whole spectrum of PI models exist, in which variables are
collectively dependent, marginally independent in some pairs and not marginally indepen-
dent in other pairs. To classify these models, we shall refer to the models in Theorem 8
asfull Pl models and the models between the two extremeadil Pl models. Table 3
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Table 3 A partial Pl model.

(X1, X2, X3) P(X1, X2, X3) (X1, X2, X3) P (X1, X2, X3)

(0,0,0) 0.225 (1,0,0) 0.20
0,0,1) 0.025 (1,0,1) 0.05
(0, 1,0) 0.025 (1,1,0) 0.05
©,1,1) 0.225 1,1,1) 0.20

Table 4 An embedded PI model.

(X1, X2, X3, Xa) P(X1, X2, X3, X4) (X1, X2, X3, Xa) P (X1, X2, X3, X4)

(0,0,0,0) 0.0225 (1,0,0,0) 0.02
(0,0,0, 1) 0.2025 (1,0,0,1) 0.18
(0,0,1,0) 0.005 (1,0,1,0) 0.01
0,0,1,1) 0.02 (1,0,1,1) 0.04
(©,1,0,0) 0.0175 (1,1,0,0) 0.035
©,1,0,1) 0.0075 (1,1,0,1) 0.015
©,1,1,0) 0.135 1,1,1,0) 0.12
©,1,1,1) 0.09 1,1,1,1) 0.08

depicts such a partial PI model of three variables. The marginal for each variable is 0.5. Any
pair of variables are dependent given the third. HoweXerand X, are marginally inde-
pendent P(X1, X2) = P(X1)P(X3)), so areX; and X3z, but X, and X3 arenotmarginally
independent, namelR (X,, X3) # P(X2)P(X3).

The Pl models presented thus far are defined based on the entire domain of variables.
In general, a Pl model can anbeddeds a submodel. Table 4 shows a PM with four
variablesX; (i = 1, 2, 3, 4). It contains an embedded submodel identical to the partial Pl
model (of X1, X, and X3) given in Table 3. The marginal for each variable is 0.5 except
P(X4 = 0) = 0.365. The marginal for the subsgX;, X, X3} is identical to that of
Table 3, so the dependency relations among the three variables remain the same. But fol
variablesX,, X3 andXy, they are both collectively and pairwise dependent. The undirected
minimal | -map of the PM has each pair of variables connected ex¢ephd Xs.

Theorem 9 shows that the single-link lookahead search cannot learn the Pl models.

Theorem 9. Let G, be the minimal I-map of a full pseudo-independent madebver

a set X ofp variables Let Gy be an initial chordal graph from which the learning starts
and let the number of links ofde L < (n(n — 1)/2) — 2. Then Gy, cannot be recovered
by the single-link lookahead minimum entropy search

Proof: SinceM is a full Pl model,G, is a complete graph and hds = n(n — 1)/2
links. Let(Gg, Py) be the initial DMN withL < M — 2 links. ThenGg cannot have two
cliques of size; — 1. OtherwiseGo will differ from a complete graph by a single link, i.e.,
L=M-1.
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Figure 4  Clique formation by single-link addition.

Since only a single link can be added each time and the resultant graph must be chordal,
at each pass of the search, either a clique of size 2 is formed by joining two nodes in
disconnectedomponents or a clique of sike> 2 is formed by joining two cliques of size
k — 1 with their intersection of sizk — 2. In figure 4, the cliqugb, c} (k = 2) is formed
by adding the dotted linkb, ¢), the clique{a, b, d} (k = 3) is formed by adding the dotted
link (a, d), and the cliqudd, e, f, g} (k = 4) is formed by adding the dotted lirk, g).

Let (G, P1) be a candidate DMN such th@t is augmented fronsg by adding a single
link (a, b). Denote the new clique formed W U {a, b}. The entropy difference between
the two DMNs is

H1(N) — Ho(N) = Hy(Wab) — (Hy(Wa) + Hay (W) — Huy (W)).

According to S1in Theorem 8, variables in any subset of sizdl are pairwise marginally
independent. Since the largest two cliques of an equal siéy ihave a size) — 2, we
have|Wah < n — 1. Hence IndW a, ¢, b) and IndW, ¢, b) hold in M, which implies
H1(N) — Hg(N) = 0. Therefore ndG,, P;) will be selected and no link will be added
to Go. O

Although Theorem 9 involves learning only full PI models, the conclusion can be gener-
alized to learning partial and embedded PI models as well. For example, if the single-link
lookahead searchis applied to the model in Table 3, it will only find the dependence between
X2 andxs and will output a structure with a single link. A two-link lookahead search after
the single-link lookahead search will identify the collective dependence among the three
variables.

The existence of PI models poses a challenge to learning probabilistic networks as ap-
proximatel -maps. Suppose we have no prior knowledge about the possible size of an
embedded PI model. Then Theorem 8 dictates that search of potential cliques up to the size
of the entire domain by multi-link lookahead is necessary in general. Since such a search
is infeasible, prior knowledge should be used for restricting the number of links required
for the search. We will discuss this problem in more detail in Section 6.

We have shown that the single-link lookahead search combined with the entropy scoring
metric is unable to learn Pl models. In fact, the same conclusion can be drawn in learning
probabilistic networks (including DMNs and BNs) with other scoring metrics. We now
show this is indeed the case in some well-known algorithms.

Pseudo-independent models cannot be learned by Kutato (Herskovits & Cooper, 1990).
The algorithm starts with an empty graph and uses a single-link lookahead search to learn a
BN with an entropy scoring metric. Suppose the data-generating PM has a full PI submodel
embedded (i.e., a subset of variables forms a full Pl model). Since variables in the submodel
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are pairwise marginally independent, no link between any pair will decrease the entropy
and hence no dependence can be discovered.

Likewise, Pl models cannot be learned by the algorithm suggested by Lam and Bacchus
(1994), which uses the MDL principle to learn a BN. Let us first briefly describe their algo-
rithm. It first computes the mutual information between each pair of nodes (corresponding
to a link). It then places all links in a list in descending order of mutual information be-
tween the end nodes. The candidate BNs are generated by starting with an empty grapt
and including one link at a time from the beginning of the link list and down the list. It
allocates equal amount of computational resources to explore candidate BNs of identical
number of links (having the same complexity). After each complexity class has exhausted
its resources, the best candidate BN according to the cross entropy scoring metric is chosen
The BN that has the minimal description length across classes will be the final output. If
the data-generating model has a full PI submodel embedded, links between each pair of
nodes in the submodel has zero mutual information. These links will be placed at the end
of the link list and will be the last to be included in any candidate BNs. If these BNs are
ever considered, the algorithm must have exhausted almost all possible BNs, which has
an exponential complexity. Therefore, in practice, these BNs would have no chance to be
tested and selected as the final output.

The previous two algorithms start with an empty graph. In contrast, the algorithm PC
(Spirtes & Glymour, 1991) learns a BN by starting from a complete graph. In the first pass,
the algorithm removes each link if the end nodes of the linkaieginallyindependent. In
the second pass, itremoves each link if the end nodes of the link are independent conditioned
on a third node. In each of the following passes, it removes each link if the end points of
the link are independent conditioned on a subset of nodes of higher order until a stopping
condition is met. If the data-generating PM has a partial Pl submodel embedded, then some
pairs of nodes in the submodel are marginally independent. The links between each pair of
them will be deleted in the first pass of the search. Therefore the collective dependence of
the submodel will not be reflected in the final learned BN.

It can be shown that this limitation also applies to K2 (Cooper & Herskovits, 1992) which
uses a Bayesian scoring metric to learn a BN. A detailed discussion on this is beyond the
scope of this paper.

It is well known thatparity functions cause failure of many decision tree learning algo-
rithms (see (John et al., 1994; Pagallo & Haussler, 1990) for example). It should perhaps
be emphasized here that Pl models are a generalization of parity functions. The Pl model
in Table 1 is a parity function, but those in Tables 2, 3 and 4ate

6. A multi-link lookahead learning algorithm

The existence of pseudo-independent PMs and the inability of single-link lookahead search
to learn such models suggest the adoption of more general learning algorithms when prior
knowledge about the problem domain cannot eliminate the possible existence of such a
model. In this section and the section to follow, we present one such algorithm and discuss
related issues. As we are now moving from the theoretical analysis of the minimum entropy

search to its practical implementation, we make some assumptions on the context in which
the proposed algorithm is to be applied.
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Assumption 1. The database variables are discrete.

We have assumed a discrete problem domain throughout the paper as indicated in the
beginning of Section 2.2. This assumption simply restates it in terms of the feature of the
database.

Assumption 2. No cases in the database have missing variables.

The above two assumptions are seen in most algorithms for learning probabilistic net-
works (Cooper & Herskovits, 1992; Heckerman, 1995). To reduce the complexity of a
multi-link lookahead search, we make the following sparseness assumption.

Assumption 3. Letn be the size of the largest collectively dependent submodel in the
problem domain. The higher the valueipfthe less likely that a submodel of sizexists
in the problem domain

A submodel of size; forms a clique of that size. Given the total number of variables

in a problem domain, the larger a given clique is, the less number of alternative chordal
graphs there are. Assumption 3 allows us to lookahead a small number of links such that
we will not miss many embedded Pl models. In the case where the number of variables
involved in an embedded Pl model is actually large, we probably will not be able to estimate
its distribution reliably from the available data anyway. Even if the database is very large
and such estimation is possible, the inference computation using such models will be very
expensive, making them much less useful. In addition, if the set of evidence and query
variables covers only a proper subset of the variables in an embedded Pl model, then
the posterior probability computed from an independent model will be identical to that
from a Pl model. Note that Assumption 3 does not differentiate between Pl and non-PlI
submodels.

Algorithm 1.

Input A database D over a set N of variabJesmaximum size of clique a
maximum number < n(n — 1)/2 of lookahead linksand a thresholdh.
begin
initialize an empty graph G= (N, E);
G =G;
fori = 1to«, do % search by levels
repeat % search by passes
initialize the entropy decrement = 0;
for each set L of i links (IO E = ¢), do % search by steps
if G* = (N, EU L) is chordal and L is implied by a single
clique of size< 7, then
compute the entropy decrement dh* locally;
if dh* > dh, then dh := dh*, G’ := G*;
if dh’ > sh, then G:= G’, done:= false else done= true;
until done = true
return G and the projected distribution P of the database gn G
end
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Figure 5 lllustration of local computation in Algorithm 1.

Based on this assumption, the search is bounded in Algorithm 1 with two parameteas
n specified by the user. The size of cliques is bounded.byhe size of Pl submodels is
bounded, by < m(m—1)/2,tom < n.

The search is structured inkevelsand each level is a search with the identical number
of lookahead links. Each level consists of multiplessesand each pass is composed of
multiple steps Each pass at the same level tries to add the same numlmédiaks. For
instance, level one search adds a single link in each pass, level two search adds two links,
and so on. Search at each pass seldirtks after testing all distinct and legal combinations,
one at each search step,iodinks. Thei links that decrease the entropy maximally are
selected. If the corresponding entropy decrement is significant enoughljrike will be
adopted and search continues at the same level. Otherwise the next higher level of searcl
starts. Note that each intermediate graph is chordal as indicated Hystagement in the
inner-most loop.

The entropy decremermnth* is computedocally using a core as illustrated in figure 5
with the JF representation. The subgrdplcorresponding to a core) contains two groups
of cliques whose unions abéU ZU AandY U ZU B. Afteri links are added, the subgraph
becomed~* which contains two cliqueX U ZU AU B andY U Z U AU B. Since the
entropy contribution from the rest of the DMN does not chanidp,can be computed using
F andF* only.

In Section 4, we showed that aamap of a PM can be learned by the minimum entropy
search when marginal distributions of cliques can be obtainedrately This is equivalent
to a database of infinite size, which contains atnlbe dependencies. In Section 4.3, we
classified two types (uncalled-for and redundant) of superfluous links that may be generated
even when learning is performed using such databases. Hence, their generation is due to th
use of a heuristic search. These links are undesirable because they unnecessarily increas
the complexity of inference computation.

In practice, we must learn from a finite database. Such a database may dals®@in
dependencies that do not existin the underlying problem domain. They cause the generatior
of a third type of superfluous link which we refer to fadselinks. False links have a
different undesirable effe@part fromthe complexity increase shared by the other two
types of superfluous links. The probability values associated with false links tend to encode
noise contained in the database. The encoded noise biases the jpd of the learned networ
and causes inference errors.

We have shown in Section 4.3 that the entropy metric has total resistance to the generation
of uncalled-for links and partial resistance to the generation of redundant links. However,
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it hasno resistance to the generation of false links at all. Without additional controls, the
minimum entropy search tends to encode all false dependencies contained in the database
The thresholdh used in Algorithm 1 is aimed at reducing false links as well as redundant
links. It works similarly as the encoding length of a model in a MDL approach to penalize a
complex model, and also similarly as a prior biased towards a simpler structure in a Bayesian
approach. It is supplied by the user for specifying to what extent (s)he is willing to trade
complexity of the generated network with fithess of data. The necessity of such balance
is discussed in (Lam & Bacchus, 1994; Cheeseman & Oldford, 1994). As the vathe of
decreases, both the complexity of the network and the degree of fitness to data increase. A
will be demonstrated in Section 7, the usélohelps the learning algorithm to approximate

its asymptotic behavior even though the size of the databdaefimm being ‘infinite’.

We analyze the worst case time complexity of the algorithm. Testing the chordality of
G* can be performed i®(]N|) time (Golumbic, 1980).

A JT can be computed by a maximal spanning tree algorithm (Jensen, 1988). A maximal
spanning tree of a graph withnodes ane links can be computed i®((v + €) logv) time
(Manber, 1989). Since a complete graph a$?) links, a maximal spanning tree can be
computed inO(v?logv) time. Equivalently, computation of a JT of a chordal graph ith
nodes ana cliques takeD(v?logv) time. Sincev < k, computation of a JT of a chordal
graph withk nodes take® (k? logk) time. In computingdh*, we need to computE and
F* from the corresponding chordal subgraphs. Each of them contains no moreithan 2
variables, where is the maximum allowable size of a clique. Therefore, we can compute
F andF* in O(»?logn) time.

Let n be the number of cases in the database. We can extract the distriButonthe
2n variables from the database directly@{n) time. The projected distribution o and
F* can be computed by marginalizirigf to cliques and multiplying clique distributions,
which takesO (5 2") time. The computation afh* from the projected distributions can be
performed inO(2") time. The complexity of each step isth@{|N| + n + n (nlogn +
2"). Sincen is much larger thanN|, the complexity of each search stepGgn +
n (nlogn + 27)).

The algorithm repeats fdD(«) levels. Each level contain®(|N|?) passes. Each pass
hasC(C(|N|, 2), ) = O(IN|*) steps. Hence, the algorithm h@sgx |N|%) search steps.

The overall complexity of the algorithm is thé(x [N|* (n + 5 (nlogn + 27))).

The computation is feasibledfandn are small. This suggests the use of prior knowledge
about the problem domain to further constrain the search. By exploring the prior knowledge
of the problem domain, if we can partition the problem domdiimto 8 equal subdomains
and assert that there is no embedded Pl models that crosses subdomain boundaries, then v
can safely only perform the single-link lookahead search in the entire problem domain, but
restrict the multi-link lookahead search to individual subdomains. We then®éwe| +
K %) search steps, which amounts to a complexity reductiggtofimes. For example,
suppos¢N| = 48,k = 5andy = 5. The number of search stepsis onthe ordera30'’.

If we can restrict the multi-link lookahead search to three subdomains of no more than 16
variables each, the number of search steps can be reduced to the ordex dfds?.

Another useful heuristic is to apply single-link lookahead search first. If a disconnected
network is generated and we have prior knowledge that it should be connected, then we can
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focus the multi-link lookahead search based on the resultant network. We leave such an
investigation to future work. Related work on beam search can be found in Buntine (1991).

7. Experimental results

Algorithm 1 was implemented and a set of experiments were performed to (1) test if an

I -map reasonably close to a control model can be learned given a reasonably large databas
generated from the control model; (2) provide a sense when the algorithm will behave
significantly differently from the asymptotic behavior as the size of database becomes
smaller; and (3) test if the multi-link lookahead is necessary and effective to learn an
embedded Pl submodel.

The algorithm was first run with the data on six probable risk factors for coronary throm-
bosis (Reinis, 1981). Witk = 2 andsh = 0.004, the DMN structure in figure 6 was
obtained. Our result is consistent with the models learned by other methods (Edwards &
Havranek, 1985; Madigan & Raftery, 1994).

We then tested the algorithm using the ALARM model (Beinlich et al., 1989) with 37
variables. A database of 30000 cases, generated from the BN, was used in the learning. A
control DMN was obtained by converting the original BN with the method used in a junction
tree inference algorithm (Jensen et al., 1990). In figure 7, the learned DMN gweith
andsh = 0.003) is compared with such a control DMN. The control DMN has 68 links out
of which 60 links (solid) are contained in the learned DMN. The learned DMN contains
6 additional links (dotted) and 8 missing links (dashed). It was found that 7 missing links
in the control DMN are due to a single weak link from node 24 to node 6. In the original
BN, node 6 has parents 5, 7, 36 and 24. During conversion, links among these parents were
added (including missing link®, 24), (7, 24) and(36, 24)). During triangulation, missing
links (9, 24), (26, 24) and (9, 11) were filled in. Since the dependence between node 24
and node 6 is very weak (out of 18 combinations of the other three parents of node 6, in
only four combinations the value of node 24 affects the distribution of node 6 significantly),
the algorithm did not learn the ling6, 24) and consequently missed all the other six links
as well.

This result is comparable with the published results on learning ALARM as a BN (with
46 (directed) arcs). For example, Kutato (Herskovits & Cooper, 1990) learned ALARM
with two missing arcs and two additional atc&2 (Cooper & Herskovits, 1992) had one
arc missing and one arc added. The result by Heckerman et al. (1995) had two missing

s

Figure 6 A DMN structure learned from a database of 1841 cases on coronary thrombosis. Variables are defined
as follows: A, smoking; B, strenuous mental work; C, strenuous physical work; D, systolic blood pressure;
E, ratio of 8 and« lipoproteins; F, family anamnesis of coronary heart disease.
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34

]
25
common (60)

.......... missing (8)
13 e additional (6)

Figure 7. Comparison of the control DMN converted from ALARM BN with the learned DMN.

arcs and one reversed arc. A database of 10000 cases were used in all three cases. .
total variable ordering consistent with the control model was supplied to Kutato and K2
in addition to the data, and a prior network structure was supplied in (Heckerman et al.,
1995).

As our formal analysis is performed under the condition of accurate estimation of clique
marginals, our next experiment provides a sense when the algorithm will practically deviate
from its asymptotic behavior. We used a submodel of ALARM with 17 variables (including
nodesO,..,5,13,..., 23) with the size of the joint probability spac&23'* ~ 10’. Four
databases of 10000, 5000, 2000 and 1000 cases were generated from the submodel BN
Using the database of 10000 cases, the DMN structure in figure 8 (left) was obtained with
x = 1 andsh = 0.002, which contains two addition links (dotted) and no missing links.
The identical result was obtained with the databases of 5000 and 2000 caséis beihg
0.003 and 0.006, respectively. The valuesbfused was increased as the size of database
was decreased in order to exclude superfluous links. As the size of database was furthel
reduced to 1000, the structure in figure 8 (middle) was obtained dhith= 0.02. Four
links ((5, 23), (2, 15), (0, 15) and(1, 2)) were missing relative to the structure in the left.
However, further reducingh to 0.01 (right), we obtained the two additional link®, 19)
and(2, 21) before any of the missing links were learned. Therefore, we can conclude that
for this model, as the size of databases drops below 1000 cases, the algorithm no longer
behaves approximately to its asymptotic behavior. This experiment demonstratéh how
can be used to help the learning algorithm to approximate its asymptotic behavior even
though the size of the databasddsfrom being ‘infinite’.

The last experiment demonstrates the effect of using multi-link lookahead search in
learning Pl submodels. We randomly generates a BN such that a Pl submodel is embedded
The generator randomly selected the number of parents and number of children of each node
subject to the corresponding upper bounds specified by the user. Once the structure wa:s
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Figure8 DMN structures learned from databases generated by a submodal of ALARM. Left: The databases have
sizes from 10000 to 2000. Middle and right: The database has a size 1060 &10l02 and 0.01, respectively.

8 @ (b)

Figure 9 (a) The structure of a control BN. (b) Control DMN converted from (a). (c) The structure learned with
single-link lookahead. (d) The structure learned with double-link lookahead.

generated, conditional probability distributions of each node was then randomly generated.
The generator can also embed a Pl submodel of up to 5 variables. The distribution of the
P1 submodel was created as in the proof of Theorem 8. Figure 9(a) shows a generated BN
and (b) is its converted DMN. All variables are binary. Nodes 5, 6 and 9 form an embedded
Pl submodel. A database of 500 cases was generated. kWithl andéh = 0.03, the
structure in (c) was learned. Wikh= 2, the structure in (d) was learned. Using smaller

with eitherx value, additional links were obtained before the missing links. Clearly, single
and double-link lookahead failed to discover the Pl submodel. With3 andsh = 0.03,

the structure in (b) was learned. Note that even though an embedded Pl submodel was
used, the experimental result is also applicable to the case of a ‘nearly’ Pl submodel. This
is because there is no difference between a database generated by a Pl model and the or
generated by a ‘nearly’ Pl model as long as the database is small.

8. Discussion

Inthis paper, we studied learning a decomposable Markov network from a database using the
entropy scoring metric and a heuristic search. Our analysis has revealed the ‘microscopic’
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mechanism of a minimum entropy search and its asymptotic behavior. We showed that the
process to decrease the entropy parallels the process to remove false independence relatior
in the intermediate networks. The decreasing entropy drives the search forward until an

I -map of the domain model is learned when the size of the database is large.

The understanding of this mechanism uncovers that thep of a probabilistic model
cannot be fully recovered unless some false independence relations (equivalently, a true
dependence not yet encoded) can be identified at each search pass. We showed that the
exists a class of pseudo-independent models whose dependences can only be detected wi
a lookahead of multiple links. These models form a generalization of the well known parity
functions. As a single-link lookahead search has been adopted in many learning algorithms
for efficiency reasons, our analysis indicates that results obtained by these methods will be
compromised if the problem domain contains pseudo-independent submodels.

To uncover the Pl models, we have proposed an algorithm that uses the multi-link looka-
head search. Although we have suggested some simple ways in which prior knowledge
can be applied to reduce the complexity of the multi-link lookahead search, clearly more
research is needed in this direction.
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Notes

1. All Bayesian metrics of a model are defined as the posterior probability of the model given the data. However,
we have used the plural ‘metrics’ here since the posterior probability depends on the prior probability of the
model, and there can be many possible priors to encode the model learner’s a priori bias.

2. However, other methods such as stochastic search (Green, 1995; Madigan & York, 1995) may not have this
problem.

3. We consider learning processes that infer dependencies contained in the domain model. As we have no direct
access of the model, we must infer dependencies from the data generated by the model. Put differently, we
must infer true dependencies from those dependencies that are ‘contained’ in the data.

4. What we call adecomposable Markov netwoHas been termed differently in the literature. It is called
simply Markov networkin (Fung & Crawford, 1990; Wong & Xiang, 1994) amdarkov graphin (Cooper &
Herskovits, 1992). The termlecomposable Markov netwoikimplicitly used in (Pearl, 1988) to mean the
similar thing as defined above. However, there the tefamkov networks restricted to a minimal-map of a
given dependence model. We do not require the structure of a DMN to bereap.

5. Frydenberg and Lauritzen (1989) (p. 553) proved that, given two chordal graphs with one being the subgraph
of the other, there is an increasing sequence of chordal graphs between them that differ by exactly one link.
DMNs differing by one link areotsufficient to decrease entropy as will be shown in Section 5. Our result here
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involves a sequence of chordal graphs that may differ by more than one links and fix some false independence
relations.

6. Note that when an arc from no¥do nodeX is added in a BN, several links will be added in the corresponding
DMN to complete the parent set &f and to render the structure chordal. A similar effect occurs when an arc
is missing.

References

Beinlich, I.A., Suermondt, H.J., Chavez, R.M., & Cooper, G.F. (1989). The alarm monitoring system: A case
study with two probabilistic inference techniques for belief networks. Technical Report KSL-88-84, Knowledge
Systems Lab, Medical Computer Science, Stanford University.

Bouckaert, R.R. (1994). Properties of Bayesian belief network learning algorithms. In R. Lopez de Mantaras &
D. Poole (Eds.)Proc. of 10th Conf. on Uncertainty in Artificial Intelligen¢ap. 102—-109). Seattle, Washington:
Morgan Kaufmann.

Buntine, W. (1991). Classifiers: A theoretical and empirical study. In R. Lopez de Mantaras & D. Poole (Eds.),
Proc. of 1991 Inter. Joint Conf. on Atrtificial Intelligen¢ep. 638—-644), Sydney.

Buntine, W. (1991). Theory refinement on Bayesian networks. In B.D. D’Ambrosio, P. Smets, & P.P. Bonissone
(Eds.),Proc. of 7th Conf. on Uncertainty in Artificial Intelligen¢pp. 52—60).

Buntine, W. (1994). Operations for learning with graphical mod#ssirnal of Artificial Intelligence Research
(2):159-225.

Charniak, E. (1991). Bayesian networks without teAtdVlagazine 12(4):50-63.

Cheeseman, P. (1993). Overview of model selectioRrtt. of 4th Inter. Workshop on Artificial Intelligence and
Statistics Ft. Lauderdale: Society for Al and Statistics.

Chickering, D., Geiger, D., & Heckerman, D. (1995). Learning Bayesian networks: Serach methods and exper-
imental results. IProc. of 5th Conf. on Artificial Intelligence and Statistigs. 112-128). Ft. Lauderdale:
Society for Al and Statistics.

Chow, C.K., & Liu, C.N. (1968). Approximating discrete probability distributions with dependence tEgeis.

Trans. on Information Theory14):462—-467.

Cooper, G.F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data.
Machine Learning(9):309-347.

Dawid, A.P., & Lauritzen, S.L. (1993). Hyper Markov laws in the statistical analysis of decomposable graphical
models.Annals of Statistic21(3):1272-1317.

Edwards, D., & Havranek, T. (1985). A fast procedure for model search in multidimensional contingency tables.
Biometrikg 72(2):339-351.

Frydenberg, M., & Lauritzen, S.L. (1989). Decomposition of maximum likelihood in mixed graphical interaction
models Biometrikg 76(3):539-555.

Fung, R.M., & Crawford, S.L. (1990). Constructor: A system for the induction of probabilistic moddPsotn
of AAAI(pp. 762—769). Boston: MA MIT Press.

Gallager, R.G. (1968)nformation Theory and Reliable Communicatidohn Wiley and Sons.

Golumbic, M.C. (1980)Algorithmic Graph Theory and Perfect Graphscademic Press.

Green, P.J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.
Biometrikg 82(4):711-732.

Hajek, P., Hovranek, T., & Jirousek, R. (199Pncertain Information Processing in Expert Syste@RC Press.

Heckerman, D. (1995). A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-06, Microsoft
Research, Mocrisoft.

Heckerman, D., Geiger, D., & Chickering, D.M. (1995). Learning Bayesian networks: The combination of
knowledge and statistical datdachine Learning20:197-243.

Henrion, M. (1988). Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In J.F. Lemmer,
& L.N. Kanal (Eds.),Uncertainty in Artificial Intelligence Zpp. 149-163). Elsevier Science Publishers.

Herskovits, E.H., & Cooper, G.F. (1990). Kutato: An entropy-driven system for construction of probabilistic expert
systems from database. Rtoc. 6th Conf. on Uncertainty in Artificial Intelligen¢pp. 54-62). Cambridge.

Jensen, F.V. (1988). Junction tree and decomposable hypergraphs. Technical Report, JUDEX, Aalborg, Denmark.



92 Y. XIANG, S.K.M. WONG AND N. CERCONE

Jensen, F.V,, Lauritzen, S.L., & Olesen, K.G. (1990). Bayesian updating in causal probabilistic networks by local
computationsComputational Statistics Quarterl{4):269-282.

John, G.H., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the subset selection probReot. Ihlth
Inter. Conf. on Machine Learnin(pp. 121-129).

Kullback, S., & Leibler, R.A. (1951). On information and sufficien&pnals of Mathematical Statistic22:79-86.

Lam, W., & Bacchus, F. (1994). Learning Bayesian networks: An approach based on the MDL priGoiple.
putational Intelligence10(3):269-293.

Lauritzen, S.L., & Spiegelhalter, D.J. (1988). Local computation with probabilities on graphical structures and
their application to expert systenigurnal of the Royal Statistical Society, Serieg®):157-244.

Madigan, D., & Raftery, A.E. (1994). Model selection and accounting for model uncertainty in graphical models
using Occam’s windowJournal of American Statistical Associatid39(428):1535-1546.

Madigan, D., & York, J. (1995). Bayesian graphical models for discrete tfatrnational Statistical Review
63:215-232.

Manber, U. (1989)Introduction to Algorithms: a Creative ApproachAddison-Wesley.

Neapolitan, R.E. (1990Rrobabilistic Reasoning in Expert Systerdishn Wiley and Sons.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical leaMauhine Learning(5):71-99.

Pearl, J. (1986). Fusion, propagation, and structuring in belief netwart8cial Intelligence (29):241-288.

Pearl, J. (1988)Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inferévioegan
Kaufmann.

Rebane, G., & Pearl, J. (1987). The recovery of causal ploy-trees from statistical dataclmof Workshop on
Uncertainty in Artificial Intelligencépp. 222—-228). Seattle.

Reinis, Z., Pokorny, J., Basika, V., Tiserova, J., Gorican, K., Horakova, D., Stuchlikova, E., Havranek, T., &
Hrabovsky, F. (1981). Prognostic significance of the risk profile in the prevention of coronary heart disease.
Bratis. lek Listy 76:137-150.

Sclove, S.L. (1994). Small-sample and large-sample statistical model selection criteria. In P. Cheeseman & R.W.
Oldford (Eds.) Selecting Models from Dat@p. 31-39). Springer-Verlag.

Spirtes, P., & Glymour, C. (1991). An algorithm for fast recovery of sparse causal gBxatial Science Computer
Review 9(1):62-73.

Wong, S.K.M., Butz, C.J., & Xiang, Y. (1995). A method for implementing a probabilistic model as a relational
database. IfProc. 11th Conf. on Uncertainty in Artificial Intelligen¢pp. 556—-564). Montreal.

Wong, S.K.M., & Xiang, Y. (1994). Construction of a Markov network from data for probabilistic inference. In
Proc. 3rd Inter. Workshop on Rough Sets and Soft Compipg562—-569). San Jose.

Wong, S.K.M., Xiang, Y., & Nie, X. (1994). Representation of Bayesian networks as relational datab&ses. In
5th Inter. Conf. Information Processing and Management of Uncertainty in Knowledge-Based iRk¢is
(pp. 159-165). Paris.

Xiang, Y. (1996). A probabilistic framework for cooperative multi-agent distributed interpretation and optimization
of communicationAtrtificial Intelligence to appear in fall.

Xiang, Y., Pant, B., Eisen, A., Beddoes, M.P., & Poole, D. (1993a). Multiply sectioned Bayesian networks for
neuromuscular diagnosiartificial Intelligence in Medicing5:293-314.

Xiang, Y., Poole, D., & Beddoes, M.P. (1993b). Multiply sectioned Bayesian networks and junction forests for
large knowledge based syster@amputational Intelligenged(2):171-220.

Received August 18, 1995
Accepted September 9, 1996
Final Manuscript September 27, 1996



