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Abstract: Road surfaces are affected by rain, snow, and ice, which influence traffic flow. In this paper,
a microscopic traffic flow model based on weather conditions is proposed. This model characterizes
traffic based on the weather severity index. The Intelligent Driver (ID) model characterizes traffic
behavior based on a constant acceleration exponent resulting in similar traffic behavior regardless of
the conditions, which is unrealistic. The ID and proposed models are evaluated over a circular road
of length 800 m. The results obtained indicate that the proposed model characterizes the velocity and
density better than the ID model. Further, variations in the traffic flow with the proposed model are
smaller during adverse weather, as expected. It is also shown that traffic is stable with the proposed
model, even during adverse weather.

Keywords: microscopic traffic flow; adverse weather; acceleration exponent; intelligent driver model;
vehicle trajectories; traffic stability

1. Introduction

Traffic flow is significantly affected by weather conditions, which impact traffic plan-
ning, mobility, and efficacy [1]. Weather can cause traffic delays [2] and make driving
hazardous [3,4]. During normal weather, traffic flow is smooth, as the distance between
vehicles to align to forward conditions is covered quickly. In adverse weather, the flow
is affected by road surface conditions [1]. Rain, hail, and snow cause slick roadss, which
reduce the friction between the road and tires, causing vehicles to take longer to align. This
results in congestion and traffic queues that take longer to dissipate. Slick road increase the
accident probability, hence driver perception of weather conditions is important [4]. Thus,
a traffic model is required that accurately and realistically characterizes traffic flow based
on the weather.

Weather conditions such as fog, rain, snow, and dust reduce friction and visibility,
causing a reduction in velocity and increased delay. An 18% increase in delay during
adverse weather conditions has been reported [1]. Slick roads due to light snow decrease
vehicle adhesion by 10% [5]. Heavy snow and rain reduce visibility, which increases the
time and distance required to align to forward vehicles. During heavy rain, traffic volume
has been reported to increase by 8.5% when the temperature is below freezing, 12% when
the temperature is above freezing, and 6.5% when the temperature is high [1]. In light rain,
free flow speed is reduced by 2.78 m/s, and in heavy rain, it is reduced by 5.28 m/s [6].

Road safety is a major concern around the world, as accidents cause severe injuries and
loss of life. Approximately 1.35 million fatalities occur each year due to traffic accidents [7]
and about 50 million injuries [8]. Accident rates increase from 100% to 1000% when it is
snowing [9]. From 1990 to 1998, road accidents increased by 20% during the winter in
Ottawa, Canada [10]. When it is snowing, the velocity and traffic flow are reduced by
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40% and 11%, respectively, and the time headway increases by 1 s [11]. Furthermore, fuel
consumption increases during adverse weather due to the greater delay.

The number of vehicles worldwide is estimated to reach 3 billion by 2040 [12]. This
will increase congestion and accident probability, which will be worse during adverse
weather [13]. According to the National Center for Statistics and Analysis, 22, 697 people
died in 2020 and 2.43 million people were injured in 2018 due to accidents on United States
roads [8]. Automated driving technology is being developed to reduce the number of traffic
accidents [14,15]. However, automated driving is challenging in adverse weather [15].

Three types of models are used to characterize traffic flow: microscopic, macroscopic,
and mesoscopic. Microscopic models consider individual vehicles and are often based on
driver physical and psychological response [16]. These models consider parameters such
as vehicle position, velocity, distance, and time headway [17]. Macroscopic models are
used to characterize collective traffic flow behavior, while mesoscopic models consider
both individual and collective behavior [18].

2. Related Work

Newell [19] developed a microscopic model that characterizes vehicle behavior in
dense traffic. In this model, velocity is based on the distance headway, thus a larger
headway results in lower density and higher velocity. However, this relationship between
velocity and density results in unrealistic acceleration [20]. Bando et al. [21] modified the
Newell model by ignoring velocity differences, but this results in unstable traffic flow
behavior. Furthermore, deviations from equilibrium velocity lead to the same acceleration,
which is not realistic. Helbing and Tilch [22] proposed a model that considers reaction
to velocity differences. This model can accurately characterize traffic during congestion,
but the acceleration is unrealistic. Gipps [23] developed a model to better characterize
acceleration and driver behavior, but it is accurate for only a small range of parameters [20].

Treiber, Henneck, and Helbing [20] proposed the Intelligent Driver (ID) model, which is
based on driver response. This model characterizes driver behavior by considering the velocity
and distance headway of forward vehicles and incorporating traffic parameters [24–26].
However, the acceleration exponent in the ID model is a constant and not based on traffic
dynamics, which results in unrealistic traffic behavior. The ID model was revised in [27] to
consider driver intent at junctions. However, at high velocities, the safe distance between
vehicles is small, which can lead to accidents in adaptive cruise control systems. An
improved safe distance was obtained in [28] using velocity-based parameters.

Jamal et al. [29] employed machine learning to predict the severity of injuries due to
traffic accidents. The weather, road surface condition, lighting, vehicle type, and damage
were considered as features. Ijaz et al. [30] identified the factors that affect motorbike
accident injury severity using the random parameters logit model. The results obtained
indicate that weather is a primary cause of these accidents in developing countries. Weather
also influences commuting decisions [31,32]. Rain, snow, wind, and temperature often
result in a switch from open to sheltered modes of transport [33].

Traffic signal parameters were modified in Lu et al. [34] to improve traffic efficiency
and road safety during adverse weather. Cao et al. [35] employed a multi-layer logistic
regression classification tree model to characterize the relationship between weather, road
surface conditions, and traffic speed. The effect of weather on road safety was also examined
in [36,37]. The influence of weather on traffic flow was examined in [13] using a combination
of driving simulation and traffic simulation. A convolutional neural network was employed
in [38] using data from a traffic monitoring camera to alert road users of adverse weather
conditions.

In this paper, a microscopic traffic model is proposed that characterizes traffic flow
according to the weather conditions. The road surface condition is determined using
the weather severity index. This index is low for normal and high for adverse weather
conditions. The behavior of the ID and proposed models is evaluated over a circular road of
length 800 m. A circular road is employed so that traffic is conserved and does not move off
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the road. This can be considered a worst-case condition to assess the performance of traffic
models. Results are presented that indicate the proposed model realistically characterizes
traffic behavior during adverse weather.

The remainder of this paper is organized as follows. Section 3 presents the ID and
proposed models. In Section 4, the stability of these models is evaluated. The performance
of both models is evaluated and compared in Section 5, and some concluding remarks are
given in Section 6.

3. Traffic Flow Models

The ID model is a microscopic model that characterizes traffic based on forward
vehicles [39]. Acceleration is based on driver response, distance between vehicles, and time
headway. Driver response is defined as the ratio of average velocity to maximum velocity.
For a smooth flow, this ratio is 1 and acceleration is low. Thus, acceleration is given by [20]

dv
dt

= a

(
1−

(
v

vmax

)δ

−
(

D
s

)2
)

, (1)

where a is the maximum acceleration; v and vmax are the average and maximum velocities,
respectively; δ is the acceleration exponent; s is the bumper-to-bumper distance between
the vehicles; and D is the distance headway during alignment, which can be expressed
as [11]

D = sj + Tv +
v∆v

2
√

ab
(2)

where sj is the distance between vehicles during congestion, known as the jam spacing; T is
the time headway; ∆v is the change in velocity during alignment to forward vehicles; and b
is the minimum acceleration. The ID model uses (1) and (2) to characterize traffic flow based
on driver response and distance headway for traffic alignment during transitions. The
ID model acceleration exponent δ is a constant determined considering vehicle alignment
during transitions. Thus, it is not based on traffic physics, which leads to unrealistic and
inadequate traffic characterization. In particular, traffic behavior does not change according
to the environment, including road surface conditions due to weather. Therefore, a variable
exponent is proposed in this paper to accurately characterize traffic behavior based on
these conditions.

The time required for velocity alignment during a transition is the transition time
headway T, and the distance covered during this time is the transition distance headway H.
These headways affect driver response during transitions [40] and vary based on weather
conditions. During adverse weather, the headway ratio is smaller than during normal
weather. Thus, the acceleration exponent based on weather conditions can be characterized
as

δ =
H
T

(
1− α

αm

)
(3)

where α is the weather severity index and αm is the maximum severity index. When α = 0,
the weather is considered normal and the road surface is clear, thus there is maximum
friction between the road and tires. When α = αm, the friction between the road and tires
is minimum due to adverse weather conditions, such as snow, compacted snow, and ice,
which make roads slick.

The proposed model is obtained by substituting (3) in (1), so that

dv
dt

= a

(
1−

(
v

vmax

) H
T (1− α

αm )

−
(

D
s

)2
)

(4)

This model can characterize traffic during transitions based on the road surface con-
ditions; hence, it is more accurate and realistic than with a constant exponent δ. The
acceleration given by (4) varies according to the weather conditions, unlike the ID model.
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The density is given by ρ = 1
se

[41], where se is obtained by substituting (2) in (1). At
equilibrium, ∆v = 0, thus the distance headway for the ID model at equilibrium is

se = (sj + Tv)

(
1−

(
v

vmax

)δ
)−1/2

(5)

while for the proposed model it is

se = (sj + Tv)

(
1−

(
v

vmax

) H
T (1− α

αm )
)−1/2

(6)

According to (5), the equilibrium distance headway between vehicles with the ID
model is the same, regardless of the conditions. Conversely, (6) indicates that the distance
headway with the proposed model varies according to the weather conditions.

The traffic flow is the product of density and velocity and is given by

q =
v
se

(7)

Substituting (5) in (7) gives the traffic flow for the ID model

q =
1

(sj + Tv)
(

1−
(

v
vmax

)δ
)−1/2 v (8)

This indicates that the flow with the ID model is the same for all conditions. Substitut-
ing (6) in (7) gives the traffic flow for the proposed model

q =
1

(sj + Tv)
(

1−
(

v
vmax

) H
T (1− α

αm )
)−1/2 v (9)

which shows that the flow is based on the weather conditions. In normal weather, the
traffic flow is highest, as H

T

(
1− α

αm

)
is H

T for α = 0, while in adverse weather, the flow is

lowest, as H
T

(
1− α

αm

)
decreases to 0 for α = αm.

4. Model Stability

In this section, the stability of the ID and proposed models is evaluated for different
values of the acceleration exponent and weather severity index, respectively, over a circular
road of length 800 m for 180 s. The time headway for both models is 2 s [42], and the
minimum and maximum acceleration are 0.73 m/s2 and 1.67 m/s2, respectively [20]. The
length of a vehicle is 5 m [41], the distance headway is 25 m [40], and the jam spacing is
7 m [41]. For the ID model, the acceleration exponent ranges between 1 and ∞, and is
typically 4 [20]. Hence, this model is evaluated using δ = 1, 4, and 20. The proposed
model is evaluated using α = 0, 0.3, 0.55, 0.7, 0.8, and 0.9, where 0 denotes normal
weather and 0.9 denotes the most adverse weather. The initial equilibrium velocity is
15 m/s. A disturbance at the maximum acceleration 1.67 m/s2 is introduced at 30 s. The
parameters for the ID and proposed models are given in Table 1.

The velocity of the ID and proposed models is shown in Figure 1. The red line indicates
the trajectory of the 1st vehicle, and the black lines indicate the trajectories of the following
vehicles. For the ID model with δ = 1, the disturbance at 30 s causes the velocity of the
1st vehicle to decrease to 14.2 m/s. It then increases to 15.2 m/s at 47 s and fluctuates, as
shown in Figure 1a. These fluctuations increase with time, and the velocity varies between
14.9 m/s and 15.2 m/s. With δ = 4, at 30.5 s, the velocity of the 1st vehicle decreases to



Appl. Sci. 2022, 12, 12981 5 of 21

14.4 m/s. It then increases to 15.46 m/s at 40.5 s and fluctuates, as shown in Figure 1b. The
fluctuations increase with time, and the velocity varies between 15.0 m/s and 15.6 m/s.
With δ = 20, the velocity of the 1st vehicle decreases to 14.1 m/s at 30.5 s. It then increases
to 15.2 m/s at 40.5 s and fluctuates, as shown in Figure 1c. The fluctuations increase with
time, and the velocity varies between 14.43 m/s and 15.7 m/s.

Table 1. Stability evaluation parameters for the ID and proposed models.

Parameter Value

Initial equilibrium velocity, v 15 m/s
Maximum severity index, αm 1
Distance headway, H 25 m
Time headway, T 2 s
Weather severity index, α 0, 0.3, 0.55, 0.7, 0.8, and 0.9
Jam spacing, sj 7 m
Minimum acceleration, a 0.73 m/s2

Maximum acceleration, b 1.67 m/s2

Vehicle length, L 5 m
Time step, ∆t 0.5 s
Acceleration exponent 1, 4 and 20
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Figure 1. The velocity of the ID and proposed models with an initial equilibrium velocity of 15 m/s:
(a) ID model, δ = 1; (b) ID model, δ = 4; (c) ID model, δ = 20; (d) proposed model, α = 0;
(e) proposed model, α = 0.3; (f) proposed model, α = 0.55; (g) proposed model, α = 0.7;
(h) proposed model, α = 0.8; (i) proposed model, α = 0.9.

For the proposed model with α = 0, the velocity of the 1st vehicle decreases to
14.1 m/s at 30.5 s. It then increases to 15.2 m/s at 40.5 s and fluctuates, as shown in
Figure 1d. The fluctuations increase with time, and the velocity varies between 14.44 m/s
and 15.7 m/s. With α = 0.3, the velocity of the 1st vehicle decreases to 14.1 m/s at 30.5 s.
It then increases to 15.1 m/s at 40 s and fluctuates, as shown in Figure 1e. The fluctuations
increase with time, and the velocity varies between 14.4 m/s and 15.6 m/s. With α = 0.55,
the velocity of the 1st vehicle decreases to 14 m/s at 30.5 s. It then increases to 15.1 m/s
at 40 s and fluctuates, as shown in Figure 1f. The fluctuations increase with time, and the
velocity varies between 14.4 m/s and 15.4 m/s. With α = 0.7, the velocity of the 1st vehicle
decreases to 14.3 m/s at 30.5 s. It then increases to 15.3 m/s at 40.5 s and fluctuates, as
shown in Figure 1g. The fluctuations increase with time, and the velocity varies between
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14.9 m/s and 15.5 m/s. With α = 0.8, the velocity of the 1st vehicle decreases to 14.2 m/s at
30.5 s. It then increases to 15.2 m/s at 41.5 s and fluctuates, as shown in Figure 1h, varying
between 14.9 m/s and 15.3 m/s. With α = 0.9, the velocity of the 1st vehicle decreases to
14.4 m/s at 30.5 s. It then increases to 15.4 m/s at 45 s and fluctuates, as shown in Figure 1i,
varying between 15.1 m/s and 15.4 m/s.

The results obtained indicate that for the ID model, an increase in δ also increases
the velocity fluctuations, as shown in Figure 1a–c. Thus, employing a constant δ leads to
instability. Conversely, for the proposed model, an increase in α decreases the velocity
fluctuations, as shown in Figure 1d–i. This indicates that the traffic behavior with the
proposed model is stable, even during adverse weather.

5. Performance Evaluation

Both the ID and proposed models are evaluated over a circular road of length 800 m,
with a platoon of 15 vehicles for 120 s, using MATLAB. It is commonly employed for
performance evaluation, as it is an interactive environment that integrates numerical and
symbolic computations with scientific visualization [43]. MATLAB has a simple language
that is ideal for quick prototyping. It can be more expensive than conventional C or Python
compilers [44], but this is more than offset by the reduced development time [44].

The explicit Euler scheme [41] with time step 0.5 s is employed to implement both
models. The simulation parameters are given in Table 2. The maximum velocity is 33.3 m/s,
the time headway is 2 s [42], and the minimum and maximum acceleration are 0.73 m/s2

and 1.67 m/s2, respectively [20]. The vehicle length is 5 m [41] and the distance headway is
25 m [40]. The proposed model is evaluated with α = 0, 0.3, 0.55, 0.7, 0.8, and 0.9, and
the ID model with δ = 1, 4, and 20. For a platoon of 15 vehicles, the jam spacing is 7 m [41]
and the maximum normalized density is 1

sj
= 0.143. For a platoon of 30 vehicles, the jam

spacing is 2 m [20] and the maximum normalized density is 1
sj

= 0.5.

Table 2. Simulation Parameters.

Parameter Value

Maximum velocity, vmax 33.3 m/s
Maximum normalized density for 15 vehicle
platoon, ρm at v = 0 m/s

1
sj

= 0.143

Maximum severity index, αm 1
Distance headway, H 25 m
Time headway, T 2 s
Weather severity index, α 0, 0.3, 0.55, 0.7, 0.8, and 0.9
Jam spacing for 15 vehicle platoon, sj 7m
Minimum acceleration, a 0.73 m/s2

Maximum acceleration, b 1.67 m/s2

Vehicle length, L 5m
Time step, ∆t 0.5 s
Jam spacing for 30 vehicle platoon, sj 2 m
Maximum normalized density for 30 vehicle
platoon, ρm at v = 0 m/s

1
sj

= 0.5

The traffic flow behavior of the ID and proposed models is given in Figure 2. This
shows that for δ = 1, the maximum flow with the ID model is 0.310 veh/s at a density
of 0.028. The corresponding velocity is 11.1 m/s, as shown in Figure 3. With δ = 4,
the maximum flow is 0.400 veh/s at a density of 0.024, and the corresponding velocity
is 16.30 m/s. With δ = 20, the maximum flow is 0.440 veh/s at a density of 0.016, and
the corresponding velocity is 27.5 m/s, as shown in Figure 3. Table 3 indicates that the
maximum flow and velocity increase with δ, whereas the density decreases.
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Table 3. Maximum flow and density, and critical velocity for the ID model.

Acceleration
Exponent δ

Maximum Flow
(veh/s) Maximum Density Critical Velocity

(m/s)

1 0.310 0.028 11.1
4 0.400 0.024 16.3
20 0.440 0.016 27.5

For the proposed model, the maximum flow with α = 0 is 0.433 veh/s at a density of
0.017, as shown in Figure 2. The corresponding velocity is 24.5 m/s, as shown in Figure 3.
With α = 0.3 and α = 0.55, the maximum flow is 0.426 veh/s and 0.413 veh/s at a density
of 0.019 and 0.021, respectively. The corresponding velocities are 22.4 m/s and 19.3 m/s,
as shown in Figure 3. With α = 0.7 and α = 0.8, the maximum flow is 0.397 veh/s and
0.376 veh/s at a density of 0.023 and 0.025 respectively. The corresponding velocities are
17.3 m/s and 15.0 m/s. With α = 0.9, the maximum flow is 0.328 veh/s at a density of
0.028, and the corresponding velocity is 11.6 m/s. Table 4 indicates that the maximum flow
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decreases as α increases, whereas the maximum density increases and the corresponding
velocity decreases.

Table 4. Maximum flow and density, and critical velocity for the proposed model.

Weather Severity
Index α

Maximum Flow
(veh/s) Maximum Density Critical Velocity

(m/s)

0 0.433 0.017 24.5
0.3 0.426 0.019 22.4

0.55 0.413 0.021 19.3
0.7 0.397 0.023 17.3
0.8 0.376 0.025 15.0
0.9 0.328 0.028 11.6

Figure 4 presents the time-space velocity evolution of the queue due to traffic conges-
tion for the ID and proposed models. This shows that, initially, the velocity in the queue is
zero. For the ID model with δ = 1, the queue dissipates at 45.5 s, as shown in Figure 4a,
while with δ = 4, the queue dissipates at 44.0 s, as shown in Figure 4b. The corresponding
velocity is 1.26 m/s and 1.14 m/s, respectively. With δ = 20, the initial queue dissipates at
43.5 s, and the velocity after the queue is 1.01 m/s, as shown in Table 5. The queue again
develops at 78.0 s and lasts until 120 s, as shown in Figure 4c. With δ = 1, the maximum
velocity is 15.0 m/s, while with δ = 4 and δ = 20, the maximum velocity is 20.0 m/s
and 25.0 m/s, respectively. These results show that the maximum velocity increases as δ
increases.
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Figure 4. Time-space velocity evolution for the ID and proposed models over an 800 m circular
road: (a) ID model, δ = 1; (b) ID model, δ = 4; (c) ID model, δ = 20; (d) proposed model,
α = 0; (e) proposed model, α = 0.3; (f) proposed model, α = 0.55; (g) proposed model, α = 0.7;
(h) proposed model, α = 0.8; (i) proposed model, α = 0.9.

For the proposed model with α = 0, the queue exists between 0 s and 44.5 s. The
velocity after the queue dissipates varies between 1.27 m/s and 1.80 m/s. The queue
appears again at 86.5 s and lasts until 120 s, as shown in Figure 4d. With α = 0.3, the queue
exists between 0 s and 45.0 s, and the velocity after the queue dissipates varies between
1.42 m/s and 2.10 m/s. The queue again develops at 91.5 s and lasts until 120 s, as shown
in Figure 4e. With α = 0.55, the queue dissipates at 42.5 s, as shown in Figure 4f, and
the corresponding velocity is 1.53 m/s. With α = 0.7 and α = 0.8, the queue dissipates
at 43.0 s and 45.0 s, respectively, as shown in Figure 4g,h. The corresponding velocity is
1.60 m/s and 2.30 m/s, respectively. With α = 0.9, the queue dissipates at 48.0 s, and the
corresponding velocity is 2.50 m/s, as shown in Figure 4g. With α = 0, 0.3 and α = 0.55,
the maximum velocity is 25.0 m/s, with α = 0.7 and α = 0.8 it is 20.0 m/s, and with
α = 0.9 it is 15.0 m/s.
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Table 5. Velocity and time for the ID and proposed models during the queue and after the queue
dissipates.

Parameter
Time When the Queue

Exists
(s)

Velocity after the
Queue Dissipates

(m/s)

Time when the Queue
Dissipates

(s)

δ = 1 0− 45.5 1.26 44.5
δ = 4 0− 44.0 1.14 44.0

δ = 20 0− 43.5 and 78.0− 120 1.01− 2.90 43.5− 78.0
α = 0 0− 44.5 and 86.5− 120 1.27− 1.80 44.5− 86.5

α = 0.3 0− 45.0 and 91.5− 120 1.42− 2.10 45.0− 91.5
α = 0.55 42.5 1.53 42.5
α = 0.7 43.0 1.60 43.0
α = 0.8 45.0 2.30 45.0
α = 0.9 48.0 2.50 48.0

Figure 5 presents the time-space vehicle trajectories for a platoon of 15 vehicles with
the ID and proposed models over a circular road of length 800 m. The red trajectory is
for the first vehicle, and the black trajectories are for the remaining 14 vehicles that follow
the 1st vehicle. The positions with the ID and proposed models of the 1st, 6th, and 10th
vehicles at 40 s are given in Table 6. These results show that for the ID model with δ = 1,
the position of the 1st and 6th vehicles is 429.4 m and 84.77 m, respectively, and the position
of the 10th vehicle is −34.83 m, as shown in Figure 5a. With δ = 4, the position of the 1st
and 6th vehicles is 522.3 m and 116.1 m, respectively, as shown in Figure 5b, while with
δ = 20, the position of the 1st and 6th vehicles is 532.5 m and 116.5 m, respectively, as shown
in Figure 5c. With δ = 4 and δ = 20, the position of the 10th vehicle is −28.58 m and
−28.57 m, respectively. For the proposed model with α = 0, the position of the 1st and
6th vehicles is 532.4 m and 116.5 m, respectively, as shown in Figure 5d. With α = 0.3,
the position of the 1st and 6th vehicles is 531.7 m and 116.5 m, respectively, as shown in
Figure 5e, while with α = 0.55, the position of the 1st and 6th vehicles is 528.5 m and
116.5 m, respectively, as shown in Figure 5f. With α = 0, 0.3 and 0.55, the position of the
10th vehicle is −28.57 m, as shown in Figure 5d–f. With α = 0.7, the position of the 1st
and 6th vehicles is 520.6 m and 119.5 m, respectively, while the position of the 10th vehicle
is −28.58 m, as shown in Figure 5g. With α = 0.8, the position of the 1st and 6th vehicles
is 505.0 m and 113.5 m, respectively, while the position of the 10th vehicle is −28.71 m,
as shown in Figure 5h. With α = 0.9, the position of the 1st and 6th vehicles is 453.3 m
and 95.8 m, respectively, while the position of the 10th vehicle is −31.75 m, as shown in
Figure 5i. Table 6 indicates that as the exponent δ increases, the distance covered by the
1st and 6th vehicles increases, whereas the distance covered by the 10th vehicle decreases.
Furthermore, with the proposed model, as α increases, the distance covered by the 1st and
6th vehicles decreases, whereas the distance covered by the 10th vehicle increases.
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Figure 5. Time-space vehicle trajectories for the ID and proposed models over an 800 m circular
road: (a) ID model, δ = 1; (b) ID model, δ = 4; (c) ID model, δ = 20; (d) proposed model,
α = 0; (e) proposed model, α = 0.3; (f) proposed model, α = 0.55; (g) proposed model, α = 0.7;
(h) proposed model, α = 0.8; (i) proposed model, α = 0.9.
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Table 6. Positions of the 1 st, 6 th, and 10 th vehicles at 40 s with the ID and proposed models.

Parameter 1st Vehicle Position
(m)

6th Vehicle Position
(m)

10th Vehicle Position
(m)

δ = 1 429.4 84.77 −34.83
δ = 4 522.3 116.1 −28.58

δ = 20 532.5 116.5 −28.57
α = 0 532.4 116.5 −28.57

α = 0.3 531.7 116.5 −28.57
α = 0.55 528.5 116.5 −28.57
α = 0.7 520.6 115.9 −28.58
α = 0.8 505.0 113.5 −28.71
α = 0.9 453.3 95.78 −31.75

Figure 6 presents the traffic flow evolution for the ID model with δ = 1, 4, and 20
over a circular road of length 800 m. With δ = 1, the flow increases to 0.31 veh/s at 63.5 s
and then decreases to 0.27 veh/s at 74.0 s. It then decreases to 0.25 veh/s at 119.5 s. With
δ = 4, the flow increases to 0.34 veh/s at 54.5 s and then decreases to 0.29 veh/s at 62.5 s.
It then increases to 0.37 veh/s at 120 s. With δ = 20, the flow increases to 0.33 veh/s at
53.0 s and then decreases to 0.27 veh/s at 63 s. The flow varies between 0.27 veh/s and
0.33 veh/s from 63.0 s to 101 s. Further, the flow rapidly increases to 2.9 veh/s at 104.5 s
and then decreases to 0.054 veh/s at 118.5 s. Figure 6 indicates that variations in the traffic
flow are greater with a larger δ.
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Figure 6. Traffic flow evolution over time with the ID model over an 800 m circular road.

Figure 7 presents the traffic flow evolution for the proposed model with α = 0, 0.3, 0.55,
0.7, 0.8, and 0.9 over a circular road of length 800 m. With α = 0, the flow increases to
0.33 veh/s at 53.0 s and then decreases to 0.27 veh/s at 63.0 s. The flow varies between
0.27 veh/s and 0.32 veh/s from 63.0 s to 101 s. It then rapidly increases to 2.7 veh/s at
105 s and then decreases to 0.054 veh/s at 118.5 s. With α = 0.3, the flow increases to 0.33
veh/s at 52.5 s and then decreases to 0.27 veh/s at 64.0 s. It varies between 0.27 veh/s and
0.33 veh/s from 64.0 s to 102 s. Then the flow rapidly increases to 2.5 veh/s at 105.5 s and
then decreases to 0.05 veh/s at 118 s. With α = 0.55, the flow increases to 0.34 veh/s at
54.0 s and then decreases to 0.27 veh/s at 64.5 s. It then increases to 0.41 veh/s at 109.5 s
and decreases to 0.32 veh/s at 120 s. With α = 0.7, the flow increases to 0.34 veh/s at
55.0 s and then decreases to 0.27 veh/s at 69.5 s. It then increases to 0.40 veh/s at 114.5 s
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and decreases to 0.38 veh/s at 120 s. With α = 0.8, the flow increases to 0.34 veh/s at
56.5 s and then decreases to 0.28 veh/s at 68.0 s. It then increases to 0.39 veh/s at 119.5 s.
With α = 0.9, the flow increases to 0.32 veh/s at 62.0 s and then decreases to 0.27 veh/s
at 76.5 s. It then decreases to 0.26 veh/s at 112.5 s and increases to 0.27 veh/s at 119.5 s.
Figure 7 indicates that the variations in traffic flow are smaller during adverse weather
than in normal weather.
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The traffic density behavior of the ID and proposed models is given in Figure 8. This
shows that for the ID model with δ = 1, the density between 0 m and 29.97 m at 118 s is
0.014. It then increases to 0.034 at 189.8 m and decreases to 0.015 at 462.8 m, as shown in
Figure 8a. The density between 0 s and 35.5 s at −96.57 m is 0.14, which indicates a traffic
queue. After the queue dissipates, the density at 118 s gradually decreases to 0.03 at 189.8 m,
as shown in Figure 8a. With δ = 4, the density between 0 m and 3.33 m at 119.5 s is 0.014.
It then increases to 0.04 at 109.9 m, decreases to 0.03 at 166.5 m, and decreases further at
512.8 m, as shown in Figure 8b. The density between 0 s and 34.5 s is 0.14, which indicates
a traffic queue. The queue then gradually dissipates, and at 118 s, the density decreases
to 0.04 at 96.57 m, as shown in Figure 8b. With δ = 20, the density between −63.27 m and
−36.63 m at 117.5 s is 0.14, which indicates a traffic queue. The density then decreases to
0.01 at 126.5 m, as shown in Figure 8c. The density between 0 s and 35.0 s is 0.14, which
indicates a traffic queue. The density at 62.0 s gradually decreases to 0.06 at −69.9 s. The
queue develops again at 74.0 s and −39.96 m, with a density of 0.14, and at 120 s is between
−63.27 m and −36.63 m, as shown in Figure 8c. Figure 8a–c show that as δ increases the
changes in density over time increase, which indicates that the model is not stable.
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Figure 8. Traffic density behavior of the ID and proposed models over an 800 m circular road: (a) ID
model, δ = 1; (b) ID model, δ = 4; (c) ID model, δ = 20; (d) proposed model, α = 0; (e) proposed
model, α = 0.3; (f) proposed model, α = 0.55; (g) proposed model, α = 0.7; (h) proposed model,
α = 0.8; (i) proposed model, α = 0.9; (j) proposed model for a platoon of 30 vehicles, α = 0;
(k) proposed model for a platoon of 30 vehicles, α = 0.9.

For the proposed model with α = 0, the density between −63.27 m and −39.96 m
at 119.5 s is 0.14, which indicates a traffic queue. After the queue dissipates, the density
decreases to 0.09 at −36.63 m and then to 0.01 at 199.8 m, where it remains, as shown
in Figure 8d. The density between 0 s and 34.0 s at −93.24 m is 0.14, which indicates a
traffic queue. After the queue dissipates, the density at 50.5 s gradually decreases to 0.05 at
−69.93 m. The queue again develops at 73.5 s and −39.96 m, with a density of 0.14, and
remains until 120 s, as shown in Figure 8d. With α = 0.3, the density between −56.61 m
and −29.97 m at 119.5 s is 0.14, which indicates a traffic queue. The density then decreases
to 0.09 at −26.64 m and 0.01 at 219.8 m, where it remains, as shown in Figure 8e. The
density between 0 s and 37.5 s is 0.14, which indicates a queue. After the queue dissipates,
the density gradually decreases to 0.05 at 50.5 s and −69.93 m. The queue again develops
at 78.0 s and −33.30 m, with a density of 0.1, and remains until 120 s, as shown in Figure 8e.
With α = 0.55, the density between 0 m and 6.66 m at 120 s is 0.01. It then increases to
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0.05 at 63.27 m and decreases to 0.01 at 299.7 m, where it remains, as shown in Figure 8f.
The density between 0 s and 34.5 s is 0.14, which indicates a traffic queue. After the queue
dissipates, the density at 55.5 s decreases to 0.06 at −73.26 m and then to 0.05 at 119.5 s
at 63.27 m, as shown in Figure 8f. With α = 0.7, the density between 0 m and 3.33 m at
119.5 s is 0.01. It then increases to 0.04 at 113.2 and decreases to 0.01 at 299.7 m, where it
remains, as shown in Figure 8g. The density between 0 s and 34.5 s is 0.14, which indicates
a queue. After the queue dissipates, the density at 49.0 s gradually decreases to 0.06 at
−79.92 m. It then decreases to 0.03 at 119.5 s and 113.2 m, as shown in Figure 8g. With
α = 0.8, the density between 0 m and 63.27 m at 118.5 s is 0.01. It then increases to 0.03 at
149.9 m and decreases to 0.01 at 366.6 m, as shown in Figure 8h. The density between 0 s
and 34.5 s is 0.14, which indicates a queue. After the queue dissipates, the density decreases
to 0.06 at 48.5 s and −83.24 m and then to 0.03 at 119 s and 149.9 m, as shown in Figure 8h.
With α = 0.9, the density between 0 m and 86.58 m at 118.5 s is 0.01. It increases to 0.033 at
203.3 m and decreases to 0.015 at 496.2 m, as shown in Figure 8i. The density between 0 s
and 35.5 s is 0.14, which indicates a queue. After the queue dissipates, the density decreases
to 0.05 at 52.0 s and−69.93 m and then to 0.033 at 119.5 s and 203.3 m, as shown in Figure 8i.
Figure 8d–i show that as the weather severity index α increases, the changes in density
with the proposed model decrease over time, which is realistic.

The density of the proposed model for a platoon of 30 vehicles with α = 0 and
α = 0.9 is presented in Figure 8j,k, respectively. With α = 0, the density between
−99.90 m and −96.57 m at 150 s is 0.5, which indicates a traffic queue. After the queue
dissipates, the density decreases to 0.02 at 73.26 m and remains there until 662.7 m. It then
increases to 0.064 at 696.0 m, as shown in Figure 8j. The density between 0 s and 49.0 s at
−53.28 m is 0.5, which indicates a traffic queue. The density at 55.0 s gradually decreases
to 0.31 at −49.95 m. The queue again develops at 57.5 s and −56.67 m, with a density of 0.5,
and remains there until 150 s, as shown in Figure 8j. With α = 0.9, the density between
−109.9 m and −66.6 m at 146.5 s is 0.02. It increases to 0.09 at 6.66 m and decreases to 0.037
at 133.2 m, where it remains, as shown in Figure 8k. The density between 0 s and 44.5 s is
0.5, which indicates a traffic queue. After the queue dissipates, the density decreases to
0.21 at 62.5 s and −49.95 m and then decreases to 0.09 at 148.5 s and 6.66 m, as shown in
Figure 8k.

The above results show that the changes in velocity and density with the proposed
model decrease as the weather becomes more adverse. This holds when the platoon of
vehicles is increased from 15 to 30, as indicated in Figure 8j,k. Conversely, the ID model
velocity and density depend on a constant exponent δ, which results in unrealistic traffic
behavior. For example, large changes in density occur with δ = 20, which increase over
time, whereas they should decrease. Furthermore, vehicles move slower with a larger
exponent δ. With the proposed model, vehicles move based on the weather severity index
α, and are slower with a larger α, as expected. This is because drivers are more cautious in
adverse weather. In addition, the flow is smoother with the proposed model compared to
the ID model. Moreover, the variations in flow are smaller during adverse weather with
the proposed model, but the variations with the ID model increase with δ.

6. Conclusions

The weather has a significant impact on traffic behavior. Snow, ice, and rain reduce
road friction, which leads to higher accident rates. In this paper, a microscopic traffic flow
model was proposed that characterizes traffic behavior based on the road surface conditions.
These conditions were determined using the weather severity index. The performance of
this model was evaluated for different weather severity indices and compared with the
ID model over a circular road of length 800 m. Results were presented that show during
adverse weather, the changes in density with the proposed model are smaller than with the
ID model. With the ID model, the traffic queue does not dissipate with a larger exponent δ,
which is unrealistic. Conversely, with the proposed model, the queue dissipates quickly
with a larger weather severity index (adverse weather), while it dissipates slowly with a
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smaller index (normal weather), as expected. Moreover, vehicle movement with the ID
model is based on a constant δ, which leads to unrealistic traffic behavior. Conversely,
vehicle motion with the proposed model is based on the weather severity index, which
results in a smooth flow that is realistic. The variations in flow are smaller than with the
ID model. Further, the ID model velocity exhibits oscillatory behavior that increases with
δ; thus, the model can be unstable. Conversely, the oscillations with the proposed model
decrease with an increase in the weather severity index, as expected.

The results obtained suggest that the proposed model can be employed in adaptive
cruise control (ACC) systems and connected and automated vehicles (CAVs) for effective
traffic control. It can also be incorporated into advanced driver assistance systems (ADASs)
to improve traffic safety by providing information about road surface conditions during
adverse weather. Existing studies based on data obtained in the field are limited by the
variability in weather conditions and the type and amount of data obtained. Thus, future
research can incorporate weather parameters, such as radiation, temperature, visibility, and
wind obtained in real-time from roadside units.
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