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Abstract A two-dimensional microslip friction model

with normal load variation induced by normal motion

is presented in this paper. The model is a distributed

parameter model, which characterizes the stick-slip-

separation of the contact interface and determines the

resulting friction force, including its time variance

and spatial distribution, between two elastic structures.

When the relative motion is simple harmonic motion,

the stick-slip-separation transition angles associated

with any point in the contact area can be analytically

determined within a cycle of motion. In addition, if

the relative motion is given, stick-slip-separation tran-

sition boundaries inside the contact area and their time

variances can be determined. Along with an iterative

multi-mode solution approach utilizing harmonic bal-

ance method (HBM), the developed model can be em-

ployed to determine the forced response of frictionally

constrained structures. In the approach, the forced re-

sponse is constructed in terms of the free mode shapes

of the structure; consequently, it can be determined at

any excitation frequency and for any type of normal

load distribution. Two examples, a one-dimensional

beam like damper and a more realistic blade to ground

damper, are employed to illustrate the predictive abil-

ities of the developed model. It is shown that while
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employing a single mode model, transition boundaries

for the beam like damper agrees with the results given

in the literature, the developed method identifies the

phase difference along the slip to stick transition bound-

ary when a multi-mode model is employed. Moreover,

while partial slip is illustrated in the two examples, typ-

ical softening and hardening effects, due to separation

of the contact surface, are also predicted for the blade

to ground damper.

Keywords Bladed disks . Friction damping . Friction

model . Microslip . Nonlinear vibration . Normal load
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1 Introduction

Mechanical systems having frictionally constrained in-

terfaces often involve complex contact kinematics in-

duced by the relative motion between moving com-

ponents [1, 2]. When the relative motion stays on the

contact plane, the contact normal load remains constant

during the course of motion and the interface experi-

ences stick-slip friction induced by the tangential mo-

tion. This type of contact kinematics arises from either

the specific design of friction contact [3, 4] or from the

simplification of the analysis [5, 6]. More generally, if

the relative motion has normal component perpendic-

ular to the contact plane, the normal motion will cause

normal load variation and possible intermittent sepa-

ration of the two contacting surfaces. It can occur in
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various systems such as shroud contact interfaces of

fan blades and wedge damper contact of turbine blades

in turbine jet engines [7, 8].

In order to determine the forced response of

shrouded fan stages, the stick-slip-separation analysis

was undertaken by Menq et al. [9] in 1986, in which

the normal motion was assumed to be in phase with

the tangential motion and analytical formulas for the

resulting contact friction force were derived. A more

comprehensive model dealing with normal load varia-

tion was developed by Yang et al. [10] in 1998. They

developed analytical criteria for stick-slip-separation

transition when subjected to general time varying nor-

mal load and derived analytical formulas for transition

angles when the relative motion was simple harmonic

motion. The effect of normal load variation was also ad-

dressed by Yang and Menq [11] for three-dimensional

harmonic motion in 1998 and by Chen et al. [12] for

three-dimensional periodic motion in 2001. Later in

2003, utilizing the similar criteria developed in [10],

Petrov and Ewins [13] published their work for one-

dimensional tangential motion with normal load vari-

ation and described an algorithm to determine transi-

tion angles numerically for periodic motion, similar

to that reported in [12]. They applied their method to a

bladed disk system, in which each blade was connected

to the neighboring blade through a single nonlinear

element.

It should be noted that, all the above-mentioned fric-

tion models are for point contact, in which the entire

interface is either in stick, slip, or separation states and

partial slip is not possible. This so-called macroslip

approach is widely used and works well if the normal

load is small. However, microslip, or partial slip of

the friction interface, becomes important and needs to

be taken into account when the friction contact pres-

sure is large. An interesting aspect of the microslip

approach [14–18] is the assumption that the friction

force is transmitted across a contact area rather than

through a point of contact and that a distributed version

of Coulomb’s law of friction determines which part of

the contact surface slips. The effects of microslip on

the vibration of frictionally constrained structures and

its significance were experimentally verified [15, 19,

20]. It is important to note that, due to its mathemati-

cal complexity, most of the models developed for mi-

croslip friction are for simple structures and for simple

contact kinematics, which leaves real contact problems

unaddressed.

Menq et al. [14] developed a continuous microslip

friction model, in which an elastic bar having a uni-

form normal load distribution and in contact with the

rigid ground was studied. A shear layer, which allows

elastic deformations before the beginning of slip, was

placed in between the rigid ground and the bar. The

elastic bar is connected to a spring at the left end and

analyzed under the effect of a static force applied at

the right end. The developed microslip friction damper

is analyzed with a single degree of freedom oscillator

using Harmonic Balance Method, and the results indi-

cated fifty percent reductions in the resonant response

for high normal load distributions. Furthermore, this

developed friction model was used to explain turbine

blade friction damping data and shroud damping data

in reference [15].

Based on the model developed in [14] and described

above, Csaba [16] proposed a microslip friction model

with a quadratic normal load distribution, where the

shear layer is removed for simplicity. A single blade

with a friction damper was analyzed and it was ob-

served that predictions of vibration amplitudes from

macroslip model were much higher than those of the

microslip one. The beam model in [14] was also ad-

dressed by Quinn and Segalman [17]; where in order

to investigate joint dynamics, authors obtained analyt-

ical expressions for quasi-static case excluding the in-

ertial term, and developed a discrete model in order

to numerically solve the same problem with the in-

ertial effects included. From the numerical analysis,

authors deduced that, for low frequency excitations,

quasi-static model approximates the system response

closely.

Cigeroglu et al. [18] developed a one-dimensional

dynamic microslip friction model including the inertia

of the damper, based on the beam model developed in

[14]. Three different normal load distributions result-

ing in two distinct friction interfaces were considered

and the analytical solutions considering the first vibra-

tion mode of the elastic bar were developed. The effect

of excitation frequency on the hysteresis curves and

Fourier coefficients was presented and the results ob-

tained were compared with each other.

This paper presents a two-dimensional microslip

friction model, in which the relative motion between the

two contacting planes is two-dimensional and can be re-

solved into two components. The tangential component

induces stick-slip friction while the normal component

causes normal load variation and possible separation.
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The model is a distributed parameter model, in which

the transition criteria developed in [10] are employed

to characterize the stick-slip-separation of the con-

tact interface. Since only single harmonic motions are

considered, the stick-slip-separation transition angles

associated with any point in the contact area can be

analytically determined within a cycle of motion. Con-

sequently, the spatial distributions and time variances

of these transition angles over the contact interface and

the associated 2D contact friction maps can be deter-

mined. Along with an iterative multi-mode solution ap-

proach utilizing harmonic balance method (HBM), the

obtained 2D contact friction maps can be employed

to determine the forced response of frictionally con-

strained structures. In the approach, the forced response

is constructed in terms of the free mode shapes of the

structure. Consequently, it can be determined at any ex-

citation frequency and for any type of normal load dis-

tribution. Two examples, a one-dimensional beam like

damper and a more realistic blade to ground damper,

are employed to illustrate the predictive abilities of the

developed model.

2 Two-dimensional microslip friction model with

normal load variation

In Fig. 1, planar contact of two bodies is given where

the gray region is the contact interface composed of dis-

tributed springs, representing normal stiffness and tan-

gential stiffness. The orientation of the contact plane

is assumed to be invariant as the amplitude of vibra-

tion is relatively small. The global coordinate system

is denoted by (x, y, z) with respect to which the dis-

placements of bodies A and B are defined while (p,

q, r) is the contact plane coordinate system where the

contact plane is defined as q = 0. Any point in the con-

tact plane coordinate system can be transferred to the

global coordinate system by a translation and a rotation

as follows:

⎡

⎣

x

y

z

⎤

⎦ = R

⎡

⎣

p

q

r

⎤

⎦ +

⎡

⎣

p0

q0

r0

⎤

⎦. (1)

In this equation, R is the orientation matrix and

[ p0 q0 r0 ]T is the position of (p, q, r) in (x, y, z). The

spatial domain of the contact interface is specified in

(p, q, r). Any point within the domain is denoted by

Fig. 1 Planar contact of two bodies

[pc 0 rc]T and its coordinate in (x, y, z) can be deter-

mined from the following equation

⎡

⎣

xc

yc

zc

⎤

⎦ = R

⎡

⎣

pc

0

rc

⎤

⎦ +

⎡

⎣

p0

q0

r0

⎤

⎦ . (2)

The contact preload and its distribution over the

contact area can be determined through static analy-

sis. When vibrating, the dynamic motions of the two

bodies, associated with any contact point [xc yc zc]T

in (x, y, z), are denoted by dA(xc, yc, zc, t) and

dB(xc, yc, zc, t), respectively, in which t is the tem-

poral variable. The relative motion in (p, q, r) can then

be determined from the following relation

⎡

⎣

u(pc, rc, t)

v(pc, rc, t)

w(pc, rc, t)

⎤

⎦ = R−1 [dA − dB] . (3)

In general, the relative motion is three-dimensional

and has tangential component [u w]T and normal com-

ponent v. For simplicity, this paper focuses on a two-

dimensional version, in which while the normal motion

v is retained, the two bodies move with respect to each

other on the contact plane back and forth along the p

direction. In other words, the r component of the rela-

tive motion, w, is assumed to be zero, and the relative

motion is characterized by the in-plane motion u and

out of plane motion v, associated with p- and q-axis,

respectively. The r -axis is used to define the contact

interface together with the p-axis.

Springer



612 Nonlinear Dyn (2007) 50:609–626

2.1 Stick, slip, and separation transition

A contact pair in the distributed contact model is illus-

trated in Fig. 2, in which u (p, r, t), v (p, r, t), ku (p, r ),

su (p, r, t), n0 (p, r ) and kv (p, r ) are the relative mo-

tion in the slip direction, relative motion in the nor-

mal direction, contact stiffness distribution in the slip

direction, slip motion, preload distribution, and nor-

mal stiffness distribution, respectively. The two spatial

variables, p and r , are specified on the contact plane

and within the contact area, and their subscript “c” is

removed for simplicity. The preload n0 (p, r ) is posi-

tive if the contact pair is preloaded. On the other hand,

n0 (p, r ) is negative and in proportional to normal stiff-

ness distribution kv (p, r ) if it has an initial gap. The

two-dimensional motion considered in the model is

composed of two perpendicular components: tangen-

tial motion u (p, r, t) in the p direction and the normal

motion v (p, r, t) in the q direction. The normal motion

causes normal load variation and possible separation,

according to the following equation,

n(p, r, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n0(p, r ) + kv(p, r )v(p, r, t),

if v(p, r, t) ≥ −n0(p, r )/kv(p, r )

0,

if v(p, r, t) < −n0(p, r )/kv(p, r )

,(4)

and the resulting friction force is related to the tangen-

tial relative motion according to the following equation,

if the slip motion su(p, r, t) is known,

f (p, r, t) = ku (p, r ) [u (p, r, t) − su (p, r, t)] . (5)

It is evident that in order to determine the slip mo-

tion and thus the resulting friction force, stick-slip-

separation needs to be determined according to the tan-

gential relative motion and normal motion. The stick-

slip-separation transition criteria employed in this pa-

per are based on those developed by Yang and Menq

in [10].

2.1.1 Slip-to-stick transition

Transition from slip to stick state occurs when slip ve-

locity, ∂su/∂t = 0; and while slipping, friction force

can be determined from

f (p, r, t) = ±μn (p, r, t). (6)

( , , )v p r θ

( , , )u p r θ

( , , )us p r θ

( , )vk p r

( , )uk p r
( , )on p r

( , , )v p r θ

( , , )u p r θ

( , , )us p r θ

( , )vk p r

( , )uk p r
( , )on p r

( , , )v p r θ

( , , )u p r θ

( , , )us p r θ

( , )vk p r

( , )uk p r
( , )on p r

Fig. 2 Distributed contact model for 2D motion

Differentiating Equations (5) and (6) with respect to

time and equating them, slip velocity is determined as

follows:

∂su

∂t
=

∂u

∂t
±

μkv (p, r )

ku (p, r )

∂v

∂t
. (7)

Using Equation (7), transition criteria from positive slip

to stick and negative slip to stick are given as:

∂u

∂t
−

μkv(p, r )

ku(p, r )

∂v

∂t
= 0,

∂2u

∂t2
−

μkv(p, r )

ku(p, r )

∂2v

∂t2
< 0, (8)

∂u

∂t
+

μkv(p, r )

ku(p, r )

∂v

∂t
= 0,

∂2u

∂t2
+

μkv(p, r )

ku(p, r )

∂2v

∂t2
> 0, (9)

respectively. Inequalities in Equations (8) and (9) are

used to guarantee slip to stick transition.

2.1.2 Stick-to-slip transition

Friction force at the stick state is given as follows

f (p, r, t) = ku(p, r )[u(p, r, t) − u0(p, r )]

+ f0(p, r ), (10)
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where, u0 (p, r ) and f0 (p, r ) are distribution of dis-

placement and friction force at the beginning of stick

state. Stick to slip transition occurs when the friction

force reaches to the slip load which can be determined

by equating Equations (6) and (10). Transition from

stick to positive-slip and from stick to negative-slip

are:

ku(p, r )[u(p, r, t) − u0(p, r )] + f0(p, r )

− μ[n0(p, r ) + kv(p, r )v(p, r, t)] = 0,

ku(p, r )
∂u

∂t
− μkv(p, r )

∂v

∂t
> 0, (11)

ku(p, r )[u(p, r, t) − u0(p, r )] + f0(p, r )

+ μ[n0(p, r ) + kv(p, r )v(p, r, t)] = 0,

ku(p, r )
∂u

∂t
+ μkv(p, r )

∂v

∂t
< 0, (12)

respectively. Again, inequalities given in Equations

(11) and (12) are used to ensure the stick to slip transi-

tion.

2.1.3 Separation

Separation occurs when the friction interfaces loose

contact and, beginning and end of separation can be

determined from the following criteria:

n0(p, r ) + kv(p, r )v(p, r, t) = 0,
∂v

∂t
> 0, (13)

n0(p, r ) + kv(p, r )v(p, r, t) = 0,
∂v

∂t
< 0, (14)

respectively. At the end of separation the next state can

be determined by the following criteria:

Stick : −
μkv(p, r )

ku(p, r )

∂v

∂t
<

∂u

∂t
<

μkv(p, r )

ku(p, r )

∂v

∂t
,

(15)

Positive slip :
∂u

∂t
>

μkv(p, r )

ku(p, r )

∂v

∂t
, (16)

Negative slip :
∂u

∂t
< −

μkv(p, r )

ku(p, r )

∂v

∂t
. (17)

It should be noted that, the friction coefficient in

this analysis is taken as constant through out the con-

tact interface; however, it can as well be considered as

a distributed parameter and the same equations can be

used if the distribution of friction coefficient is com-

bined with the normal load distribution.

2.2 Transition angles

While the transition criteria given in Equations (8–17)

can be applied to any arbitrary relative motion, the de-

termination of transition angles often requires numer-

ical simulation. Nonetheless, if the forced response is

of interest and the relative motion is assumed to be

single harmonic motion, stick-slip-separation transi-

tion angles can be determined analytically based on

the derived criteria. Assuming the following form for

the relative motions

u(p, r, θ ) = a(p, r ) sin(θ ),

v(p, r, θ ) = b(p, r ) sin(θ + ϕ(p, r )),
(18)

where θ = ωt and, ω and t are the oscillation fre-

quency and time, respectively; transition angles as a

function of p and r are determined and expressed

in terms of three dimensionless parameters, namely

b̄(p, r ) = μkv(p, r )b(p, r )/ku(p, r )a(p, r ), ϕ(p, r ),

and n̄o(p, r ) = μno(p, r )/ku(p, r )a(p, r ). Stick, slip,

separation transitions in one cycle of motion

can be categorized in three different groups:

complete stick, stick-slip without separation and

separation.

When the preload acting on the friction interface is

high and the relative motion is small the friction in-

terface sticks all the time and this can be identified

by eliminating the criteria given in Equations (11) and

(12), which can be characterized by the following in-

equality:

2n̄0(p, r ) >

√

1 + b̄(p, r )2 − 2b̄(p, r ) cos[ϕ(p, r )]

+

√

1 + b̄(p, r )2 + 2b̄(p, r ) cos[ϕ(p, r)]

(19)

Similarly, eliminating the criteria given in Equations

(13) and (14), the condition for no separation can be

derived as

√

1 + b̄(p, r )2 − 2b̄(p, r ) cos[ϕ(p, r )]

+
√

1 + b̄(p, r )2 + 2b̄(p, r ) cos[ϕ(p, r )]

> 2n̄0(p, r ) > b̄(p, r ).

(20)
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2.2.1 Stick-slip but no separation

When the amplitude of the relative motion increases

to some extent, the friction contact begins to slip but

still remains in contact. In this case, the friction con-

tact undergoes alternating stick-to-slip motion, which

results in a hysteresis loop consisting of four alter-

nating regions (positive-slip, stick, negative-slip and

stick) separated by four transition angles. Substituting

Equation (18) to Equations (8) and (9), positive-slip

to stick and negative-slip to stick transition angles are

derived as follows:

θP (p, r ) = π − ψ(p, r )

− arctan

(

1 − b̄(p, r ) cos[ϕ(p, r )]

b̄(p, r ) sin[ϕ(p, r )]

)

,

(21)

θN (p, r ) = π − ψ(p, r )

+ arctan

(

1 + b̄(p, r ) cos[ϕ(p, r )]

b̄(p, r ) sin[ϕ(p, r )]

)

,

(22)

where

ψ (p, r ) =

{

0, if 0 < ϕ (p, r ) < π

π, if π < ϕ (p, r ) < 2π
.

Transition angles from stick to positive-slip and from

stick to negative-slip are given as:

θSt P (p, r ) = ψ(p, r )+ arccos

(

ℓ2(p, r )−2n̄0(p, r )

ℓ1(p, r )

)

− arctan

(

1 − b̄(p, r ) cos[ϕ(p, r )]

b̄(p, r ) sin[ϕ(p, r )]

)

,

(23)

θSt N (p, r ) = +ψ(p, r )+ arccos

(

ℓ1(p, r )−2n̄0(p, r )

ℓ2(p, r )

)

+ arctan

(

1 + b̄(p, r ) cos[ϕ(p, r )]

b̄(p, r ) sin[ϕ(p, r )]

)

,

(24)

where

ℓ1(p, r ) =

√

1 + b̄(p, r )2 − 2b̄(p, r ) cos[ϕ(p, r )],

ℓ2(p, r ) =

√

1 + b̄(p, r )2 + 2b̄(p, r ) cos[ϕ(p, r )].

2.2.2 Separation

If separation exists, hysteresis loop is composed of 10

possible sequences of alternating stick-slip-separation

which are characterized by six transition angles. From

the criteria given in Equations (13) and (14), start and

end of separation angles are derived as

θSp1(p, r ) = π + arcsin

(

n̄0(p, r )

b̄(p, r )

)

− ϕ(p, r ), (25)

θSp2(p, r ) = − arcsin

(

n̄0(p, r )

b̄(p, r )

)

− ϕ(p, r ). (26)

Transition angels for positive-slip to stick and

negative-slip to stick are given in Equations (21) and

(22), respectively. The transition angels from negative-

slip-stick to positive-slip and positive-slip-stick to

negative-slip can be obtained from Equations (23) and

(24); however, if the previous state of stick is sepa-

ration then transition angles from separation-stick to

positive-slip and separation-stick to negative-slip are

given as

θSpP (p, r ) = π − ψ(p, r )

− arccos

(

sin[θSp2(p, r )] + n̄0(p, r )

l1(p, r )

)

− arctan

(

1 − b̄(p, r ) cos[ϕ(p, r )]

b̄(p, r ) sin[ϕ(p, r )]

)

,

(27)

θSpN (p, r ) = ψ(p, r )

+ arccos

(

sin[θSp2(p, r )] − n̄0(p, r )

l2(p, r )

)

+ arctan

(

1 + b̄(p, r ) cos[ϕ(p, r )]

b̄(p, r ) sin[ϕ(p, r )]

)

.

(28)

Since the analytical distribution of transition an-

gles are known, it is possible to determine stick-slip-

separation (friction interface) map at any instant. This

friction interface map is useful to understand how the

friction damper works and it can as well be used to

estimate wear of the contacting surfaces.
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2.3 Stick-slip-separation map

It has been shown that if the relative motion is given

and assumed to be single harmonic motion, analytical

expressions for transition angles in terms of the two spa-

tial variables are available. These expressions, θ (p, r ),

can be visualized as three-dimensional surfaces. The

stick-slip-separation map at any instant is composed of

stick-slip-separation transition boundaries, which can

be determined by intersecting those 3D surfaces with

the associated constant θ value. Moreover, the time

variance of this friction interface map can be illustrated

by changing θ value. In this work, stick-slip-separation

map is used to demonstrate the microslip phenomenon,

whereas it can as well be employed to estimate com-

ponent wear caused by the rubbing of contact surfaces.

Some of the factors affecting wear of sliding surfaces

are duration of sliding, normal load, and friction (tan-

gential) force acting on the contact interface. Normal

load and friction force distributions are already deter-

mined from the developed friction model and the du-

ration of sliding can be obtained from the stick-slip-

separation map, which can be used to estimate the wear

of sliding surfaces.

2.4 Distribution of Fourier coefficients

Given the relative motion, which is assumed to be sin-

gle harmonic motion, transition angles, and thus the re-

sulting friction force over a cycle of motion, are known

analytically. If the forced response is of interest, the re-

sulting friction force can be approximated by its Fourier

components.

f (p, r, θ ) ∼= fb(p, r ) + fs(p, r ) sin(θ )

+ fc(p, r ) cos(θ ), (29)

where fb(p, r ) is the distribution of the mean force,

fs(p, r ) spring force, and fc(p, r ) damping force. For

the same purpose, the Fourier coefficients of the vari-

able normal load can be derived. These distribution

functions illustrate the spatially distributed dynamic

characteristics of the contact friction interface.

3 Forced response

Finite element models are often used in the forced re-

sponse analysis of complex structures, which result in

many degrees of freedom (DOF). Due to the friction

contact, this results in large systems of nonlinear equa-

tions which need to be solved iteratively. This is a com-

putationally expensive and also an inefficient process.

Menq and Griffin [21] in 1985 developed a nonlin-

ear forced response analysis method for steady state

response of frictionally damped structures using finite

element models. In the developed method, using the re-

ceptance of the linear system, authors considered only

the nonlinear DOF first and determined the harmonic

displacement of these DOF by an iterative solution pro-

cedure. Using these displacements, the forces acting on

these DOF were obtained, and treating them as external

forces and together with the excitation forces, authors

determined the response of the complete structure. This

method reduces the number of nonlinear equations to

the number of nonlinear DOF, and it is a very efficient

method to analyze frictionally constrained structures,

since the nonlinearity comes only from the friction-

ally constraint DOF. Structural modification techniques

were as well applied by Tanrıkulu et al. [22], Sanliturk

et al. [23] and Ciğeroğlu and Özgüven [24] in order

to solve large nonlinear equation systems, where the

dynamic stiffness matrix of the nonlinear system was

determined by applying structural modifications to dy-

namic stiffness matrix of the linear system.

The methods explained above can as well be ap-

plied to model microslip friction; however, many fric-

tion elements are needed in microslip modeling which

results in large number of nonlinear DOF. Moreover,

if the bladed disk system is mistuned, since the cyclic

symmetry of the structure is destroyed; all the blade-

damper sectors have to be included into the forced re-

sponse analysis resulting in even larger nonlinear equa-

tion systems. It should be noted that, the finite element

models for bladed disk systems contain many DOF;

thus, even for linear forced response analysis, reduc-

tion techniques are employed [25–27]. In this work, a

modal superposition technique is used, where the mo-

tion of the frictionally constrained structure is assem-

bled from its free mode shapes. In this approach, the

number of unknowns depends on the number of mode

shapes used in the modal expansion process, which de-

creases the number of nonlinear equations significantly

even for microslip models.
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3.1 Multi-mode solution method

Equation of motion in matrix form for a system with

dry friction dampers can be written in the following

form

MẌ + CẊ + KX = Fe (t) + Fn(X ), (30)

in global coordinate system, where M, C,K,

Fe (t) , Fn (X ), and X are the mass matrix, viscous

damping matrix, stiffness matrix, excitation force

vector, nonlinear friction force vector and relative

displacement vector, respectively. The 2D microslip

friction model developed is defined on the contact

plane coordinate system. Therefore, the nonlinear

friction and normal forces obtained from the model

are as well in the contact plane coordinate system.

Displacement vector X in global coordinates can be

written as

X (B, A, x, y, z) =

N
∑

n=1

Bnφn(x, y, z)

+ Re

(

N
∑

n=1

Anφn(x, y, z)eiθ

)

,

(31)

where φn, Bn, An , and N are the nth mode shape of fric-

tionally constrained structure in global coordinate sys-

tem, nth real and complex modal coefficients for dc and

ac components of motion, and number of modes used in

the modal expansion process, respectively. Transform-

ing X to contact plane coordinates, the relative motion

of friction interface points in contact plane coordinates

can be expressed as a function of the modal coefficient

vectors

u = u(B, A, p, r, θ ), (32)

v = v(B, A, p, r, θ ), (33)

where B and A are the real and complex modal co-

efficient vectors for dc and ac components of motion,

respectively. The nonlinear (friction and normal) force

vector in contact plane coordinate system can be writ-

ten similar to Equation (29) using the relative displace-

ments given by Equations (32) and (33) as

c Fn(B, A, p, r, θ ) ∼= Fb(B, A, p, r )

+ Fs(B, A, p, r ) sin θ + Fc(B, A, p, r ) cos θ.

(34)

Using the orthogonality of mode shapes, Equation (30)

can be simplified to

(

Ω − ω2I + iωCr

)

A = Qe
s + i Qe

c + Qs(B, A)

+ i Qc(B, A), (35)

ΩB = Qb(B, A), (36)

if mass normalized mode shapes are used. Here Qe
s and

Qe
c are the in phase and out of phase modal force vectors

for the excitation forces, Qb, Qs and Qc are the modal

force vectors for mean, spring and damping forces, Ω

is N × N diagonal matrix of squares of natural fre-

quencies and Cr is the modal damping matrix, which

is diagonal if the damping is proportional. The modal

forcing vectors on the right hand side of Equations (35)

and (36) are

Qe
s =

∫∫

De

∫

[

φun
(p, q, r ) f e

su
(p, q, r )

+ φvn
(p, q, r ) f e

sv
(p, q, r )

]

dp dq dr

Qe
c =

∫∫

De

∫

[

φun
(p, q, r ) f e

cu
(p, q, r )

+ φvn
(p, q, r ) f e

cv
(p, q, r )

]

dp dq dr,

(37)

Q∗n
(B, A) =

∫∫

D

[

φun
(p, 0, r ) f∗u

(B, A, p, r )

+ φvn
(p, 0, r ) f∗v

(B, A, p, r )
]

dp dr,

(38)

where φun
and φvn

are the nth mode shapes of the fric-

tionally constrained structure in contact plane coordi-

nates; f e and f represent the excitation and nonlinear

contact forces in contact plane coordinates; ∗ corre-

sponds to s, c, or b; and u and v indicate the direc-

tion of mode shapes and forces along p and q axes,

respectively. In addition to this De and D are the

domain of integrations for the excitation and contact

forces, respectively. Since the modal force vectors are

in modal coordinates, they can be obtained using the
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mode shapes and forcing vectors in contact plane coor-

dinate system as given in Equations (37) and (38). This

reduces the order of integration in Equation (38) from

triple to double integration, since the contact interface

D is a 2D plane area in contact plane coordinate system

whereas it is a 3D surface in global coordinate system.

Equations (35) and (36) describe a set of nonlinear al-

gebraic equations and the unknown modal coefficient

vectors B and A can be solved by an iterative nonlinear

solver. It should be noted that, the total number of un-

knowns in this nonlinear equation set is 3N , which is

equal to the number of terms used in the Fourier series

expansion multiplied by the number of mode shapes

used in the modal expansion; and once the modal coef-

ficient vectors are obtained, the motion of the friction-

ally constrained structure can be constructed.

4 Examples

Two examples, a one-dimensional bar-like damper and

a more realistic blade to ground damper, are employed

to illustrate the predictive abilities of the developed

model.

4.1 1D bar model

This example is of interest because related results are

given in the literature. The analytical solution proce-

dure developed in [18] uses single mode information

of a bar like damper to derive analytically the spatial

boundary of the stick-slip transition for specific normal

load distribution. Owing to the complicity of the stick-

slip transition, solutions are limited to the range of first

vibration mode and for three different normal load dis-

tributions, which are time invariant. On the other hand,

the method presented in this paper is capable of dealing

with multi-mode vibration and with normal load that

has arbitrary spatial distribution and is time variant.

However, for the purpose of comparison, the normal

load will be kept time invariant in this example, and

the focus will be on the effect of number of modes

used in the analysis.

A 1D bar model similar to the one in [18] is given

in Fig. 3, where E, A, ρ, L , β, q (x) and F (t) are the

modulus of elasticity, cross-sectional area, density, and

length of the bar, strain hardening stiffness, normal

load distribution and excitation force, respectively. The

shear layer in [18] is replaced by distribution of contact

stiffnesses in slip direction, ku (x). For harmonic forc-

ing, partial differential equation for this system is

E A
∂2u

∂x2
− ρ Aω2 ∂2u

∂θ2
= τ (u, x)−F0δ(x − L) sin(θ ),

(39)

E A
∂u

∂x

∣

∣

∣

∣

x=0

= βu(0, θ ), E A
∂u

∂x

∣

∣

∣

∣

x=L

= 0,

(40)

where u is the displacement of point x , τ (u, x) is the

friction force distribution acting on the bar; F0 is the

amplitude of the harmonic forcing; δ is the Dirac delta

function. The motion of the bar for harmonic excitation

can be represented by its free mode shapes, which are

analytically available for this case, using Equation (31).

This is a one-dimensional bar problem hence, there is

no z dependence; in addition to this, since the normal

load is time invariant dc component of the motion and

the friction force vanishes. Inserting Equation (32) into

Equation (39) and applying the integral orthogonality

x

β
E, A, ρ

F(t)

L

q(x)

Contact Stiffness

Fig. 3 1D bar model

Springer



618 Nonlinear Dyn (2007) 50:609–626

relations, Equation (35) is obtained which can be solved

for the unknown complex modal coefficients. An iter-

ative solution procedure is applied to solve the nonlin-

ear algebraic equations given in Equation (35) and the

motion of the bar is constructed using the determined

modal coefficients. The friction interfaces for the bar

are determined for different normal load distributions,

and the effect of number of modes used in the calcula-

tions is as well presented.

4.1.1 Friction interface

The model given in Fig. 3 is analyzed for constant and

concave quadratic normal load distributions, which are

defined in [18]. It should be noted that the analytical

results given in [18] are derived for displacement in-

put and the method presented in this paper is a forced

response method. Therefore, their results can not be

compared directly. Figures 4 and 5 show the build-up

of friction force for constant and quadratic normal load

distributions at 1000 Hz, which is around the first mode

of the system. In the figures, 1 and −1 denote positive

and negative slip, respectively, and in between them lies

the stuck region. Solid lines on the figures are the stick-

slip boundary, which can be obtained from the transi-

tion angle equations derived in Section 2. It is seen that

for constant normal load distribution, slip starts from

the right end of the bar and propagates toward the left

end, which will cause gross-slip if the excitation force

is increased further. For quadratic normal load distri-

bution, slip starts somewhere around the center of the

bar and propagates toward both the ends. It first reaches

the right end of the beam and then the left end resulting

in gross-slip. These results are in agreement with the

results obtained in [18], where the authors divide the

contact interface into slip and stick regions and provide

the change of length of each region for displacement

input and similar normal load distributions.

4.1.2 Effect of multiple modes

In order to demonstrate the effect of number of modes

used in the analysis, constant and quadratic normal

distribution cases are analyzed using single mode, 3
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Fig. 4 Build-up friction force for constant normal load distribution: (a) model, F(t) for (b < c < d)
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Fig. 5 Build-up friction force for quadratic normal load distribution: (a) model, F(t) for (b < c < d)
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Fig. 6 Effect of number of modes at 1000 Hz (a) constant (b) quadratic normal load distributions: 1 mode (- - - - - -), 3 modes (· · · · · ·),

10 modes (——)

modes and 10 modes of the system. The analyses are

performed at 1000 Hz and 3100 Hz, which are around

the first and second modes of the system and the stick-

slip boundaries are given in Figs. 6 and 7. It is seen

that, for all the cases 3-mode solution and the 10-mode

solution result in similar friction interfaces. However, it

is also seen that, even though single mode solution can

estimate the overall behavior of the friction interface,

the results obtained may not be accurate. It should as

well be noted that, single mode solution predicts the

transition from slip to stick occurs at the same time for

all the slipping points; however, that transition from

slip to stick in multi-mode solution does not occur at

the same instant. This is an expected result due to the
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Fig. 8 Phase difference along slip to stick transition boundary at 1000 Hz (a) constant (b) quadratic normal load distributions

inertia of the bar and it becomes more evident in Fig. 7.

Figure 8 shows the slip to stick transition that is pre-

dicted by the ten-mode solution and is zoomed into a

very small range of θ .

4.2 Blade to ground damper

The blade to ground damper system analyzed is given

in Fig. 9, where the right side of the platform of the

blade is in contact with the ground. In this system, the

blade is represented by a finite element model as shown

in Fig. 10, in which B and B′ are two symmetric points,

where excitation forces are applied and A is the point,

where the displacements are calculated. Modal infor-

mation and the mode shapes of the blade are obtained by

a finite element analysis and inserted in Equations (35)

and (36). It is assumed that the system is proportion-

ally damped with a damping ratio of 0.2%. Continuous

mode shape functions are determined by applying curve

fitting to the ones obtained by the finite element anal-

ysis. Unknown forcing vectors in Equations (35) and

(36) are determined by Equation (38) using the con-

tinuous mode shape functions obtained by curve fit-

ting. An iterative nonlinear solver is used to determine

the unknown modal coefficients, from which the mo-

tion of the blade can be constructed by using Equation

(31). In the following sections forced response results

and stick-slip-separation maps for the blade to ground

damper are presented.

4.2.1 Forced response results

Forced response curves for the blade to ground damper

system are shown in Figs. 11 and 12, corresponding two
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Fig. 9 Blade to ground

damper model

distinct forcing directions: x and y directions, respec-

tively. Each forced response curve is associated with a

specific preload or initial gap, and is around the first res-

onance of the system. For simplicity, uniform preload

distribution over the contact surface is assumed and the

total preload is specified in the two figures. It should

be noted that, the effects of higher modes (n > N ) on

the displacements can be represented by residual stiff-

nesses which can be determined through finite element

analysis and this information is used in the determina-

tion of tangential and normal contact stiffnesses; in ad-

dition, these contact stiffnesses make it possible to use

lower frequency (higher wavelength) modes to deter-

mine microslip on the contact surface. In the analyses of

the blade to ground damper, 10 modes of the blade are

used. Forced response for free and stuck cases, which

are the two linear extreme cases for the system, are as

well included in the figures. The nonlinear response of

the system is in between these two linear solutions and

as the preload increases the peak frequency shifts to the

right and the system response approaches to the stuck

response, finally becoming completely stuck. It is seen

that, there exists an optimum value for the preload,

which results in minimum displacement amplitude

for each of the two cases. It should be noted that the

vibration amplitude in Fig. 11 is about 20 times greater

than that in Fig. 12. This is due to the fact that the first

vibration mode of the blade, which is a bending mode

around the z-axis, is less sensitive to the forcing in the

y direction. It is as well interesting to note that, for

this case the stuck response has higher displacement

amplitude compared to that of the free response.

For high preloads, blade and ground are always in

contact, i.e. there is no separation in the friction in-

terface. However, as the preload acting on the friction

interface decreases, normal motion of the blade results

in separation in the contact interface, which shows it-

self as a softening effect in the forced response re-

sults. On the contrary, if the initial gap between the

blade and the ground is decreased, due to the motion in

normal direction, blade and ground come into contact

resulting in hardening effect. It is possible to observe
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Fig. 10 Finite element model for the blade

jump phenomena in case of softening and hardening;

therefore, continuation method is used to determine the

forced response curves for those cases where there ex-

ists an unstable solution branch between two jumps.

It should be noted that, unstable solution can not be

obtained by time domain simulation, since the system

response will converge to one of the two stable so-

lutions unless the initial guess is exactly the unstable

solution. Figure 13 shows the forced response curve

for n′
0 = 1000. In Fig. 11, the unstable solution is iden-

tified by the dashed line. It should be noted that, the

actual preload distribution acting on the contact inter-

face depends on the dc component of the motion and

the contact stiffness in the normal directions as

n0 (p, r ) = n′
0 (p, r ) − kv (p, r ) v0 (p, r ) , (41)

where n′
0 (p, r ) is the applied initial preload distribution

on the contact interface and v0 (p, r ) is the distribution

of dc component of the motion in the normal direction.

4.2.2 Friction interface

In order to illustrate the microslip phenomenon, the

stick-slip-separation boundaries for the case of n′
0 =

1000, Fig. 13, is examined. Fiction interface maps as-

sociated with the excitation frequency at 296.038 Hz

are obtained. Specifically, the maps before and after

jump are plotted in Fig. 14, in which the left col-

umn is before the jump and the right column after the

jump. It is evident that before the jump the vibration

amplitude is significantly greater and the friction in-

terface is not in contact most of the time; whereas,

after the jump positive and negative slip states gov-

ern most of the friction interface. Therefore, it can be

concluded that, jump in the forced response curve is

due to the separation of the contact interface caused

by the normal load variation. Fig. 15 shows the tran-

sition map when θ = 125◦. It is obvious that at this

instant the contact interface is governed by three dis-

tinct states. In other word, over the contact interface one

area is stuck, another area is slipping while the other

has separation. This clearly demonstrates the microslip

phenomenon.

5 Conclusion

A distributed parameter model is developed to charac-

terize the stick-slip-separation of the contact interface

and determines the resulting friction force, including

its time variance and spatial distribution, between two

elastic structures. A multi-mode solution approach is

developed to determine the forced response and stick-

slip-separation transitions of the steady state solution

of frictionally constrained structures when subjected to

harmonic excitation. In the proposed approach, steady

state response of the system is constructed by its free

mode shapes. The proposed method is applied to a
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Fig. 11 Forced response for excitation force in x direction: free (——), −5e5 (· · · · · ·), 1000 (- – - – -), 7500 (- - - - - -), 1e4 (– – –),

5e4 (- - - - -), 1e5 (· - · - · - · -), 2e5 (· -·-··-···-), stuck (·· ·· ·· ··)
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Fig. 12 Forced response for excitation force in y direction: free (——), −2e4 (·········), 80 (- – - – -), 350 (- - - - - -), 500 (– – –), 1000

(- - - - - -), 1e4 (- - · - · -), 2e4 (· – · – · – ·), stuck (·· ·· ·· ··)

Springer



624 Nonlinear Dyn (2007) 50:609–626

013503003592

Frequency [Hz]

0.0

0.1

0.2

0.3

0.4

0.5

N
o

rm
a

liz
e

d
 R

e
s
p

o
n

s
e

 A
m

p
lit

u
d

e
 [

m
/N

]

Stable Solution

Unstable Solution

306.4Hz
296.04Hz

Fig. 13 Stable and unstable solutions for n′
0 = 1000: (——) stable solution, (– – –) unstable solution

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Spatial Variable [x']

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

 S
p
a
ti
a
l 
V

a
ri
a
b
le

 [
z
]

Separation

Separation

Separation

Separation

Stuck

- Slip

+ Slip

- Slip

+ Slip Separation

S
e

p
a

ra
ti
o

n

Separation

(a)

(b)

(c)

)h()d(

(g)

(f)

(e)

Fig. 14 Friction interface for n′
0 = 1000 before jump: (a) 0◦, (b) 90◦, (c) 180◦, (d) 270◦. After jump: (e) 0◦, (f) 90◦, (g) 180◦, (h) 270◦

Springer



Nonlinear Dyn (2007) 50:609–626 625

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Spatial Variable [x']

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a
liz

e
d

 S
p

a
ti
a
l 
V

a
ri

a
b

le
 [

z
]

Separation + Slip Stuck

Fig. 15 Friction interface

for n′
0 = 1000 and θ = 125◦

one-dimension bar like damper. It is shown that while

employing a single mode model, transition boundaries

for the bar like damper agree with the results given in

the literature, the developed method identifies the phase

difference along the slip to stick transition boundary

when a multi-mode model is employed.

The proposed method is also applied to a more re-

alistic blade to ground damper model, where the blade

is modeled by the finite element method. For this sys-

tem, due to the complicated geometry analytical mode

shapes are not available; hence, continuous functions

are fitted to the finite element mode shapes and used

in the analysis. Resulting forced response curves and

transition maps are obtained and they clearly show the

microslip phenomenon. Typical softening and harden-

ing effects, due to separation of the contact surface, are

also predicted for the blade to ground damper.

Although the relative motion between two contact-

ing bodies is in general three-dimensional, for simplic-

ity, this paper focuses on a two-dimensional version,

in which while the normal motion v is retained, the

two bodies move with respect to each other on the con-

tact plane back and forth along the p direction. Never-

theless, it is possible to extend the method to general

three-dimensional problem so that it can be applied to

many real-world systems. It should as well be noted

that, in order to apply the proposed method, in-plane

and out of plane contact stiffness distributions in the

contact interface have to be determined. This issue will

be discussed in future investigation.
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