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It is the main purpose of this series of papers to propose a new microscopic theory of 
describing the so·called "two-phonon" states in even-even nuclei, within the framework of 
the quasi-particle-new-Tamm-Dancoff method (including the ground-state correlations). The 
theory can clearly overcome the well-known difficulties of the higher-random-phase approxi
mation (HRPA), which have so far arrested the further development of the essential merit 
of the HRPA superior to the boson expansion method. In addition, the spurious-state dif
ficulty (due to the nucleon-number non-conservation of the quasi-particle representation) does 
not arise at all in the theory. 

It is not the purpose of this paper, part I, to present a clear-cut formulation of the 
theory1 but rather to put an emphasis on the explanation of the basic idea. 

§ 1. Introduction 

According to the simple "phonon" model of spherical even nuclei based on 

the "harmonic approximation" (i.e., the random-phase approximation (RPA)), the 

first excited state is described as the "one-phonon" state with J" = z+ and the 

second excited state consists of a degenerate "two-phonon" triplet (0+, z+, 4+), 

and both the E2 cross-over transition (2 2 +~o 1 +) and the M1 transition (22+~zl+) 

are forbidden. In the simple phonon model, furthermore, any phonon state has 

no appreciable static quadrupole moment and the ratio of B(E2; 2 2 +~zl+) to 

B(E2; 2 1 +~o 1 +) simply becomes 2:1. 

Experimental deviations from these simple regularities have become more and 

more of significance, and the special importance of the anharmonic effects in such 

finite quantal systems as nuclei has been recognized. Thus, various theoretical 

attempts to take into account the anharmonic effects, which have been neglected 

in the simple RPA, have so far been made. Among these, the boson expansion 

method1> and the higher-random-phase approximation (HRPA)2> are well known 

to be of the typical types of approaches. 

In order to clarify the main motive for presenting this series of papers, we 

first start with a brief survey of the results of analyses of the anharmonic effects 

with the use of the boson expansion method by Yamamura, Tokunaga and two 
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182 N. Kanesaki, T. Marumori, F. Sakata and K. Takada 

of the authors (T.M. and K.T.) .3' They firstly classified the anharmonic effects 
into two characteristic types; i) dynamical effects, i.e., effects due to the residual 
interaction Hr (which has been omitted in the RP A and is given by Eq. (2 · 6) 
and whose matrix elements are represented in Fig. 1 in § 2), and ii) kinematical 
effects, i.e., effects due to the Pauli-principle among the quasi-particles belonging 
to different quasi-particle pairs which are regarded as ideal bosons under the RP A. 
To check up the concept of the "two-phonon" state (i.e., the possibility of 
repeating the phonon excitation twice), they further decomposed the correction 
to the "two-phonon" state due to these anharmonic effects into two kinds of 
parts : One is of the same structure as the correction to the " one-phonon" state 
(and is called here the first-kind correction) and the other is a correction which 
newly appears only to the "two-phonon" state (and is called here the second
kind correction). If it is possible to keep the phonon picture for the first 2+ 
state by making a suitable self-consistent renormalization of the main anharmonic 
effects, the first-kind correction may also be renormalized into the new two-phonon 
concept because of its same structure as one to the "one-phonon" state. By 
definition, the second-kind correction cannot be renormalized into this new two
phonon concept, so that it destroys the possibility of repeating the excitations of 
phonon. After calculating such anharmonic effects (in the pairing-plus-quadrupole
force model) with the use of a perturbation theory based on the boson expan
sion method, they arrived at the following conclusion for the so-called two-phonon 
states :3' i) The concept of the "two-phonon" states (i.e., the possibility of repeat
ing the phonon excitation twice) is actually in breakdown in the sense that each 
second-kind correction due to both the dynamical and the kinematical effects 
becomes unexpectedly large (in its absolute value) when the "phonon" energy 
under the RPA becomes close to the actual experimental value. ii) When the 
energy of the "two-phonon" state under the RP A is sufficiently close to those 
of the non-collective two-quasi-particle states, there appears another important 
physical situation to destroy the concept of the two-phonon state. In this case, 
which is oftenest in actual nuclei, the coupling between the "two-phonon" modes 
and the non-collective two-quasi-particle-excitation modes due to the Hr interac
tion becomes too significant to be treated by the perturbation theory. Thus, we 
are forced to make a diagonalization of the coupling term, which leads to a strong 
mixing of the non-collective two-quasi-particle-excitation modes and the "two
phonon" modes, so that the concept of the two-phonon states is completely in 
breakdown. 

From this conclusion, one may naturally expect that the HRPA (i.e., the 
second random-phase approximation) is promising in taking into account these 
significant anharmonic effects, because it does not admit the possibility of repeat
ing the phonon excitation twice and introduces the following excitation operators'' 
in the sense of the new-Tamm-Dancoff approximation (NTD): 

Ct = ~ {¢ (a{3) aatafJt + q; (a{3) aaafJ 
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A Microscopic Theory of the So-Called "Two-Phonon" States 183 

+ I"(a{3r~) ao/a/a/aat + E(a{3r~) aatatlaraa + @(a{3r~) aaa.earaa}, (1·1) 

where aat is the conventional quasi-particle creation operator and aa= (- )ia-maaa.*l 

It is clear that in the HRP A the kinematical effects on the so-called "two-phonon" 

states due to the Pauli-principle among the four quasi-particles are fully taken 

into account. Furthermore, the dynamical effects, i.e., the coupling between the 

two-quasi-particle excitation modes and the "two-phonon" modes due to the Hy 

interaction are properly considered: Since both two-quasi-particle and four-quasi

particle amplitudes (in the sense of the NTD approximation) are taken into ac

count in Ct, the excitation energies of both the first and the second excited states 

(which roughly correspond to the " one-phonon" and the "two-phonon" states of 

the RPA, respectively) are simultaneously obtained through the equation of mo

tion of Ct. 

Unfortunately, such a merit of this approach is merely of the formal logic. 

As is well known,2l actually we encounter serious difficulties which are inherently 

connected with the nonhermiticity of the secular matrix coming from the linearized 

equations of motion of Ct. Thus, in order to avoid the difficulties superficially 

in such a formal way as to lead us to the secular matrix in a simple symmetrical 

form, in the conventional HRPA2l it is customary to use practically the follow

ing reduced excitation operators Cteduc instead of the operators Ct in (1·1): 

Ciec~uc = :E {¢ (a{3)aata.et + q; (a{3) aaa.e 

(1·2) 

which have no atataa terms in comparison with the original operators Ct. A 

decisive deficiency~ of the conventional HRP A 2l with the use of the reduced op

erators Ciec~uc is its essential inability to explain the large E2 (23 + ~2 1 +) transition, 

in contrast with the simple "phonon" model based on the RP A. As already 

mentioned by Tamura and Udagawa,2l the origin of this situation is easily found 

by comparing the four-quasi-particle terms in Cteduc with the "two-phonon" -creation 

operators of the RP A: 

XtXt = :E {¢(O) (a{3) aata.et + q;(O) (a{3) aaa,e} {¢(O) Cr~) a/a at+ q;(O) Cr~) araa}' 
aPr6 

(1·3) 

where Xt is the conventional "phonon" -creation operator of the RPA: 

(1·4) 

*> As a basis of single.particle states we adopt the spherically symmetric j-j coupling shell 

model. The single-particle states are then characterized by the quantum numbers: The charge q 

and n, l,j, m. The Greek letter a: denotes the complete set of these quantum numbers a:== {q, n,l, 

j, m}. We further use a Latin letter a to indicate all the quantum numbers in a: except for the 

magnetic quantum number m. In association with a we also use a=={q,n,l,j, -m}. For a basis 

of stationary states, it is possible to build the entire treatment on real quantities if the phase ·con

vention is suitably chosen. Throughout this paper, we always assume this to be the case. 
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184 N. Kanesaki, T. Marumori, F. Sakata and K. Takada 

The "two-phonon" operators XtXt, which make the ratio B(E2; 2 2 +~2 1 +)jB(E2; 
2 1 +~o 1 +) equal to the large value 2, certainly contain the atataa terms, while 
the Cteduc operators which leads us to too small values of the ratio have no such 
terms. It is now clear that the addition of the important "two-phonon" -type col
lective nature to the Cteduc operators is nothing but denote the readopt of the 
original excitation operators Ct in (1·1), which inevitably bring the above-men
tioned serious difficulties connected with the nonhermiticity of the secular matrix. 
Thus we may conclude that, without overcoming the difficulties not in superficies 
but in essence, we can never enjoy the above-mentioned essential merit of the 
HRPA in treating the anharmonic effects, so long as the importance of the atataa 
terms is quite evident. Nevertheless, any theories or methods to overcome the 
difficulties have not yet been developed. 

The main purpose of this series of papers is to propose a new systematic 
theory which overcomes the difficulties in essence and treats both the kinematical 
and the dynamical anharmonic effects in a satisfactory way. Contrary to the HRPA, 
the underlying philosophy of our theory is not to intend a direct, formal diago
nalization of the Hamiltonian in a subspace characterized by some excitation op
erators such as Ct, but rather to start with extraction of the basic physical ele
ments from the subspace. In the first step, we establish the concept of the cor
related n-quasi-particle excitation modes (with n = 2, 4, 6· · ·) including the corre
sponding ground-state correlations in the framework of the NTD approximation, 
i.e., the "dressed" n-quasi-particle modes. With the aid of these excitation modes, 
from the subspace under consideration we extract such a set of basis vectors as 
the (correlated) ground state, the "dressed" two-quasi-particle states and the 
"dressed" four-quasi-particle states, and construct a. new subspace with this set 
of basis vectors. (If we want to discuss further the excited states correspond
ing to the "three-phonon" states of the RP A, then our new subspace should be 
extended so as to include the "dressed" six-quasi-particle states as the basis vec
tors.) The typical one of the dressed two-quasi-particle modes is well known 
as the "phonon". The dressed four-quasi-particle states correspond to the "two
phonon" states of the RPA, but the kinematical effects due to the Pauli-principle 
among the four quasi-particles are fully taken into account in these states. In 
the second step, we take account of the dynamical effects by diagonalizing the 
coupling between the dressed two-quasi-particle modes and the dressed four-quasi
particle modes due to . the residual interaction Hy. The eigenmode-creation op
erators thus obtained become formally of the same form as the original excita
tion operators Ct of the HRPA, when explicitly written in terms of the quasi
particle operators. However, in this case none of the above-mentioned difficulties 
inherent to the HRP A (which are essentially connected with the nonhermiticity 
of the secular matrix) appears because of our suitable choice of the physical 
subspace. 

The outline of this two-step theory is presented in the next section together 
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A Microscopic Theory of the So-Called "Two-Phonon" States 185 

with the basic idea and the additional motive of our theory. In the remaining 

sections, the dressed four-quasi-particle modes are constructed as the essential 

basis of our theory and their physical properties are discussed. 

In subsequent papers in a seriate form, we will make a precise and clear

cut formulation of the theory through the investigation of the structure of our 

physical subspace, and the transcription of the physical operators into the subspace 

and the details of the coupling between the different excitation modes will be 

discussed. 

§ 2. Basic idea and outline of the theory 

It is the purpose of the present section to give a first understanding of our 

theory and the details of its underlying basic idea. 

2 ·1 The Hamiltonian 

We start with the spherically symmetric j.j coupling shell model Hamiltonian 

with a general effective two-body interaction which is invariant under the space 

rotations and reflections and the time reversal. We shall use mainly the same 

notations as Baranger's.5> The total Hamiltonian is then given by 

(2·1) 

where cat and Ca are a creation and an annihilation operators of a nucleon in the 

single-particle state a with energy Ea and ). represents the chemical potential. 

The matrix element of the two-body potential CVapra satisfies the antisymmetry 

relations 

and can be expressed in the following forms : 

CVapra= -t I:; G(abcdJ)(iajbmampjJM)(jcjam7maiJM) 
J 

After the Bogoliubov transformation 

a}=uacat -vaca, l 
Ca=(-)'a-maCa, Ua2+va2=1,J 

*> The real quantities G (abcdJ) and F(abcdJ) have the following properties: 

G (abcdJ) = G (cdabJ), 

G(abcdJ) =- (- )ia+Jb+JG(bacdJ) =- (- )ic+J,J,+JG(abdcJ) 

= (- )ia+Jb+Jc+JaG(badcJ), 

F(acdbJ) = F(dbacJ) = (- )i a+ Jb+ Jc+ J aF(cabdJ), 

which come from Eq. (2·2). 

(2·2) 

(2·3) 

(2·4) 
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186 N. Kanesaki, T. Marumori, P. Sakata and K. Takada 

the Hamiltonian can be written in terms of the quasi-particle operators aat and 
aa as 

H= U+Ho+Hint, [ 

Ho= 2::; Eaaata", H;nt= 2::; CVa.era: Catc/cacr: ,J 
a a/lr6 

(2·5) 

where the first constant term U denotes the BCS ground-state energy and is drop
ped hereafter, and Ea is the quasi-particle energy determined as usual together 
with parameters Ua and Va. The symbol: : denotes the normal product with 
respect to the quasi-particle. 

2 · 2 A classification of various roles of the interaction 

In order to see the various roles of the interaction H;nt> we divide it in the 
following way: 

where 

and 

Hv= 2::; 2::; Vv(a{3r8; JM) {a 01ta.eta}a} +h.c.}. 
a/lr6 J 

Hy= 2::; 2::; Vy(a{3r8; JM) {a 01ta.eta8tar +h.c.}, 
aflr6 J 

V x(a{3r8; JM) = V x<1> (a{3r8; JM) + V x<2> (a{3r8; JM), 

V x<ll (a{3r8; JM) = - i {F(a{3r8; JM) (uaV&UcVa + Va U&VcUrl) 

-F(a{38r; JM) (UaV&VcUrl+ VaU&UcVrL) }, 

Vx<2>(a{3r8; JM) = -iG(a{3r8; JM) (uau&ucua+ VaV&Vcva), 

Vv (a{3r8; JM) = t {F(a{3r8; JM) (uaV&VcUa + VaU&UcvrL) 

-P(a{38r; JM) (UaV&Ucvd+vaU&VcUa)}. 

Vy(a{3y8; JM) =HF(a{3r8; JM) (UaV&UcUd.-VaU&VcVa) 

(2·6) 

-F(a{38r; JM) (vaU&UcUd.-UaV&VcVd.)} (2·7) 

F(a{3r8; JM) =<iaj&mam.eJJM)(jcjd.mrmaJJM)F(abcdJ), 

G (a{3r8; JM) ==(jaj&mamftJJM)(jcjd.mrmsJJM)G (abcdJ), 
(2·8) 

F(abcdJ) and G (abcdJ) being defined through Eq. (2 · 3). The matrix elements 
of each part are illustrated in Fig. 1. 

The part Hx conserves the numbers of quasi-particles and is the only one 
considered in the Tamm-Dancoff (TD) calculation for a fixed number of quasi
particles. In the TD method, all the collective correlations are asymmetrically 
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A Microscopic Theory of the So-Called "Two-Phonon" States 187 

attributed to the excited states exclusively. An 

improvement of the TD method is known to be the 

new Tamm-Dancoff (NTD) method, whose success 

in describing collective phenomena is essentially due 

to the symmetrical treatment of the collective cor

relations for both the excited states and the ground 

state. In this way the collective correlations, which 

has been obtained in the TD method, are properly 

incorporated in the ground state as the ground-state Fig. 1. Graphic representation of 

correlations. It is known that the part Hv brings the interactions. 

about these ground-state correlations. Therefore, the part Hv plays an essential 

role in constructing the collective excitation modes, together with the part Hx. 

We call these two parts, Hx and Hv, the constructive force of the collective 

excitation modes. 

The part Hy does not contribute to the collective correlations obtained by 

the TD calculation for a definite number of quasi-particles, i.e., n-quasi-particles. 

We may therefore say that, in so far as the NTD method is adopted in describ

ing a dressed n-quasi-particle mode (as the improvement of the TD method for 

n-quasi-particles), the part Hy does not play any important role, contrary to the 

constructive force, Hx and Hv. The part Hy plays a decisive role as the es

sential coupling between the various excitation modes (in the NTD sense), and 

so we call it the interactive force. 

It should be also noticed from Eq. (2 · 7) that the matrix elements of Hy 

contains the reduction (u, v)-factors which can be quite small in the middle of 

the shell, while the matrix elements of Hx and of Hv involve the enhancement 

(u, v) -factors which is close to unity for low-lying states in the· middle of the 

shell. 

A physical essence underlying the difference between the excitation modes 

C~oouc (in Eq. (1· 2)) of the conventional HRPA2> and the "two-phonon" excita

tions XtXt (in Eq. (1·3)) of the RPA is now clearly recognized. In the modes 

XtXt (although the important effect of the Pauli-principle among the quasi-particle 

pairs is not taken into account), the constructive force, Hx and Hv, is so properly 

taken into account that the corresponding collective correlations are symmetrically 

treated for both the excited states and the ground state, while the Hy interac

tion does not play any role. On the contrary, in the modes C~uc of the conven

tional HRPA, it turns out that the four-quasi-particle amplitudes 7f!(a{3ro) and 

(/) (a{3ro) can connect with each other only through the two-quasi-particle ampli

tudes by the interaction Hy. And the Hv interaction, which is essential to in

troduce the collective ground-state correlations, does not play any role at all in 

connecting the four-quasi-particle amplitudes 7f!(a{3ro) and (/) (a{3ro). In the modes 

C~educ, therefore, the four-quasi~particle correlations which have been obtained in 

the TD calculations are never properly incorporated into the ground state sym-
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188 N. Kanesaki, T. Marumori, F. Sakata and K. Takada 

metrically as the ground-state correlations. Thus, the conventional HRPA2l de
cisively spoils the essential merit of the NTD method. This is just the reason 
for the essential inability of the conventional HRPA2l in explaining the large 

E2(2 2 +~2 1 +) transition, in contrast with the "phonon" model. 

2 · 3 Physical space in describing the excitations 

In the "phonon" model based on the RP A, the excitations of spherical even

even nuclei are described in an "ideal boson (phonon) space" which is formed 

with orthogonal basis vectors consisting of the ground state, the "one-phonon" 

states, the "two-phonon" states, the "three-phonon" states, ·· ·, etc., and the de
viations from the "phonon" model have been treated as the anharmonic effects 

within the space. In a marked contrast with the space of "phonon" model, our 
space (in describing the excitations) is formed with orthogonal basis vectors con

sisting of the (correlated) ground state, the dressed two-quasi-particle states, the 
dressed four-quasi-particle states, the dressed six-quasi-particle states, · · ·, etc., in 
the NTD sense. Hereafter we call this space the "quasi-particle-NTD space". 

The basic physical idea underlying the introduction of the quasi-particle-NTD 
space is as follows. Remember at first that the use of the quasi-particles based 

on the BCS theory can be regarded as an attempt to classify both the ground 
state and the excited states in terms of the seniority number v, *l the value of 

which corresponds to the number of quasi-particles. Thus, the orthogonal basis 

vectors characterizing the quasi-particle representation are the BCS ground state 
(with v = 0) and the independent quasi-particle states with fixed numbers of quasi

particles n = v (where v = 2, 4, 6, · · ·). Hereafter we call the space (which is 
formed with a set of these orthogonal bases) the "quasi-particle-TD space". The 
TD calculations with the fixed number of quasi-particles n = v ( diagonalizing 
the residual interaction Hx), therefore, are in accordance with the aim of the 
use of the quasi-particle representation, because all the "collectiveness" is obtained 
within the subspace (of the "quasi-particle-TD space") characterized by the se
niority v = n. Now it is well known that, in spherical even-even nuclei, the ground
state correlations are particularly important (in describing the correlated excited 

states) as a collective predisposition which admits the correlated excited states 
to occur from it. Taking the special importance of both the seniority classifica
tion and the ground-state correlations into account simultaneously, we adopt our 

new "quasi-particle-NTD space" in which the orthogonal bases consist of the 

correlated ground state and the dressed n ( = v) -quasi-particle states (with n = 2, 
4, 6, · · ·) in the sense of the NTD approximation (where all the collective cor
relations are symmetrically treated for both the excited states and the ground 
state). 

It is important to notice that in our "quasi-particle-NTD space" the creation 

*> Here v==LJava, where Va is the seniority number of the level a. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

9
/1

/1
8
1
/1

8
6
9
8
9
1
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



A Microscopic Theory of the So-Called "Two-Phonon" States 189 

operators of the dressed n-quasi-particle states can be applied to the ground state 

only once and have ~ever the vibrational character (i.e., the possibility of repeat

ing the same excitation modes twice) such as the "phonon". 

Since our main aim is to investigate the structure of the first and the second 

excited states in spherical even-even nuclei, we hereafter restrict ourselves only 

to a subspace in which the orthogonal set consists of the (correlated) ground 

state, the dressed two-quasi-particle states and the dressed four-quasi-particle states, 

as has been indicated in § 1. 

2 · 4 Dressed four-quasi-particle modes 

A serious formal difficulty in constructing the dressed n-quasi-particle modes 

m the framework of the NTD approximation (by using the constructive force 

Hx and Hv) arises from the well-known spurious-state problem, which originates 

in the nucleon-number-non-conservation approximation of the quasi-particle repre

sentation. In the case of the dressed two-quasi-particle modes (i.e., the phonon 

modes), it is a well-known and major advantage of the NTD method that both 

the excited states and the (correlated) ground state are orthogonal to the spurious 

states within the framework of the NTD approximation. However, in the dressed 

n-quasi-particle modes (with n>2), the literal application of the NTD method 

never leads us to either the "physical" excited states or the "physical" ground 

states which are orthogonal to the spurious states, because the creation operators 

of the dressed n-quasi-particle modes themselves generally involve some components 

of the nucleon-number-fluctuation operators.6> 

In order to overcome this serious formal difficulty and to enjoy the proper 

advantage of the NTD method for the spurious-state problem, very recently Kuri

yama, one of the authors (T.M.) and Matsuyanagi6> have introduced a new concept 

to define precisely both the dressed n-quasi-particle states and the corresponding 

ground state as the "physical" states orthogonal to the spurious states. The 

concept is closely related to the transformation properties of the (corresponding) 

eigenmode-creation operators under the rotation in each quasi-spin space (belong

ing to each single-particle level a), *l which has been introduced through the quasi

spin formalism7> of the seniority coupling scheme. 

Along this line, in this paper, we construct the dressed four-quasi-particle 

modes as the essential basis of our theory and discuss their various properties. 

2 · 5 Transcription of physical operators into the "quasi-Particle-NTD space" 

and dynamical effects due to the Hy interaction 

Since the essence of our theory is to treat the (even-even nuclear) system 

within the "quasi-particle-NTD space", the orthogonal states of which are in com-

*' It is well known that the Bogoliubov transformation simply corresponds to a rotation of 

the axes of reference in the quasi-spin space of level a through an angle Oa (ua==cos Oa/2, va==sin Oa/2) 

about its y axis. 
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190 N. Kanesaki, T. Marumori, F. Sakata and K. Takada 

plete one-to-one correspondence to those of the "quasi-particle-TD space", our 
next task is to find a method of transcription of the physical operators in the 
"quasi-particle-TD space" into our "quasi-particle-NTD space". The transcrip
tion should satisfy some self-consistency conditions with the framework of the 
(employed) NTD approximation under which the "quasi-particle NTD space" has 
been introduced. Details of the method of transcription will be discussed in the 
subsequent papers. 

It can be seen that, after the transcription into the "quasi-particle-NTD space", 
the interactive force Hy (which has not played any role in constructing the dressed 
n-quasi-particle excitation modes) manifests itself as a coupling between the dif
ferent excitation modes. In our theory, the dynamical effects on the first and the 
second excited states are then obtained by diagonalizing the transcribed Hy in
teraction within the subspace formed with the (correlated) ground state, the dressed 
two-quasi-particle states and the dressed four-quasi-particle states. As mentioned 
in the introduction, the eigenmode-creation operators thus obtained are formally 
of the same form as the original excitation operators Ct (Eq. (1·1) in the HRPA), 
when explicitly written in terms of the quasi-particle operators. In our theory, 
nevertheless, the difficulties (inherent to the HRP A), which have so far arrested 
the development of the merit of the HRPA, never appear because of our proper 
choice of the "quasi-particle-NTD space". In addition, the spurious-state difficulty 
(due to the nucleon-number-non-conservation of the quasi-particle representation) 
does not arise at all in our theory, since the system is always treated in the 
"quasi-particle-NTD space" which is formed with such orthogonal basis states 
that are orthogonal to any spurious states within the framework of the NTD ap
proximation. 

Interesting expressions of the transcribed electromagnetic moment operators 
will be also given in the subsequent papers. 

2 · 6 Use of the single j-shell model 

It is not the purpose of this paper, the part I, to go into concrete quantitative 
calculations, but rather to put an emphasis on the explanation of basic ideas. In 
order to illustrate the physical essence of the theory without unessential compli
cations, therefore, we mainly develop the details of our theory with the use of 
the single j-shell model, except for the case in which we need to show explicitly 
that any difficulty does not arise at all in extending the essential idea discussed 
with the single j-shell model. 

In the single j-shell model the single-particle states are characterized by a 
magnetic quantum number. Therefore, the Greek letter a in this case simply 
indicates a=ma. In association with a ( = ma), the letter a is used to denote 
- ma. It is also noticed that in this case the expressions (2 · 7) are reduced to 

V x(a{Jr~; JM) = - (1 + ( -l) F(a{Jr~; JM) (uv Y- tG (a{Jr~; JM) (u' + v'),) 
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A Microscopic Theory of the So-Called "Two-Phonon" States 

Vv(a{1r8; JM) =t(1+ ( -Y)F(a{1r8; JM) (uv)2, 

Vy(a{1r8; JM) =H1 + (- /)F(a{1r8; JM)uv(u 2 -v2). 

§ 3. Construction of the dressed four-quasi-particle modes 

191 

(2·9) 

In this section we construct the dressed four-quasi-particle modes (with the 

use of the single j-shell model), along the line developed by Kuriyama, one of 

authors (T.M.) and Matsuyanagi.6> 

3 ·1 Quasi-spin formalism 

Let us define the conventional nucleon-pair operators of the orbit j under 

consideration: 

A~M=_!_ :E (jjmampJJM)catcfJt•} 
•./2 a{i 

B~M= - :E (jjmampJJM)catcfJ. 
a{i 

We can then easily see that three operators 

S+ = tJlf2A~o' 

satisfy the commutation properties of angular momentum operators 

(3·1) 

(3·2) 

(3·3) 

so that we call them the quasi-spin operator. In Eq. (3·2), N=:Eacatca is the 

nucleon-number operator of the orbit j and tJ j + 1/2. Now, let S (S + 1) and 

So be the eigenvalues of the operators S2 =S+S-+S0 (S0 -1) and S0, respectively. 

The quantum numbers S and So are known to be related to the seniority v and 

the nucleon number N 0 respectively through 

S=HtJ-v), (3·4) 

The quasi-spin operators S±, S0 are associated with the transformation prop

erties of states and operators under rotations in the quasi-spin space of the orbit 

j. We can define quasi-spin-tensor operators T.,, of rank s and its projection s0 

in the quasi-spin space (of the orbit j) as usual by the commutation relations 

[S0, T,.,] =soT.,, , } 

[S±, T.,,] = V (s=Fso) (s±so+ 1) T,.,±l. 
(3·5) 

The single nucleon operators cat and ca are therefore regarded as spinors in the 

quasi-spin space (of the or bit j) : 

T(l/2J(-1/2J (a) = Ca • (3·6) 
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192 N. Kanesaki, T. Marumori, F. Sakata and K. Takada 

It IS well known that the Bogoliubov transformation is simply a rotation of 
the axes of reference in the quasi-spin space (of the orbit j) through an angle 
0 about its y-axis :*> 

U= exp i0S11 , l 
Sv= ;i {S+ -s_}, 

u=cos(0/2), v=sin(0/2),1 

so that we obtain the quasi-particles 

aat=T(1/2)(1/2) (a)= UT(1/2)(1/2) (a) u-l= ucat -VCa' } 

aa=T(l/2)(-1/2) (a) = UT(l/2}(-1/2) (a) u-1= UCa + VCat• 

(3 ·7) 

(3·8) 

Generally the quasi-spin-tensor operators T,., in the quasi-particle representation 
are related to the original ones T,.,, as usual, by T,,, = UT,., U-1 = I::.,,n;;;., ( ¢ = 0, 
-0, cjJ = 0) T,.,, where D;,,., ( ¢, 0, cjJ) is the conventional D-functions for rotations. 

The quasi-spin operators in the quasi-particle representation are given by 

S+= US+U- 1 =!J1
1

2A&o, I 
S_ =US_ U-1 = !2112 Aoo, 

So= USoU- 1 = (!J/2)112 {BX0 - (!J/2)112} 

=Hn-!2), 

(3·9) 

where A~M and B~M are the quasi-particle-pair operators (of the orbit j) coupled 
to the angular momentum JM: 

A~M=_!__ I:: (jjmamf:JIJM)aata/, 
./2 a/1 

B~M= -I:: (jjmamf:JIJM)aata;f:l 
a {I 

and n denotes the quasi-particle-number operator of the orbit j: 

n= I:: aataa. 
a 

(3 ·10) 

(3 ·11) 

Since S2 = US2 U-1 =S2, the quasi-spin quantum number S has the same physical 
meaning as in Eq. (3·4): 

S=t(!J-v). (3·12a) 

However, from Eq. (3·9) we can easily see that the physical meaning of the 
quantum number S0 is now 

*l In the case of actual many-shell configurations, the unitary operator of the Bogoliubov 
transformation U becomes 

U =IT exp ifJ4S11 (a) =exp (i ~ 6aSy (a)), 
a a · 

where .§;,(a)= (1/2i) {S+(a) -S_(a)} and S±(a), So(a) denote the quasi-spin operators of the orbit 
a. Notice that the quasi-spin operators of different orbits commute with each other. 
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A Microscopic Theory of the So-Called "Two-Phonon" States 193 

So=Hn-!J), (3·12b) 

where n is the number of quasi-particles in the orbit j. 

3 · 2 Dressed four-quasi-particle modes 

In the same way as characterizes the conventional spherical tensor operators, 

the quasi-spin tensors T.,, may be characterized by the amount of transferred 

quasi-spin s, i.e., by the amount of transferred seniority Av=2s they transfer to 

the states on which they operate. (The different s0 components of the tensor 

have to possess the same intrinsic properties.) Now, as is well known, the 

"phonon "-creation operators are characterized by creations and destructions of 

two quasi-particles from the states on which they operate (i.e., by the change 

of quasi-particle number An= 2). This means that the "phonon "-creation operators, 

i.e., the eigenmode operators of the dressed two-quasi-particle modes are charac

terized by the transferred seniority Av = 2, i.e., by the amount of the transferred 

quasi-spin s= 1. From the standpoint of the quasi-spin formalism, therefore, the 

eigenmode operators of the dressed two-quasi-particle modes must be expressed 

in terms of the quasi-spin tensor T,d,., (composed of two quasi-particle operators) 

with the transferred seniority Av=2s= 2. 

From this consideration, we can precisely define the concept of dressed n

quasi-particle modes in the NTD sense, following Kuriyama, one of the authors 

(T.M.) and Matsuyanagi:6l The eigenmode operators of the dressed n-quasi-particle 

modes should be expressed in terms of the quasi-spin tensor T.,, (composed of 

n-quasi-particle operators) with the transferred seniority Av=2s= n. 

Eigenmode operators of our dressed four-quasi-particle modes may, therefore, 

be written as 

(3 ·13) 

where I and K are the angular momentum and its projection respectively and n 

denotes a set of additional quantum number to specify the mode. The eigenmode 

operators f3trx transfer the quasi-spin s = 2, i.e., Av = 4 to the state on which 

they operate, and the explicit form of the quasi-spin tensor T 2,, (a{3r(J) of rank 

s= 2 in the quasi-particle representation is written as 

T22 (a{3r(J) = aata,/a/a8t, 

Tu (a{iriJ) = ~.I {aata.sta/as + aata.staraat + aata.sarta8t + aaa.sta/a8t}, 

T ( (.) ~) 1 { t t-- + t- - t+ t- t-
20 al-'ru = .Jo aa a.s araa aa a.sara8 . aa a.sar a8 

+ aaaptarta8 + aaaptaraat + aaa.sa/ast}' 

(3 ·14) 
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194 N. Kanesaki, T. Marumori, F. Sakata and K. Takada 

Since T,,, (a{3ro) in Eq. (3 ·14) is antisymmetric with respect to (a, {3, r, o), the 
amplitude 'IJ!niK(a{3ro; s0) in Eq. (3 ·13) also satisfies the same antisymmetry relation 

P'IJ!niK(a{3ro; So) = 0 P'IJ!niK(a{3ro; so)' 

where p is the permutation operator with respect to (a, {3, r, o) and 

{ 
1 for even permutations, op= 
-1 for odd permutations. 

(3·15) 

(3·16) 

3 · 3 Elimination of spurious components from the eigenmode operators 

In the quasi-particle representation, the "phyiscal" states, which correspond 
to the actual states of nucleus (under consideration), are only the states orthogonal 
to the ·spurious states. Thus, in order that the eigenmode operators (3 ·13) are 
the "physical" ones which create the states orthogonal to the spurious states 
(within the framework of the NTD approximation), they are required never to 
contain any component of the nucleon-number fluctuation operator 

(3 ·17) 

i.e., they are required never to contain the quasi-spin operators S±, S0• To make 
the eigenmode operator satisfy this requirement, we write the amplitudes in Eq. 
(3 ·13) as follows: 

'IJ!,.IK(a{3ro; So)= :E (/)niK(a' {3'r'o'; So) QI(a' {3'r' 0'; a{3ro) • (3·18) 
a' fi'r'D' 

Then the eigenmode operator becomes 

{3~1x = :E :E :E (J)niK(a' f3'r'o'; so) Q1(a' f3'r'o'; a{3ro) T2., (af3ro), (3 ·19) 
afiriJ a' fi'r'IJ' 'o 

where Q1 is the projection operator by which the quasi-spin operators S±, So are 
removed out of the eigenmode operator. 

In order to get the explicit form of the projection operator, we rewrite Eq. 
(3 ·19) in the form 

(3·20) 

where :L;~,.r, means the summation with respect to even values of Jl> J2 and 

T,,,(j2(J~)P(J2), IK) = L; (JlJ,M~MMK)(jjmampiJlMl)(jjmrmaiJ,M,) 
aPr6 

x T2,, (a{3ro), (3 · 21a) 

'lf!n(l(Jl)l(J2) 1}/l; so)= L; (JlJ,MlM,jlK)(jjmamfliJlMl) 
aPr6 

X (jjmrmaiJ,M,)'IJ!niK(a{3ro; so) 

= L; (JlJ,M~M,jiK)(jjmampiJlMl)(jjmrmaiJ,M,) 
aPr6 

x { :E (bnrK(a'{3'r'o';so)QI(a'{3'r'o';a{3ro)}. 
a' P'r'O' 

(3·21b) 
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A Microscopic Theory of the So-Called "Two-Phonon" States 195 

From the antisymmetry relation (3·15), the amplitudes 1.F.,.(j2(J1)l(J2) i}j'I; s0) 

must satisfy the equation 

(3·22) 

From the definition of the projection operator Qp it is clear that the conditions 

(3·24) 

must be fulfilled. It should be emphasized that Eq. (3 · 22) with the condition 

(3 · 24) is, in its form, precisely the same equation as what the coefficient of 

fractional parentage (c.f.p) with seniority v=4 for /-configurations must satisfy. 

Therefore, the solution 1Fn (P (J1)l (J,) I} li; s0), which satisfies both Eqs. (3 · 22) 

and (3 · 24), can generally be written in the form 

1.F.,.(l(Jl)l(J2) i}li; so)=~~ QrCJ1J2; J/J,'; v=4)(f)ni(J11J2 1 ; so), (3·25) 
· J1'Jz' 

where 

1 [ 2 ]-l -6 1 +81o-Q [B.r,~.r,o+ (- /8.r,oB.r,I-4(JlJ2; IIIO; I)] 

X [B.r,'IB.r,'o + (- /8.r,,o8.r,'I-4(J/ J2 1 ; IIIO; I)]. (3·26) 

It can easily be shown that Q1(J1J 2, J 11 J2 1 ; v =4) possesses the following properties: 

(i) QrCJ1J2, J11 J2 1 ; v= 4) = Q1(J11 J21 , J1J2; v= 4) 

= (-YQz(JlJ,, J21J/; v=4) = (- )1Q1(J2J1, J/J/; v=4), 

(ii) QI(J10, J/J,'; v=4) =Q1(J1J:, J1 10; v=4) =0, 

(iii) ~~ Q1(J1J2, J/1 J/1
; v=4) QI(J/1 J/1

, J/ J,'; v=4) 
J t 11Js' 

=Q1(J1J2, J/J2 1 ; v=4), 

(iv) Q1(J1J2, J11 J2 1 ; v~ 4) = - ~~ (J1J2; IIJ/' J2"; I)QI(J/1 J2", J11 J{; v=4), 
Jt'Js:'' 

(3·27) 

so that the amplitudes 1.F.,.(j2(J1)l(J2)1}li; s0) with the form (3·25) automatically 

satisfy both Eqs. (3·22) and (3·24). According to Eqs. (3·21b) and (3·25), 
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196 N. Kanesaki, T. Marumori, F. Sakata and K. Takada 

we can write 

(3·28a) 

X QzCJ1J2, J/J/; v=4)<J/J/ M/ M2'[IK)<jjma'm~-IJ/ M/)(jjmr'ms,[J/ M2'). 

(3·28b) 

Thus the explicit form of the projection operator Q1 has been given by Eqs. 
(3·28b) and (3·26). 

The eigenmode operators of the physical dressed four-quasi-particle modes, 
which do not involve the quasi-spin operators s±, so at all, are finally given by 

(3. 29) 

where the symbol: : means the normal product with respect to the quasi-particles. 
In obtaining the last expression with the normal product, we have used the fact 
that the quantities Q1 (a{irtJ; a'{i'r'tJ') satisfy the following condition which is 
equivalent to the second property in Eq. (3 · 27): 

2J 2J <J!J2M!MMK)(jjmam~[J!M!)<jjm 7 ms[J2M2) 
aPril a'fJ'r' 

(3. 30) 

§ 4. Properties of the eigenmode operators with 4v = 4 

According to the discussions in § 2, our dressed four-quasi-particle modes 
should be constructed in terms of the constructive force Hx and Hv. Thus, the 
correlation amplitudes rbnrK(a{irtJ; s0) in the eigenmode operator (3 · 29) should be 
determined so that f3trK becomes a "good" approximate eigenmode operator sat
isfying 

(4·1) 

where "interaction" ZnrK is composed of quasi-spin-scalar constant terms (with 
.Jv = 0), second-order normal products of bilinear quasi-spin tensor T 1,, with .Jv = 2, 
tetralinear quasi-spin tensors T 1,, and T 00 with .Jv = 2 and .Jv = 0 respectively and 
sixth-order normal products. Thus, in our NTD approximation (in constructing 
the physical dressed four-quasi-particle modes with .Jv = 4), the "interaction" ZnrK 
is neglected in the first step. With this approximation, Eq. ( 4 ·1) with Eq. (3 · 29) 
leads us to the following eigenvalue equation: 
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A Microscopic Theory of the So-Called "Two-Phonon" States 197 

([)n~x(a' {3'r'a'; so= 2) 

([)nix(a' {3'r'a'; so= 1) 

(J)ni :E QI(a{3ra; a'{3'r'a') ([)nix(a'{3'r'a'; so= O) 
a'P'r'6' 

([)niK(a' {3'r' a'; So= -1) 

([)niK(a' {3' r' a'; So= - 2) 

0 

= I; ~l'BaflrB,a'fl'r'B' a'P'r'il' V 0 

0 0 0 

0 

0 

0 
1 

ZBaprB,a'fl'r'B' 0 
1 

- ZAa,8rB,a'fJ'r'B' 0 

0 0 

([)nix(a' f3'r'a'; so= 2) 

([)nix(a' {3'r'a'; so= 1) 

X ([)nix(a'{3'r'a'; so= 0) 

([)nix(a'{3'r'a'; so= -1) 

([)nix(a'{3'r'a'; so= -2) 

0 - Aa,srB,a'.B'r'B' 

(4· 2) 

where 

AaflrB,a'fl'r'a'= :E :E QI(a{3ra; a1{31r1a1) Jla,p,r,a,,a,p,r,a,QI(a2{32r:a2; a' f3'r'a') '! 
a1 tJ 1r161 a2P1r161 

Ba11ra,a'fl'r'a'= :E :E QI(a{3ra; a~f3~r~a~)93a,p,r,a,,a,p,r,a,Qz(a:f32r2a2; a'{3'r'a') 
a191r161 aaPsr:6z 

(4·3) 

and 

(4·4a) 

(4·4b) 

Here the matrix elements Vx(a{3ra; JM), Vv(a{3ra; JM) are defined by Eq. (2·9) 
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and E1 is the single quasi-particle energy. . The symbol L;P(a,,s,r,a,) in Eqs. ( 4 · 4a) 
and (4·4b) denotes the summation of all permutations of (aJ{31y/J1). 

The eigenvalue equation ( 4 · 2) is simply reduced to 

1 
,/0Ba,8r3,a' ,8'r'3' 0 

0 
1 

- ,J"{j B a,8r8, a' ,8'r'3' 

0 

X~ 
0 0][1JfnrK(a'{3'r'o';so=2) l 

-1 0 1JfnrK(a'f3'r'o';so=O) , 

Q 1 1JfniK(a'{3'r'o'; So= -2) 

(4·5) 

, (1JfnrK(a{3ro;so=1) ) 
(J)nr 

1JfnrK(a{3ro; so= -1) 

-1. I:; (Aa,sra,a'P'r'a' -Ba.sra,a'P'r'B') (1JfnrK(a'f3'r'o'; so= 1) ) 

- 2a'P'r'6' Ba.sra,a'P'r'a' -Aa.sra,a'P'r'B' 1JfnrK(a'f3'r'o'; So= -1) , 
. (4·6) 

where we have used Eq. (3 ·18) and the property Ql = Qz. Needless to say, the 
physical solutions corresponding to the dressed four-quasi-particle modes in the 
NTD sense are nothing but ones of Eq. ( 4 · 5). Therefore, the dressed four-quasi
particle eigenmode operators in Eq. (3 · 29) can now be written as 

+ 1JfnrK(a{3ro; so= O): T2o (a{3ro): 

+ 1JfnrK(a{3ro; so= - 2): T2-2 (a{3ro) :} . (4·7) 

The form of Eq. (4·5) tells us that under the definition of inner product 

(FnrK· Fn'I'K') ==I:; (1JfnrK(a{3ro; so= 2), 1JfnrK(a{3ro; so= 0), 1JfnrK(a{3ro; so= - 2)) 
aPr6 

[ 
1 0 OJ [ 1Jfn'I' K' (a{3ro; so= 2) J 

x 0 -1 0 1Jfn'I'K'(a{3ro;so=O) 

0 0 1 1Jfn'I' K' (a{3ro; so= - 2) 

= I:; {1JfnrK(a{3ro; so= 2) 1Jfn'I'K' (a{3ro; so= 2) 
afir6 
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A Microscopic Theory of the So-Called "Two·Phonon" States 199 

-1J! .. rK(a{3rtJ; so= 0) lf!,.,r, K' (a{3rtJ; so= 0) 

+ 1J!.,.IK(a{3rtJ; so= - 2) lJ!.,.,r'K' (a{3rtJ; so= - 2)}, ( 4 · 8) 

the correlation amplitudes satisfy the orthogonality relation in the sense that 

(FnrK" Fn'l'K') = 0 if (nlK) ~ (n'l' K'). (4·9) 

Let f3~rK with the positive eigenvalue of Eq. (4,·6) w,.,1 (>0) (which is reduced 

to 4E1 in the absense of the interaction) represent the creation operator Y~IK of 

the mode under consideration: 

(4·10) 

Then the corresponding annihilation operator YnrK also satisfies Eq. ( 4 ·1) under 

our approximation (to neglect the "interaction" ZnrK) with the negative eigenvalue 

Wn_J=- Wn,r<O, SO that 

We thus obtain 

f3trK= (- y-Kf3n,IK, 

which implies a condition for the correlation amplitudes 

[
1J!,._IK(a{3rtJ; so=2) l [0 
1J!,._rK(a{3rtJ; so= 0) = (-Y 0 

1J!,._rK(a{3rtJ; so= - 2) 1 

which is consistent with Eq. ( 4 · 5). 

§ 5. Physical meaning of the eig~nmodes with Jv = 4 

For simplicity, we hereafter use the following notations: 

1J!.,.,IK(a{3rtJ~ so:2) V:,niK(a{3rtJ), } 

1J!n,IK(a{3rtJ, so- 0) =J:!,nrK(a{3rtJ), 

1J!n,rK(a{3rtJ; so= - 2) =<PnrK(a{3rtJ). 

Relation ( 4 ·13) is then written as 

V:,nrK(a{3rtJ) = (- ):lf!,._rx(~~~~; so= -2),} 
J:!,,.IK (a{3rtJ) = (-) lf!.,._llc (a{3r1J; so= 0), 

<P .. rK(a{3rtJ) = (- )11f! .. _rK (ai3r~; so= 2) 

and the orthogonality relation ( 4 · 9) becomes of a simple form: 

'I: { 1J!,.IK(a{3rtJ) lJ!,.,r, K' (a{3rtJ) - BnrK(a{3rtJ) 8.,.,r, K' (a{3rtJ) 
a/!r6 

+ <b.,.IK(a{3rtJ) <b.,.,r, K' (a{3rtJ)} = N .. tJ.,..,.,(J II'(J KK' , 

(from (Fn,IK" Fn,'I'K') = (F,._rK" F,._,I'K') = N,.(J,..,.,(J II'(J KK') 

(4·11) 

(4·12) 

(4·13) 

(5·1) 

(5·2) 

(5·3a) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

9
/1

/1
8
1
/1

8
6
9
8
9
1
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



200 N. Kanesaki, T. Marumori, F. Sakata and K. Takada 

+ (f),.zK(a(3rtJ) 'F,.,z'K' (a/3r0)} = o, 

(from (F,..zK• F,._,I'K') = (Fn.'I'K'" F,.zK) = 0) (5. 3b) 

where N.. is the normalization constant. 
The physical interpretation of the eigenmode operator 

YtiK= :E {lF,.zK(a(3rtJ): T33(a(3rtJ): 
aflrl 

+ E,.zK(a(3rtJ): Tso (a(3rtJ): + (/),.zK(a(3rtJ): T2-2 (a(3rtJ) :} (5 · 4) 

is the following. The operator YtiK creates four-quasi-particles with large am
plitudes 'F,.1K(a(3rtJ) and annihilates four-quasi-particles with the small amplitudes 
(/),.1K(a(3rtJ), accompanying the two-quasi-particle creation and two-quasi-particle 
annihilation amplitudes E,.zK(a(3rtJ). In the absence of ground-state correlations, 
YtrK becomes the operator which creates an exact four-quasi-particle eigenstates 
with the seniority v = 4 in the sense of the TD method. 

So far we have discussed only the eigenmode operators YtiK which have 
physical meaning. At this stage, it must be emphasized that the eigenvalue equa
tion ( 4 · 2) has solutions which inevitably lead us to "special" eigenmode operators 
having the largest amplitudes 8,.0zK(a(3rtJ): 

with 

Yt.zx = :E {lF ... zx(a(3rtJ): T33 (a(3rtJ): 
a/lrl 

+ E,..zx(a{3rtJ): T3o (a(3rtJ): + (f) ... rx(a(3rtJ): Ta-3 (a(3rtJ) :} (5 · 5) 

~n 0 IK(a(3rtJ) = lp",.0zK(a(3rtJ; So= 2), ) 

.t:!.n0IK(a(3rtJ) = lp",.0zK(a(3rtJ; So= 0), 

(/),. 0TK(a(3rtJ) = lp",. 0zK(a(3rtJ; So= - 2) · 

(5·6) 

From the eigenvalue equation ( 4 · 2), we get the following orthogonality relations 
for the amplitudes in the "special" eigenmodes: 

- En0zK(a(3rtJ) Eno'l' K' (a(3rtJ) + (/)n0IK(a(3rtJ) (/),. 0'1' K' (a(3rtJ)} 

= 0 if (n0IK) ~(no' I' K'), (5 · 7a) 

(F ... zx· F,.z'K') = :E {lF ... zx(a(3rtJ) 'F,.z'K' (a(3rtJ) 
a/lrl 

- E ... zK(a(3rtJ)E .. r'K' (a(3rtJ) + (/),..zK(a(3rtJ) (/),.z'K' (a(3rtJ)} 

=0. (5·7b) 

The special eigenmodes have no physical meaning. In the absence of the 
ground-state correlations, which means E ... zK(a(3rtJ) to vanish, the "special" 
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A Microscopic Theory of the So-Called "Two-Phonon" States 201 

eigenmodes do not appear. The outward appearance of this unphysical eigenmode 

Y~, 1 x is essentially based on a special situation of the ground-state correlations 

due to our dres~ed four-quasi-particle modes. The original constructive force, 

Hx and Hv, responsible for the dressed four-quasi-particle mode (and so respon
sible for the ground-state correlations) is not a four-body interaction but the two

body interaction. Therefore, as is seen from Eq. ( 4 · 5), the fourcquasi-particle 

creation amplitudes 'IJfnrx(a/3rtJ) and the four-quasi-particle annihilation amplitudes 

r])nrx(afJrtJ) can be coupled only via the two-quasi-particle creation and two-quasi

particle annihilation amplitudes Enrx(afJrtJ). The existence of the amplitudes 

En1x(a/3rtJ) inevitably leads to the appearance of the unphysical eigenmodes Ytix 
having the largest amplitudes En,rx(afJrtJ). 

In order to take the special importance of both the seniority classification of 

states and the ground-state correlations into account, we have introduced a new 

concept of "quasi-particle-NTD space" in describing the collective excitations. 

This quasi-particle-NTD space is, as presented in § 2, formed by the orthogonal 

basis vectors consisting of the correlated ground state and the dressed n ( = v)

quasi-particle states (n = 2, 4, 6, · · ·) in the sense of the NTD approximation. Hence 
any state vector with n = 4 in this space should be able to be expanded only by 

the physical eigenmodes Y~ 1 x as 

(5·8) 

where lr])0) is the correlated ground state. The possibility of this expansion means 

the completeness of our physical eigenmodes in the quasi-particle-NTD space. 

Now, we should discuss the correlated ground state I r])0). Equations 

(5·9) 

provide us with the formal definition of the correlated ground state lr])0). There

fore, characteristics of structure of the ground-state correlations (involved in I r])0)) 

should be determined in principle through properties of the fundamental equation 

( 4 · 2) which defines the dressed four-quasi-particle modes with Av = 4 (i.e., Y~ 1 x 

and Yt 1x) in the NTD sense. We can see that all matrix elements of the in

teraction in Eq. ( 4 · 2) consist of only the matrix elements of the constructive 

force Hx and Hv in Eq. (2· 6). The diagrams considered in the correlated ground 

state I r])0) are therefore closed diagrams which are composed by combining the 

matrix elements of Hx and Hv given in Fig. 1. It should be noticed that the 

matrix elements of Hy in Eq. ( 4 · 2) do not contribute at all to the ground-state 
correlations under consideration, so that the ground state I r])0) may be generally 

written as a superposition of 0, 4, 8, 12, · · · quasi-particle states in the TD sense. 

It is generally written down as 

lr])o) =Col r/>o) + ~ C1 (afJrtJ) aata1/a/aatl r/>o) 
a{lr6 

+ ~ Ca (afJrtJsJ..pv) aata/a/aata"ta~ta"ta}l r/>o) 
a{ir6sAt<v 
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202 N. Kanesaki, T. Marumori, F. Sakata and K. Takada 

+···, (5·10) 

where I ¢0) is the BCS ground state and C 0 is the constant related to the nor
malization of l@o). 

The coefficients C0, C~> C 2, • • • in Eq. (5 ·10) should be determined by solving 
Eqs. (5 · 9) in a way consistent with the framework of the approximation which 
we have used in obtaining the fundamental eigenvalue equation ( 4 · 2). Detailed 
discussion on this problem will be done together with a precise and clear-cut 
reformulation of our theory in a forthcoming paper. 

§ 6. Generalization to the many-j-shell model 

So far we have used the single j-shell model in order to illustrate the physical 
essence of our theory without fruitless complications. However, since the realistic 
case must be described by the many-j-shell model, the extension of our theory 
to the many-j-shell case becomes indispensable. 

It is well known that the quasi-particle-TD approximation on the basis of 
the BCS theory can be regarded as an attempt to characterize both the ground 
state and the low-lying excited states by means of the seniority quantum numbers. 
The BCS ground state and the excited states in the TD approximation are given by 

l¢o)= lva=O, vb=O, ··), l 
I ¢excited)= IVa, vb, ... ; v = ~ Va =no; T), 

(6·1) 

where the quantities Va, vb, · · · are the seniority numbers belonging to the single
particle levels a, b, · · ·, respectively, and v and n0 are the total seniority and the 
number of quasi-particles, respectively. Here the notation T stands for the ad
ditional quantum numbers characterizing the TD excited states. 

In extension from the TD approximation to the NTD one, we introduce the 
dressed four-quasi-particle eigenmodes corresponding to the excited states in the 
TD approximation with v = n0 = 4. According to the discussion in § 2, these 
eigenmodes should of course be constructed in terms of the constructive force 
Hx and Hv. Therefore, the eige,nmode operator can be written as 

YtrK = I:; {W~lK (a{3ro) aataptartaat + W':lK (a{3ro) aataptara8 a{JrQ 

(6·2) 

Since the eigenmode operator (6 · 2) should be characterized by the transferred 
seniority Jv = L:aAva = 4, Eq. (6 · 2) is composed of products of quasi-spin tensors 
defined within each single-particle level and the sum of the transferred seniority 
of each quasi-spin tensor should be equal to 4. For example, in Eq. (6 · 2) the 
terms on the right-hand side, in which the single quasi-particle states a, {3, r, 0 
belong to the same level, i.e., a=b=c=d, are composed of Ts<aJ=2,s,<aJ(a{3ro;a= 
b=c=d) with the transferred seniority Ava=2s(a) =4, and the terms, in which 
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A Microscopic Theory of the So-Called "Two-Phonon" States 203 

a, /3, r belong to the same level and iJ belongs to different level, i.e., a= b = c~d, 
are composed of products of TacaJ=S/2,s,(aJ(a/3r; a=b=c) with Jv.,=3 and Ts(d)= 

I/2,s,C<LJ(o) with Jv.,=1 (so that Av=~.,Jv.,=4). 

Now, we should remove the spurious components caused from the particle

number fluctuation in the BCS theory out of the eigenmode operator Y~ 1 x. For 

this purpose, it is convenient to divide the summation ~a .era in Eq. (6 · 2) into 

five parts: 
(4) (31) (22) (211) (1111) 

~=~+~+~+~+~- .(6·3) 
af/r6 af!r6 af/r6 af!r6 af!r6 af/r6 

Here the symbols ( 4), (31), (22), (211) and (1111) denote the following five 

cases with respect to the single quasi-particle states a, /3, r. a, respectively: (i) 

a=b=c=d, (ii) a=b=c~d, or a=c=d~b, (iii) a=b, c=d, a~c; or a=c, b=d, 

a~b, (iv) a=b, a~c~d; c=d, a~b~c; or a=c, a~b~d and (v) a~b~c~d. 

The projection operator which removes the "quasi-spin" operators S± (a), So (a) de

fined at each level a from the eigenmode operator must be defined severally for each 

case mentioned above. Let these projection operators be Q/4l, Q/81l, Q/22l, Q/211l 

and Q/1111l, respectively. 'Using these, we should write the amplitudes in Eq. 

( 6 · 2) as follows: 

(a) 

lfl~kJx (a/3ro) = ~ Q/a) (a/3ro; a' /3'r'o') (f)~kJx (a' /3'r'o'), k = 1, 2, 3, (6· 4) 
a' 13'r'iJ' 

where the symbol ~~~h'o' represents the summation in the subspace:; (6') which 

(is one of the five cases ( 4), (31), (22), (211) and (1111) and) is specified by 

the configuration of the single-particle states (a, /3, r. o). Then the eigenmode 

operator becomes 

(6·5) 

Explicit forms of Q/al(a/3ro; a' /3'r' o') can easily be obtained: From the definition, 

Q1<4l (a/3ro; a' f3'r'o') is nothing but Eq. (3 · 28b). The others are, for example, 

Q/81) (a/3ro; a'/3'r'o') = ~ <JjdMma[IK)Q/8
) (a/3r; a'/3'r')<JjdM'ma,[IK) 

J 

(ma+m.e+mr=M, ma'+m.e'+mr'=M') for a=b=c~d, (6·6a) 

Q/22) (a/3ro; a' /3'r'o') =~I <J1J2M1M2[IK)QJl (a/3; a' /3') QJ; (ro; r'o') 
JlJ.Il 

(ma+m.e=Mt. ma'+m.e'=M1', mr+m8 =M2, mr'+m8,=Ma') for a=b, c=d, a~c, 

X Q)~ (a/3; a' /3') <ici<Lmr'mvl J2M2')<J1J2Mt' M2'l IK) 

(ma+m.e=Mt. ma'+m.e,=M1') for a=b, a~c~d, 

(6·6b) 

(6· 6c) 
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204 N. Kanesaki, T. Marumori, F. Sakata and K. Takada 

Q/1111> (a(ir~; a'(3'r'~') =~aa'~ rw~rr'~w, (6· 6d) 

where Q/2> and Q/8> in Eqs. (6·6a), (6·6b) and (6·6c) are projection operators 
which remove the spurious components out of two- and three-quasi-particle opera
tors with angular momentum J, and project to the operators with seniority num
ber 2 and 3, respectively. Those explicit forms can easily be obtained in a way 
similar to that in § 3 · 3 and they are 

Q/2> (a(3; a'(3') = <jjmampiJM)(l-~Jo) <jjma,mp,IJM'), 

(6·7a) 

(6·7b) 

where 

(6·8) 

The eigenmode operator (6 · 5) thus formed possesses the total transferred seniority 
Jv = 4 and never contains the "quasi-spin, operator s± (a), so (a) defined in each 
level a. 
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