
J. Fluid Mech. (2014), vol. 744, pp. 129–168. c© Cambridge University Press 2014
doi:10.1017/jfm.2014.74

129

A microstructural approach to bed load
transport: mean behaviour and fluctuations of

particle transport rates

C. Ancey† and J. Heyman

Environmental Hydraulics Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne,
Switzerland

(Received 22 July 2013; revised 24 January 2014; accepted 31 January 2014;

This paper concerns a model of bed load transport, which describes the advection
and dispersion of coarse particles carried by a turbulent water stream. The challenge
is to develop a microstructural approach that, on the one hand, yields a parsimonious
description of particle transport at the microscopic scale and, on the other hand, leads
to averaged equations at the macroscopic scale that can be consistently interpreted
in light of the continuum equations used in hydraulics. The cornerstone of the
theory is the proper determination of the particle flux fluctuations. Apart from
turbulence-induced noise, fluctuations in the particle transport rate are generated by
particle exchanges with the bed consisting of particle entrainment and deposition.
At the particle scale, the evolution of the number of moving particles can be
described probabilistically using a coupled set of reaction–diffusion master equations.
Theoretically, this is interesting but impractical, as solving the governing equations
is fraught with difficulty. Using the Poisson representation, we show that these
multivariate master equations can be converted into Fokker–Planck equations without
any simplifying approximations. Thus, in the continuum limit, we end up with a
Langevin-like stochastic partial differential equation that governs the time and space
variations of the probability density function for the number of moving particles. For
steady-state flow conditions and a fixed control volume, the probability distributions
of the number of moving particles and the particle flux can be calculated analytically.
Taking the average of the microscopic governing equations leads to an average
mass conservation equation, which takes the form of the classic Exner equation
under certain conditions carefully addressed in the paper. Analysis also highlights the
specific part played by a process we refer to as collective entrainment, i.e. a nonlinear
feedback process in particle entrainment. In the absence of collective entrainment the
fluctuations in the number of moving particles are Poissonian, which implies that
at the macroscopic scale they act as white noise that mediates bed evolution. In
contrast, when collective entrainment occurs, large non-Poissonian fluctuations arise,
with the important consequence that the evolution at the macroscopic scale may
depart significantly that predicted by the averaged Exner equation. Comparison with
experimental data gives satisfactory results for steady-state flows.
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1. Introduction
The objective of this paper is to present a basic microstructural approach to bed load

transport, which has a firmer physical basis than the common empirical relationships
and helps clarify a number of points related to the huge variability (often more than
one order of magnitude) observed in particle flux time series. The core of the theory
is thus the modelling of fluctuations in a physical system comprising coarse particles
carried by a turbulent water stream.

There is no doubt that, merely as a result of water turbulence and varying
sediment availability, sediment transport exhibits fluctuations. The key is to identify
the relevance of these fluctuations in the description of sediment transport at a
macroscopic scale. In other words, is bed load transport a noise-driven physical
system, for which the macroscopic features cannot be properly described using
the averaged equations? Or, on the contrary, is the macroscopic behaviour only
marginally affected by fluctuations, therefore indicating that a description either
within the framework of continuum mechanics or using empirical relationships
between macroscopic variables is reasonable?

To better understand the background of this question, let us first make an analogy
with the Reynolds-averaged Navier–Stokes equations. When using the Reynolds
decomposition, all of the flow variables are separated into time-averaged and
fluctuating parts. For the velocity field u= ū+ u′, with ū the time-averaged velocity
and u′ the fluctuations, the decomposition gives rise to the Reynolds stress tensor
σ R =−%u′u′. With increasing Reynolds numbers, the fluctuating part of the velocity
can no longer be discarded relative to the mean velocity and the Reynolds stress tensor
starts to play a prominent part in the momentum conservation equation. In the simplest
cases, algebraic closure equations (e.g. Prandtl’s mixing length model) can be used to
relate the components of the Reynolds stress tensor σ R to some of the mean viscous
stress tensor components, and therefore the structure of the original Navier–Stokes
equations is retained. In more realistic cases, the Navier–Stokes equations no longer
form an independent set of equations, but depend on additional (non-algebraic) closure
equations, which describe the behaviour of the velocity fluctuations. Here, problems
of the same nature arise: if we define the instantaneous particle transport rate as
qs = γ up, where γ is called the ‘particle activity’ (number of particles in motion
per unit bed area) and up is the particle velocity, then we can use the Reynolds
decomposition and end up with q̄s= γ up+ γ ′u′p. Experimental observations reveal the
existence of large fluctuations in the particle activity: γ ′ = O(γ̄ ) (Cudden & Hoey
2003; Ancey et al. 2008; Singh et al. 2009; Campagnol, Radice & Ballio 2012).
What is the consequence of these fluctuations at the macroscopic scale? May we
discard them? Can we find algebraic closure equations? Or, on the contrary, must
we develop non-algebraic closure equations relating γ ′ and γ̄ ? If so, how are the
macroscopic mass and momentum conservation equations affected?

It is difficult to find answers to these questions in the existing literature. A perusal
of the literature would convince any reader that it is not for lack of trying. Over
the last few decades, bed load transport has inspired a whole host of publications
presenting different features of particle motion (e.g. interactions between the bed
morphology and water stream, the conditions for incipient motion), leading to a
substantial body of theoretical work (García 2007). However, no complete and unified
theory of bed load transport has emerged from the different models developed so far,
even though the current models often have the same continuum framework and share
many assumptions and components. Some points, which may seem obvious at a first
glance, raise a number of subtle questions or consistency problems. A typical example
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FIGURE 1. Schematic defining the flow configuration.

is the particle flow rate, which can be defined as a particle flux (Eulerian point of
view) or in terms of particle jump lengths (Lagrangian point of view) (Ancey 2010;
Furbish et al. 2012a; Ballio, Nikora & Coleman 2013). It comes as no surprise that
salient questions such as the relevance of fluctuations to the macroscopic behaviour
of bed load transport have divided the community. An example is given by the first
theoretical framework to include probabilistic calculations, developed by Einstein
(1950), which roused the community’s interest but also raised a number of criticisms
and slipped into semiobscurity (Yalin 1972). The trouble caused by the nature of
fluctuations is best understood by looking at their appearance in the macroscopic
description of bed load transport.

For one-space variable problems, the simplest morphodynamic model we can
envision comprises the shallow-water (Saint–Venant) equations for the conservation
of mass and momentum of the water phase and the Exner equation for the continuity
equation of the bed (see figure 1):

∂h
∂t
+ ∂hv̄
∂x
= 0, (1.1)

∂hv̄
∂t
+ ∂hv̄2

∂x
+ gh cos θ

∂h
∂x
= gh sin θ − τb

%
, (1.2)

(1− ζb)
∂yb

∂t
=−∂ q̄s

∂x
= D− E, (1.3)

in which h(x, t)= ys − yb denotes the flow depth, yb(x, t) and ys(x, t) the positions of
the bed and free surfaces, v̄ the depth-averaged velocity, x the downstream position, t
time and % the water density. Here τb is the bottom shear stress, ζb the bed porosity,
q̄s the average bed load transport rate and D and E represent the deposition and
entrainment rates. The bed slope is defined as tan θ = ∂xyb. In most models based
on (1.1)–(1.3), the governing equations are closed by empirical relationships for the
flow resistance τb (Katul et al. 2002; Ferguson 2012) and the sediment transport rate
q̄s (Graf & Altinakar 2005; García 2007), both being functions of the flow variables
v̄ and h, and additional parameters (e.g. bed roughness and slope).

Whereas the Saint–Venant equations are classic and their physics is seldom called
into question, the coupling with the Exner equation leads to numerous difficulties both
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physically and mathematically (Parés 2006; Fasolato et al. 2011). Several derivations
of the Exner equation have been proposed for different situations including variations
in sediment properties (e.g. density, velocity, concentration, size fraction) or changes in
the boundary conditions (e.g. tectonic uplift for landscape dynamics problems) (Defina
2000; Parker, Paola & Leclair 2000; Paola & Voller 2005; Lanzoni 2008; Ancey 2010;
Furbish et al. 2012a). A central theme in all of these derivations is that the Exner
model is an averaged equation that specifies the rate of buildup/erosion of the bed
surface as a function of the sediment flux through the surface bounding the control
volume over which the averaging has been done. The average sediment transport rate
has non-trivial effects on the flow dynamics owing to the strong nonlinearities and
coupling in the governing equations (1.1)–(1.3). Indeed, the sediment flux affects the
bed surface yb(x, t) (thus its slope angle θ ) through the Exner equation (1.3), and it
may also influence flow resistance depending on the empirical parametrization chosen
for the bottom shear stress τb (Recking et al. 2008). While the coupling between
sediment transport and water stream flow is usually seen as the primary agent of
bed form development on various scales from small-scale patterns such as ripples to
large-scale patterns such as dunes (Coleman & Nikora 2009; Seminara 2010), linear
stability analyses of the governing equations and numerical simulations do not show
any instability in the governing equations (1.1)–(1.3) for Froude numbers lower than
two (Balmforth & Provenzale 2001; Charru 2011). This failure is often interpreted
as a lack of physical details in the Saint–Venant approach, which prompts the use of
models of greater complexity that provide a better physical picture of the turbulent
flow and particle entrainment/transport (Seminara 2010). In particular, when coupling
the Exner equation with a rotational two- or three-dimensional (non-depth-averaged)
model of the water stream, linear stability analysis shows that one-dimensional (dunes)
and two-dimensional (bars) bed forms are successfully reproduced (Colombini &
Stocchino 2011, 2012).

An alternative approach to pattern formation highlights the part played by random
fluctuations of the particle transport rate qs in the development of bed forms.
Analogies can be drawn with many nonlinear physical systems, in which fluctuations
can produce spatially regular structures as a result of noise-induced transitions
between different states of the system (Sagués, Sancho & García-Ojalvo 2007). In
the absence of a more fundamental understanding of bed load transport fluctuations,
the simplest idea has been to add a noise term to the governing equations. In doing
so, Jerolmack & Mohrig (2005) showed that the growth and steady-state dimensions
of sand dunes can be successfully captured using white noise in the Exner equation
(1.3). More recently, making use of statistical mechanics arguments, Furbish et al.
(2012a) have demonstrated that the macroscopic Exner equation can be related to
the details of particle trajectories as long as the fluctuating particle velocities are
properly accounted for in the definition of the bed load sediment flux. These authors
have shown that within this framework, the Exner equation includes diffusive terms
(second-order space derivative).

We begin by presenting the physical system studied and the notation used
throughout the body of this paper (see § 2) and the supplementary material, available
at http://dx.doi.org/10.1017/jfm.2014.074. In § 3, we focus our attention on the
particle flux through a control volume. We generalize the Markov process model
presented in an earlier publication (Ancey et al. 2008). The novelty lies in the use
of the Poisson representation, which is an elegant and exact technique that makes
it possible to use continuous probability distributions instead of the original discrete
distributions without any simplifying approximations. The mapping between discrete

http://dx.doi.org/10.1017/jfm.2014.074
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and continuous distribution spaces allows us to generalize the model developed for an
isolated volume to an array of adjacent volumes (see § 4). A continuum formulation
is then derived and compared with existing forms of the Exner equation. Finally,
some experimental data drawn from our previous experimental campaigns are used to
provide the proof of concept (see § 5).

2. Physical problem
2.1. Motivation

The one-dimensional Saint–Venant–Exner equations (1.1)–(1.3) have been used in a
variety of settings covering a wide range of length and time scales. Typical examples
include the simulation of outburst flows with intense sediment transport (Bohorquez &
Darby 2008), the sediment budget together with the bed evolution over a few decades
(Ferguson & Church 2009), the long-term evolution of rivers at the reach scale (Parker
& Izumi 2000) or the watershed scale (Fowler, Kopteva & Oakley 2007). In most
cases, comparison with field data reveals qualitative agreement but also significant
errors often up to one or several orders of magnitude in the quantification of the
sediment budget and bed evolution, which may undermine the adequacy of the one-
dimensional Saint–Venant–Exner equations (1.1)–(1.3).

Several arguments have been put forward to explain the shortcomings of this
approach. For meso-timescales (typically within the 10–104 years range),
geomorphologists argue that river bed dynamics are dominated by randomness
as a result of climatic and tectonic forcings, which cause the river to change
course and create new channels on a random basis (a phenomenon called avulsion)
(Paola 2000; Tipper 2007). On shorter timescales (shorter than 10 years), scientists
blame nonlinearity as the main source of error. Indeed as all of the flow variables
are averaged over the channel width, the details of the actual stress distribution
and the velocity field across the flow section (including secondary currents and
acceleration/deceleration due to curvature effects) are ignored, which biases the
calculation of the transport rates (Ferguson & Church 2009; Recking 2013). While
the one-dimensional Saint–Venant–Exner equations (1.1)–(1.3) can be used to compute
the bed profile evolution, they do not admit important spatial structures such as bars
and other planform patterns (Church 2006; Bohorquez & Darby 2008; Colombini &
Stocchino 2011). The role played by the grain size distribution has also been pointed
out as a key factor in obtaining more realistic predictions (Ferguson & Church 2009).

More recently, the role played by the fluctuations of the sediment transport rate
has been highlighted as another source of trouble in the numerical simulations of
sediment transport. While the existence of these fluctuations has long been recognized
from field measurements (Cudden & Hoey 2003; Bunte & Abt 2005), they have been
mostly interpreted as a result of bed form migration (Gomez 1991) rather than an
intrinsic process. From this perspective, their effects should be determined when
solving (1.1)–(1.3) numerically and taking bed form development and migration into
account. Yet, Recking et al. (2012) have shown that the bed load equation used in
(1.3) should be carefully chosen as a function of the timescale of the problem. By
testing different bed load transport models against instantaneous field measurements,
volume accumulated at the event scale, volume accumulated at the annual and
interannual scales, and time-integrated flume measurements, these authors found that
at very short timescales (say, a few minutes), the bed load equations failed to predict
the mean sediment transport rate to within one order of magnitude. The results were
especially poor for coarse-bed rivers and steep slopes. In contrast, on much longer
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timescales (say, one year), the predictions more closely matched the field data, with
relative errors (computed/measured volume of sediment) lower than five in most
cases.

To us, apart from the usual sources of complexity cited in the literature (hiding
effects, turbulence and the threshold of incipient motion, flow seepage, bed topography,
etc.), the poor performance of bed load equations on short timescales is a clear
indication that the fluctuations of the sediment transport rate are not only very large,
but they also affect the macroscopic behaviour. Laboratory experiments reveal that
even under strictly steady-state conditions and well-sorted particles, sediment transport
rates exhibit considerable noise (Böhm et al. 2004; Ancey et al. 2006; Singh et al.
2009; Radice 2009; Campagnol et al. 2012).

2.2. Problem addressed
Our guess is that, if fluctuations are important in the macroscopic description of bed
load transport, then the averaged Exner equation (1.3) will not be able to properly
account for the bed evolution or particle flux, or at least, this equation will be a gross
approximation of reality. It will certainly hold true on average, but each experimental
or field measurements being particular realizations, empirical averages may depart
significantly from the theoretical average.

To clarify this point, we need to take a closer look at the microdynamics of the bed
evolution as a result of entrainment and deposition of particles. The microstructural
analysis underpinning the derivation of the Exner equation is known to be a daunting
problem (Paola & Voller 2005; Vollmer & Kleinhans 2007; Lanzoni 2008; Coleman
& Nikora 2009). The only way to make progress is by simplifying the picture of the
real system by keeping only the salient features.

Here, we develop an analytical model of bed load transport, that is, the transport
of particles by rolling, sliding or saltation in a turbulent water stream. Particles move
mostly in contact with the bed surface, but may experience brief periods in the
stream. This mode of transport contrasts with suspended load, in which fine particles
are maintained in suspension by turbulence. The main objective is to calculate the
particle transport rate from a microstructural analysis of particle motion within a
control volume (Eulerian description). Figure 1 shows the flow configuration. To
achieve analytical results, we need to introduce a number of simplifications.

(i) The sediment comprises spherical particles of equal diameter d and density %p.
(ii) We consider a two-dimensional steady water stream flowing down a sloping

bed composed of particles identical to those transported. The bed breadth B is
assumed to be indefinitely large.

(iii) The water flow is characterized by its depth-averaged velocity v̄(x, t) and flow
depth h(x, t), which are assumed to be prescribed and independent of the
sediment transport. The water flow is turbulent, but the details of the turbulence
and velocity field are ignored. Turbulence dissipation and flow resistance due to
the particles are entirely encoded in the τb(v̄, h) expression, which will not be
studied here.

(iv) The concentration of moving particles is small and so particle interactions may
be neglected. In terms of the bed load transport regime, this also means that the
bed shear stress narrowly exceeds the threshold for incipient sediment motion.

(v) The water stream drives the sediment phase: the particle phase is subordinate to
the water phase in that the mean particle velocity ūs is controlled by the water
flow conditions, but due to particle exchanges (entrainment/deposition) between
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the bed and stream as well as particle velocity fluctuations, the instantaneous
particle flux qs undergoes variations of different magnitudes.

(vi) The bed is initially flat and here we do not consider the development of bed
forms, even though after a finite time such bed forms are likely to develop and
affect water flow and sediment transport.

(vii) We do not discriminate between rolling and saltation and treat both motions as
defining a single species which we call the moving particles. We assume that the
number of particles making up the bed is infinite, i.e. whenever a particle at the
bed interface is set in motion, the shape of the interface is altered, but not the
number of particles available to entrainment at the bed interface.

(viii) As we study steady uniform flows over flat beds (free of patterns), we do not
address the dependence of the model coefficients on the Shields stress or any
other parameterization of the flow conditions. These coefficients (e.g. entrainment
and deposition rate coefficient) are thus constant in the following developments.
Note that the final structure of the governing equations will not be affected by
this assumption.

Our theoretical developments have been guided by similar problems that arise in
chemical kinetics and population dynamics, from which we have borrowed a number
of mathematical tools, in particular the concepts of Markov processes, continuous-time
random walk and master equation (Gardiner 1983; Gillespie 1992), the Poisson
representation (Gardiner & Chaturvedi 1977) and the Langevin equation (Gardiner
1983). This paper also generalizes our first attempt to deal with a stochastic treatment
of entrainment and deposition of coarse particles (Ancey et al. 2008). Although
these mathematical tools are well-established, they are not necessarily widespread,
in particular within the sediment transport community. For this reason, much of the
mathematical detail has been left out of this paper and placed in the supplementary
material. The model developed here aims to show the connections between the micro-
and macro-scales for the particle flux. As for any idealized formulation, a tradeoff
between physical scope and mathematical tractability has had to be found.

2.3. Notation and definitions
Different definitions can be used for the sediment flux (Ancey 2010; Furbish et al.
2012a; Ballio et al. 2013). While a definition based on ensemble averaging fits in
perfectly with our objective of describing the sediment flux fluctuations, it presents
many theoretical and practical difficulties, which push us to use a volume-averaged
definition, as explained in the supplementary material. We therefore define the
sediment transport rate per unit width as a volume average of the particle velocities
at the microscopic scale over a control volume V of side 1x

qs(x, t; V ; v̄, h)=N
$p

1x
Un = γUn = $p

1x

N∑
i=1

up,i, (2.1)

where, following Furbish et al. (2012a), we refer to γ = N$p/1x as the ‘particle
activity’ (i.e. the volume of moving particles per unit bed area), $p = 4πd3/(24B) is
the particle volume per unit width, N represents the number of particles whose centres
of mass lie within V , up,i denotes the streamwise component of the motion of the
centre of mass of particle i, and Un =

∑N
i=1 up,i/N is the arithmetic average of these
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velocities. Equally, we can define the sediment transport rate as the number of moving
particles per unit time

ṅ= N
1x

Un. (2.2)

The main difference between these two definitions is that γ (or qs) is a continuous
random variable, whereas N is discrete, which gives different possibilities for analysis.
The error made in considering an equivalence between γ and N is vanishingly small
provided that γ is locally non-zero (see the supplementary material).

The notation used in this paper is as standard as possible. Greek letters generally
denote parameters, e.g. entrainment and deposition coefficients in our model. Roman
letters are used for random variables and the particular value they can take is denoted
by lowercase letters. For instance, N is a random variable describing the number of
moving particles; the probability that N takes the value n is denoted by Pn(n) =
Prob(N = n). Angular brackets denote an ensemble average.

To make the notation less cluttered, we do not follow this rule strictly. This is the
case for ṅ, for which we keep the same notation for the variable and its random
value. The average or expectation of a distribution is indicated using angle brackets,
e.g. 〈N〉 = ∑n Pn(n)n is the mean number of particles. The variance is denoted
var. Here probability functions P are probability density functions (or probability
mass functions for discrete variables). Wherever necessary, a subscript indicates to
which random variable a particular density function refers. The only exception is
the subscript s, which pertains to steady flow conditions or processes. An index of
variables can be found in the supplementary material.

3. Stochastic behaviour for a fixed control volume
There is accumulating evidence that much of the fluctuations in qs come from

the variation in N (Ancey et al. 2008; Radice, Ballio & Nikora 2009; Roseberry,
Schmeeckle & Furbish 2012), at least at fairly low water flow rates when the sediment
flux is not intense. If so, the crux of the issue is then the proper determination of N
or the ‘activity’ γ . We do not gloss over the importance of particle velocity, however,
its calculation is more easily amenable to analysis when we focus on short timescales.
On longer timescales, when particle paths are characterized by alternating mobile and
resting phases, this analysis is more involved (Ganti et al. 2010; Zhang et al. 2012).
In the former case, the central limit theorem applies and we expect that the arithmetic
mean Un tends to a well-defined mean particle velocity ūs. There are a number of
models available for calculating the mean velocity of a single particle as a function
of the flow velocity or shear stress (Wiberg & Smith 1985; Ancey et al. 2002; Niño
et al. 2002; Chatanantavet et al. 2013), as well as its statistical properties (Lajeunesse,
Malverti & Charru 2010; Furbish, Roseberry & Schmeeckle 2012b). Therefore, for
the sake of simplicity, we assume that the mean particle velocity ūs(x, t; v̄, h) can be
determined independently and is fully controlled by the water stream.

In this section, we consider the time variation in the number of moving particles
within a fixed control volume. We first summarize our earlier results of the calculation
of the number of moving particles within this control volume (§ 3.1). Compared with
our former developments (Ancey et al. 2008), we focus here on the exchanges
between the bed and stream without paying attention to the advection of particles.
We also highlight that the final probability distribution of N can be regarded as a
generalized Poisson distribution, a result that will be crucial to the derivation of a
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Collective entrainment

Individual entrainment

FIGURE 2. (Colour online) The number of moving particles observed within the window
varies with time depending on the number of particles being entrained from/deposited on
the stationary bed.

continuum model. Then, we introduce a simple model to compute the probability
distribution of the particle velocity (§ 3.2). All of these results will be reused when
generalizing the model to an array of adjacent cells in the next section. As we skip the
mathematical details, appendix A provides further information on the mathematical
techniques used here, while appendix B shows how the particle flow rate and its
probability distribution can be computed from the distributions of N and up using our
definition (2.1).

3.1. Number of moving particles

We start our analysis by studying the evolution of N moving particles within a given
control volume V . The number of particles may vary with time as a result of various
events such as deposition and entrainment (see figure 2). A convenient framework
for the investigation of the statistics of these exchanges is the theory of birth–death
Markov processes, widely used in population-dynamics models or chemical kinetics
(Gillespie 1992).

If there are N moving particles within the control window, the probability of
deposition within the time increment δt is σNδt, with σ the deposition rate. For
entrainment, we assume that there are two processes referred to as individual and
collective entrainment resulting in a probability of entrainment P = (λ′ + µN)δt,
where λ′ and µ denote the individual and collective entrainment rates, respectively.
Collective entrainment acts as a feedback loop: as will be shown later, µ is a key
parameter, which controls the development and strength of wide fluctuations. A caveat
is in order: here, collective entrainment implies that the probability of entrainment
depends not only on the flow conditions (through λ′), but also on the number of
moving particles (through µ) as these can impact the bed and impart momentum to
the bed particles, favouring their entrainment. In contrast with the physics of phase
transition, it does not involve the existence of long-range correlations. It does not
mean that there are massive departures of particles (avalanches) within short time
spans. For subsequent use, we also introduce a volumetric particle entrainment rate
per unit length λ= λ′$p/1x and the differential rate κ = σ − µ between deposition
and collective entrainment.
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Using discrete Markov process theory, we can show that the probability of finding
N = n particles at time t is given by the forward master equation

∂

∂t
P(n, t)= (n+ 1)σP(n+ 1, t)+ (λ′ + (n− 1)µ)P(n− 1, t)− (λ′ + n(σ +µ))P(n, t).

(3.1)
When the collective entrainment µ is non-zero, the steady-state solution to (3.1) is the
negative binomial distribution

Ps(n)=NegBin(n; rnb, p)= Γ (r+ n)
Γ (rnb)n! p

rnb(1− p)n, n= 0, 1, . . . , (3.2)

with rnb = λ′/µ and p = 1 − µ/σ , and where Γ denotes the gamma function. The
mean is

〈N〉 = λ′

σ −µ, (3.3)

and the variance is

var N = λ′σ
(σ −µ)2 . (3.4)

For µ= 0, we obtain the Poisson distribution of rate rp = λ′/σ ,

Ps(n)= (rp)
n

n! e−rp, n= 0, 1, . . . . (3.5)

It is worth noting that despite appearances, the solutions corresponding to the µ>
0 and µ = 0 cases are connected. Indeed, the negative binomial distribution can be
interpreted as a compound probability distribution where the mixing distribution of
the Poisson rate is a gamma distribution

Ps(n)=
∫

a

e−aan

n! Ga(a; α, β)da=NegBin(n, rnb, p)= Γ [rnb + n]
Γ [rnb] prnb(1− p)n, (3.6)

with α = rnb = λ′/µ and β = 1/p− 1= µ/(σ − µ). So, interestingly, we retrieve the
Poisson distribution even in the case µ> 0, but hidden behind the stochastic variations
of its rate rp.

A physical interpretation can then be proposed. In the absence of collective
entrainment (µ= 0), the behaviour is Poissonian with a fixed rate rp = λ′/σ dictated
by entrainment and deposition of individual particles. When collective entrainment
occurs (µ > 0), the behaviour may still be seen as Poissonian, but with a random
rate. This random rate follows a gamma distribution, whose parameters are greatly
influenced by µ, especially when µ → σ (β → ∞). This observation prompts us
to seek a generalized solution to the forward master (3.1) in the form of a Poisson
representation (see appendix A). In the following, this feature will be exploited to
derive a continuum description of the N variations in an array of adjacent cells.
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3.2. Particle velocity fluctuations
After considering the kinetics of exchanges between the stream and the bed, let us
take a closer look at the part played by particle velocity fluctuations in the sediment
transport rate. We assume that the motion of a given particle, which was initially at
a position x0 at t= 0, can be described using the following Langevin equation

dX
dt
= U, (3.7)

tr
dU
dt
= −(U − ūs)+

√
2Duξ(t), (3.8)

a where X is the abscissa of the centre of mass, U denotes its velocity, tr is a
relaxation time, Du is the equivalent of a particle diffusivity, ξ(t) is a white noise
term. In essence, equations (3.7) and (3.8) state that the particle acceleration comprises
a deterministic component and a stochastic term that reflects the random fluctuations
induced by the water stream. On average and in the long run t � tr, the particle
velocity tends to the mean sediment velocity ūs(v̄, h); if we do not discard the
fluctuations, a crude approximation of the particle velocity is then U= ūs+

√
2Duξ(t).

Stochastic equations (3.7) and (3.8) are equivalent to the Fokker–Planck equation for
the (Lagrangian) distribution function P̂(x, u, t)

∂P̂
∂t
=− ∂

∂x
(uP̂)+ ∂

∂u

(
P̂

u− ūs

tr

)
+ 1

t2
r

∂2

∂u2
(DuP̂). (3.9)

Next, to derive the velocity distribution for a system at equilibrium, we assume that
there is no dependence of Pu and of auxiliary variables (us(v̄, h) and Du(v̄, h)) on x
and t. The equilibrium velocity distribution Peq

u can then be derived straightforwardly
from the Fokker–Planck equation (3.9)

Peq
u (u)=

√
2tr

πDu

1
1+ erf(ūs

√
tr/
√

2Du)
exp

(
− tr(u− ūs)

2

2Du

)
, (3.10)

which is a truncated Gaussian distribution. Therefore, ūs is still the most likely
velocity, but it is not the mean value. The mean velocity at equilibrium 〈u〉eq. is
somewhat higher than the mean velocity of a single particle ūs

〈u〉eq. = ūsFeq.(ζ ) (3.11)

with

Feq.(ζ )= 1+ 1
ζ

√
2
π

exp(−ζ 2/2)

1+ erf(ζ/
√

2)
,

with ζ = ūs/
√

Du/tr, but as shown by figure 3, provided ζ > 1, we have 〈u〉eq.≈ ūs. Its
variance var u decreases rapidly as ζ−2, which means that it is nearly constant (and
proportional to Du/tr):

var u= ū2
s

(
1+ 1

ζ 2
+ 1
ζ

√
2
π

exp(−ζ 2/2)

1+ erf(ζ/
√

2)

)
− 〈u〉2eq. ∝ 0.38ū2

sζ
−2 = 0.38

Du

tr
.

(3.12)
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FIGURE 3. (Colour online) Variation of the ratio 〈u〉eq./ūs as a function of ζ .

4. Generalization to an array of adjacent cells
We are now poised to generalize the results to a collection of cells by considering

particle transport, entrainment and deposition. The last two mechanisms have been
studied at length in the previous section. As they are local processes, they will not
cause problems when generalizing the results from an isolated control volume to an
array of adjacent cells. In contrast, particle transport requires more work. We will
show that under certain constraints, particle transport can be broken into advection
and (linear) diffusion. Furthermore, working with discrete random variables does
not facilitate our analysis as the corresponding governing equation (3.1) does not
lead to averaged equations that are compatible with the usual continuum mechanics
equations. Here, we will take advantage of the remark made in § 3.1 about the
solution to (3.1), which can be interpreted as a generalized Poisson distribution, i.e. a
Poisson distribution whose parameter is a continuous random number. The idea is to
use the Poisson representation, which involves expanding any probability distribution
into a sum of Poisson distributions. This representation is a Laplace-like transform,
which allows us to pass from a discrete probability space (referred to as the n-space)
to a continuous probability space (the a-space).

4.1. Mean behaviour
Let us start by computing the number of moving particles within V around x:

N(t; V )=
∫

V

dxPx(x, t), (4.1)

where Px(x, t)dx is the probability of finding the centre of mass x = (x, y) of a
moving particle within a vertical slice of fluid [x, x + dx]. This probability Px(x, t)
is the marginal probability density function of the Eulerian probability P(x, u, t):
Px(x, t)= ∫u P(x, u, t)du. Making use of the equivalence relation between Lagrangian
and Eulerian probability distributions P(x, u, t) = ∫

V
P̂(x′, u, t)δ(x′ − x)dx′ (Minier

& Peirano 2001), we find that the variations of P(x, u, t) are also given by the
Fokker–Planck equation (3.9). Ideally, we would like to derive a governing equation
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for Px(x, t) from (3.9). Here we take advantage of the fact that equations (3.7) and
(3.8) are identical to those used for the Brownian motion of particles placed in
a potential: indeed, the water velocity v̄ is seen as the equivalent of an external
potential acting on the particles. We can then use the adiabatic-elimination technique
to transform the Fokker–Planck equation (3.9) into a reduced Fokker–Planck equation
for the Lagrangian distribution P̂x(x, t) (Gardiner 1983)

∂P̂x

∂t
=− ∂

∂x
(ūsP̂x)+ ∂2

∂x2
(DuP̂x). (4.2)

We can take the ensemble average of (4.2) to obtain

∂

∂t
〈γ 〉 + ∂

∂x
(ūs〈γ 〉)= ∂2

∂x2
(Du〈γ 〉), (4.3)

with 〈γ (x, t)〉 =$p〈N(t; V )/1x〉 the average particle activity.
The last building block is to include bed exchanges. Owing to the linearity of the

processes, we may simply add the mean variations resulting from bed exchanges as
a source term in (4.3). We eventually end up with the following governing equation
for the average particle activity

∂

∂t
〈γ (x, t)〉 + ∂

∂x
(ūs〈γ (x, t)〉)= ∂2

∂x2
(Du〈γ (x, t)〉)+ λ− κ〈γ (x, t)〉, (4.4)

with κ =σ −µ (the source term pertaining to bed exchanges is given by (A 36)). This
is a linear advection diffusion equation with a source term. Albeit of very common
structure, this equation yields many interesting insights into the physics of sediment
transport. We will examine two features.

First, at this level of development, it is interesting to compare our microstructural
description of sediment transport with other approaches including continuum models
and probabilistic formulations of the bed load sediment flux derived from Lagrangian
analysis of particle motion (Furbish et al. 2012a). The first step is to note that (4.4)
can also be cast in the following form

∂

∂x
Q(x, t)= E(x, t)−D(x, t)− ∂

∂t
〈γ 〉, (4.5)

with Q= ūs〈γ 〉 − ∂x(Du〈γ 〉), E= λ+µ〈γ 〉 and D= σ 〈γ 〉. Interestingly, if we borrow
the definition of the sediment flux rate from Furbish et al. (2012a) and refer to Q as
the macroscopic sediment transport rate, then (4.5) is the generalized Exner equation
established by a number of authors (Parker et al. 2000; Cao, Day & Egashira 2002;
Paola & Voller 2005). Note that the standard equation (1.3) does not usually include
the time variation in the particle activity ∂t〈γ 〉 as this term is vanishingly small.
Indeed, using dimensional analysis, Cui et al. (2005) showed that provided that the
ratio ε = q̄s/qw (with qw the water discharge) remains small, the time variation ∂t〈γ 〉
is second order. Thus to leading order, the bed evolution ∂tyb is controlled by the
gradient ∂xq̄s.

Second, we note that, owing to the diffusive term ∂xx(Du〈γ 〉), the governing equation
(4.4) for 〈γ 〉 differs from pure advection models used in most morphodynamic
models (Jerolmack & Mohrig 2005; Lajeunesse et al. 2010). This is, however,
not contradictory as many advection-driven processes are the end members of
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advective–diffusive processes. The usual argument is to introduce a Péclet number to
delineate the flow regimes. Equation (4.4) arises in a variety of contexts including
alloy solidification (Fowler 1997), traffic jams (Helbing 2001), reaction–diffusion
systems (Méndez, Fedotov & Horsthemke 2010) and transport of contaminants and
solutes through porous media (Logan 2001), and a similar form was also proposed
to model the dispersion of sediment pulses in gravel-bed rivers (Lisle et al. 2001).
Numerous exact solutions, including similarity and travelling wave solutions, are
known for specific boundary initial value problems. Here we focus on particle
propagation from a concentrated instantaneous source. Let us assume that initially,
the flow is at equilibrium, with the particle activity given by (4.6) and constant
mean sediment velocity ūs, and we disrupt the balance between entrainment and
deposition by adding an instantaneous source of sediment located at x= 0. We then
study the evolution of the perturbation term 〈γ ∗〉 = 〈γ 〉 − 〈γ 〉s subject to the initial
condition 〈γ ∗〉 =Γ0δ(x), where Γ0 denotes the strength of the source (i.e. the volume
of sediment released) and 〈γ 〉s is the steady-state solution

〈γ 〉s = λ

σ −µ. (4.6)

In a dimensionless form, equation (4.4) reads

Pe
(
∂

∂ t̃
〈γ̃ ∗〉 + ∂

∂ x̃
〈γ̃ ∗〉

)
= ∂2

∂ x̃2
〈γ̃ ∗〉 − R2〈γ̃ ∗〉, (4.7)

where we have introduced the scaled variables x = x̃1x, t = t̃(1x/ūs) and γ ∗ =
γ̃ ∗(D2

u/1x). We define the Péclet number as the ratio of the time td = 1x2/Du
necessary for a diffusing particle to travel a characteristic length 1x to the time for
a particle to be advected by the stream ta =1x/ūs:

Pe= td

ta
= ūs1x

Du
. (4.8)

We also introduce the correlation length `c = √Du/κ associated with the diffusion–
reaction equation (see § 4.3 for an interpretation) and the ratio R=1x/`c. In the limit
Pe→∞, equation (4.7) degenerates into a purely hyperbolic equation with a sink term.
The method of characteristics leads to a solution of the form

〈γ̃ ∗〉 = Γ̃0δ(x̃− t̃) exp
(
−R2

Pe
t̃
)
, (4.9)

which shows that the initial pulse is transported along the characteristics x̃= t̃ (thus
at constant velocity) by the stream with no deformation, but its strength is attenuated
exponentially over time. For finite values of the Péclet number, making use of Fourier
transformation in the space variable (see the supplementary material) leads to the
solution

〈γ̃ ∗〉 = Γ̃0
√

Pe√
4π t̃

exp

[
−Pe

(
(x̃− t̃)2

4t̃
+
(

R
Pe

)2

t̃

)]
. (4.10)

In contrast to homogeneous advection diffusion problems, the existence of a sink
term implies that the volume of sediment released is not conserved, but decreases
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FIGURE 4. (Colour online) Evolution of the perturbation 〈γ̃ ∗〉 for t̃= 0 to 10 by step of
size unity: (a) Pe= 105 and R= 1; (b) Pe= 10 and R= 1; (c) Pe= 1 and R= 1; and (d)
Pe= 1 and R= 2.

exponentially over time (bed aggradation): Ṽ = ∫ 〈γ̃ ∗〉dx̃= Γ̃0 exp[−R2 t̃/Pe]. Equation
(4.10) shows that at short times in the neighbourhood of the source at x̃ = 0, the
solution 〈γ̃ ∗〉 decreases as t̃−1/2e−t̃, but at long times, the decay rate is much more
pronounced: 〈γ̃ ∗〉 ∝ t̃−1/2e−t̃2 . The transition time is approximately t̃ ∼ 4(R/Pe)2. In
that case the solution comprises advection of the initial cloud of particles, diffusion
and reduction of the volume. Note that the limiting case Pe→ 0 has no physical
solution and for Pe> 0, the initial source of sediment spreads at infinite velocity as
is the case for any linear diffusion problem. Solutions (4.9) and (4.10) show that a
wealth of behaviour can be observed in a window of length 1x depending on the
dimensionless groups Pe and R (or in terms of the physical parameters, Du, ūs and
κ). This also shows the importance of the collective entrainment parameter µ since,
at least formally, this parameter can come very close to the deposition rate σ , leading
to large values of the correlation length `c, thus relatively small values of the ratio
R. In this case (for R� Pe−1/2), the perturbation propagates with little loss of mass
whereas in other cases, there is an exponential decay to the initial state.

Figure 4 shows the range of behaviour that can be observed depending on the actual
values of Pe and R. Figure 4(a) shows a typical transport of sediment by advection
with limited dampening, while figure 4(b–d) show the effect of the Péclet number
and R ratio, which cause the spreading of the initial pulse. In all of these three cases,
aside from diffusion, advection and attenuation of the initial perturbation are also seen.
This figure illustrates that the nature of bed load transport, whether it is dominated by
advection or dispersion, is essentially dependent on the scale of observation (as is the
case for other transport problems).

4.2. Stochastic fluctuations
We now revisit the sediment transport rate fluctuations. The major contrast to the
method for an isolated control volume is that we now consider a current of particles



144 C. Ancey and J. Heyman

across the array of cells. The displacement of a cloud of particles can be broken
down into advection (at velocity ūs) and diffusive spreading at a rate D ≈ Du (see
the supplementary material for the proof). Here diffusion refers to the dispersal of
particles arising from the difference between the actual particles’ velocity and their
mean velocity ūs. Advection is a purely deterministic process and therefore does not
cause any stochastic fluctuations and for this reason, we will discard it in the earlier
developments below, but we will reintegrate it into the final governing equation.
Stochastic fluctuations are thus created by particle diffusion as well as bed exchanges.
In order to deal with particle diffusion with the same formalism as that used for
tracking the evolution of the particle number in a control volume as a result of
bed exchanges (see § 3), we consider particle diffusion as the limit of a local jump
process (Gardiner 1983; Gillespie 1992), i.e. particles can be transferred from one
cell i to its neighbouring cells i− 1 or i+ 1, centred at xi−1 and xi+1. This local jump
process occurs at a rate di=D(xi)/1x2. The probability of one transfer per unit time
is then diNi:

Ni
di−→Ni+1 and Ni

di−→Ni−1, (4.11)

which is associated with the multivariate master equation

∂

∂t
P(n, t)=

∑
i

di{(ni + 1)(P(n+ r i+1
i , t)+ P(n+ r i−1

i , t))− 2niP(n, t)}, (4.12)

where r j
i is a vector in which all but two entries are zero: ri = 1, rj = −1, rk =

0 for k 6= i, j. Here P(n + r i−1
i , t) is thus the probability of observing the system

jumping from a state n′ = (n1, n2, . . . , ni−1 − 1, ni + 1, ni+1, . . .) to a state n =
(n1, n2, . . . , ni−1, ni, ni+1, . . .), i.e. there being a jump of one particle from cell i to
i − 1 while the number of particles in other cells does not change. In this process,
we do not consider the possibility that the particles’ jump length exceeds 1x, which
is a reasonable assumption given the fast decay in the probability distribution of the
particle velocity (see the supplementary material). In the limit 1x→ 0 and making
use of the second-order difference f (n + 1) + f (n − 1) − 2f (n) ≈ 1x2f ′′(n) in (4.12),
we find that (4.12) leads to a governing equation for γ that is very close to (4.3)

∂

∂t
γ (x, t)=Du(x, t)

∂2

∂x2
γ (x, t) (4.13)

as we have Du(xi)=D(xi) (see the supplementary material). The important differences
between (4.3) and (4.13) (once averaged) are that (i) advection is not considered (but
it will be reintegrated below) and (ii) Du comes up as a weighting parameter of the
diffusion term ∂xxγ . In practice, we discard the contribution γ ∂xxDu + 2∂xDu∂γ when
using a Markov jump process instead of the Langevin model. This latter difference
appears sufficiently minor for us to regard the two formulations as equivalent in the
following.

System linearity makes it possible to combine the two master equations (4.12) and
(3.1) into a single one that represents the N variations due to particle diffusion and
bed exchanges

∂

∂t
P =

∑
i

di{(ni + 1)(P(n+ r i+1
i , t)+ P(n+ r i−1

i , t))− 2niP(n, t)}
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+ (ni + 1)σiP(n+ r+i , t)+ (λ′i + (ni − 1)µi)P(n+ r−i , t)
− (λ′i + ni(σi +µi))P(n, t), (4.14)

a where r±i is a vector in which all but one entries are zero: ri=±1, rk = 0 for k 6= i.
The parameters λ′i, µi and σi are the entrainment and deposition parameters for cell i.

As it stands, the set of equations (4.14) consists of strongly coupled partial
differential equations as the arguments of P involve not only n but also n+ rk

i with
k = ±1. It is too involved to be amenable to further analysis. As evoked in the
introduction of this section, the trick is to use a Laplace-like transform, which makes
it possible to pass from discrete to continuous probabilities. To that end, we use
the Poisson representation introduced by Gardiner & Chaturvedi (1977) in chemical
physics, which expands any probability density function into a series of Poisson
distributions with parameter ai (see appendix A and the supplementary material for
further information):

P(n, t)=
∏

i

∫
C

e−aian
i

n! f (a, t)da, (4.15)

where a= (ai) for i= 1, 2, . . . and f (a, t) is a multivariate pseudo-probability density
function. This means that instead of working with the discrete random variable n, we
now work with the continuous random variable a = (a1, a2, . . .). We end up with a
governing equation for f (a, t)

∂

∂t
f (a, t)=

∑
i

µi
∂2aif
∂a2

i
+ ∂

∂ai
{[di(ai+1 + ai−1 − 2ai)+ λ′i − ai(σi −µi)]f }. (4.16)

The main advantages of this transformation appear here clearly: we have reduced
the degree of coupling between the equations and the resulting set of equations is a
multivariate advection diffusion equation that can be interpreted as a Fokker–Planck
equation. Therefore, we can use the equivalence between Fokker–Planck equations
and stochastic differential (Langevin) equations (Gardiner 1983). The Langevin
representation equivalent to (4.16) is

dai(t)= (di(ai+1 + ai−1 − 2ai)− λ′i − ai(σi −µi))dt+
√

2µiai dWi(t), (4.17)

which holds for i= 2, 3 . . . and where Wi is a Wiener process for cell i.
It is now very tempting to turn this set of coupled Langevin equations into a

stochastic partial differential equation. As for stochastic integration, the procedure is
not unique and admits variants with different physical meanings. We refer to other
publications for alternative approaches in the context of reaction–diffusion processes
(Dogan & Allen 2011; Bulut & Allen 2012); these approaches differ from each
other in their expression of the noise term in the Langevin equation. Here, taking
inspiration from Gardiner (1983), we define a Gaussian noise term ξ(x, t) such that
〈ξb(x, t)ξb(x′, t′)〉 = δ(x − x′)δ(t − t′), i.e. a white noise term that is uncorrelated in
time and space. To finalize our derivation, we take the continuum limit 1x→ 0 of
(4.17) and introduce the continuous function b(x, t) which takes on values on each
cell as follows: b(xi, t) = ai. We end up with the following Langevin equation for
b(x, t):

∂

∂t
b(x, t)=Du

∂2b
∂x2
− ūs

∂b
∂x
+ λ′(x, t)− κ(x, t)b+

√
2µb ξb, (4.18)
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where κ(x, t) = σ(x, t) − µ(x, t). Note that we have reintegrated the advection
contribution, which represents the transport of fluctuations, not their creation or
destruction. Note also that equations with a multiplicative noise term such as the
term on the right-hand side of (4.18) arise for autocatalytic chemical reactions
(Schulz 2008).

The physical interpretation of (4.18) closely follows what is given for the one-cell
configuration (see § A.5). We highlight the key results. In the absence of collective
entrainment (µ=0), equation (4.18) is a classic partial differential (Liouville) equation
in b, which implies that b is no longer a random variable, but a deterministic
process in the b-space. In the physical γ -space, this implies that all fluctuations are
Poissonian. It comes as no surprise that for steady-state and perfectly homogeneous
beds (no dependence on x), (4.18) shows that the steady solution is 〈b〉s = λ′/κ .
For non-homogeneous cases, the Poisson rate b(x, t) varies locally as a function
of time depending on the various processes at play (exchanges with the bed,
advection, diffusion). When collective entrainment occurs (µ > 0), the dynamics
of the fluctuations depart from the non-homogeneous Poisson case owing to the
influence of the nonlinear square-root multiplicative noise

√
2µb ξb in (4.18).

If we take the average and use 〈γ 〉 = $p1x−1〈b〉, we almost retrieve the
non-homogeneous advection diffusion (4.5), with the main difference concerning
the place of the diffusion coefficient Du, a point that we discussed above for (4.13).
Another important aspect related to the alternative approach involves starting from
the mass and momentum conservation equations of continuum mechanics to derive
a Langevin-like Exner equation, as for instance Jerolmack & Mohrig (2005) did by
adding a white noise term to their Exner equation. Here, our microstructural analysis
shows that the structure of the noise term is more complicated as its strength is
modulated by

√
2µb, i.e. noise is amplified or self-sustaining for sufficiently high

b values, but may become very small when b tends to 0. This implies that the
noise-induced pattern development may be more complicated than that shown by
Jerolmack & Mohrig (2005). Let us now take a closer look at pattern formation.

4.3. Incipient development of bed patterns
Pattern formation along the bed may result from the growth of spatial correlations.
We assume that we start with a bed at equilibrium, which continues to evolve under
steady conditions. To study the growth of the spatial correlations between two points
x and x′, we introduce the spatial correlation function in the b-space

gb(x, x′, t)= 〈b(x, t)b(x′, t)〉 − 〈b(x, t)〉〈b(x′, t)〉. (4.19)

To simplify the analysis, we assume that the system is in a homogeneous state and
therefore, the correlation function depends solely on the distance r = |x′ − x|. By
differentiating (4.19) with respect to time, and making use of (4.18), the change
of variable r = |x′ − x|, 〈ξb(x, t)ξb(x′, t)〉 = δ(x − x′), Itô’s convention, after a
few algebraic manipulations (see the supplementary material), we end up with the
following governing equation for gb(r, t):

1
2
∂gb

∂t
=Du

∂2gb

∂r2
− κgb +µδ(r)〈b〉, (4.20)

in which we note that the constant and convective terms have cancelled out. It is
straightforward to deduce the steady-state solution using Fourier transforms (see the
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supplementary material). We find

gb,s(r)= 1
2
µ〈b〉s
κ`c

e−r/`c, (4.21)

where 〈b〉s = λ′/κ is the steady-state solution of (4.18) and `c = √Du/κ = √Dutc is
the correlation length. This latter parameter reflects the combined action of the water
stream (through Du) and sediment transport (through the deposition and entrainment
rate difference κ = σ − µ), a ‘conspiration’ from which emerges the correlation
lengthscale `c. Extending the relation (A 23) between the p-factorial moments of N
and their representation in the a-space, we may derive a continuum variant that links
the moments of γ and those of b (see the supplementary material):

〈γ (x, t)〉 = $p1x−1〈b(x, t)〉, (4.22)

〈γ (x, t)γ (x′, t)〉 = $ 2
p1x−2(〈b(x, t)b(x′, t)〉 + δ(x− x′)〈b(x, t)〉), (4.23)

gγ (r) = 〈γ (x, t)γ (x′, t)〉 − 〈γ (x, t)〉〈γ (x′, t)〉. (4.24)

From these relations, we can infer the spatial correlation for γ

gγ ,s(r) = $ 2
p1x−1(gb,s(r)+ δ(x− x′)〈b〉s), (4.25)

= 〈γ 〉s$p

1x

(
1
2
µ

κ`c
e−r/`c + δ(x− x′)

)
, (4.26)

or, equivalently, its wavenumber spectrum

S(k)= 〈γ 〉s$p

1x

(
1

(k`c)2 + 1
µ

κ
+ 1
)
, (4.27)

where k is the wavenumber. Figure 5 shows the wavenumber spectrum for various
values of the ratio µ/κ . In the absence of collective entrainment (µ = 0), the
spectrum is flat, meaning that there is no correlation in the particle activity in the
homogeneous case (white noise). When collective entrainment occurs (µ > 0), there
are areas characterized by high correlations in the particle activity, whose strength
is dictated by the ratio µ/κ . This is likely to cause non-homogeneous sediment
transport, which in turn promotes bed form development. From this perspective, the
initiation of the bed form formation is the consequence of collective entrainment.
The subsequent development of bed patterns is, however, beyond the scope of this
analytical application as it requires calculating the coupling between the stream and
topography, and more specifically the effects of turbulence on particle entrainment.

5. Applications
To provide proof of concept, we compare the main theoretical results with

experimental data. These data come from earlier experimental campaigns conducted
on steep slopes, thus in the supercritical regime (Böhm et al. 2004; Ancey et al.
2008; Heyman et al. 2013), but the theory applies to subcritical regimes as well.
Only essential details of methodology, data processing and results are presented here.
The supplementary material gives more information on these data and how theory
performs when tested against the whole set of available data. In a companion paper,
we will present a thorough comparison with experimental data in supercritical and
subcritical flow conditions; emphasis is given to the spatiotemporal correlations of
the particle flux, especially the role played by the correlation length `c (relative to
the scale of observation) in the fluctuation characterization.
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FIGURE 5. (Colour online) Variation of the scaled wavenumber spectrum S̃(k̃) =
S(k)/(〈γ 〉s$p) where k̃= k`c for different values of the ratio µ/κ .

5.1. Probability density function of the particle velocity
Here we take a look at the probability distribution of the streamwise component up of
the particle velocity. Experiments were conducted using a 8 cm wide flume, inclined
at θ = 1.6◦ to the horizontal. The experimental set-up is presented in Heyman et al.
(2013). The bed was composed of gravel characterized by a narrow size distribution
around a mean diameter 8 mm. The particle density was 2650 kg m−3. Particle
motion was tracked using a high-speed camera over a 40 cm length (Phantom v640
operated at 150 Hz with a field of 800 × 104 pixels). Trajectories of individual
particles were captured using a particle tracking method based on the Matlab
‘polyparticletracker’ routines (Rogers, Waigh, Zhao & Lu 2007). Figure 6 shows
the probability density function of the particle velocity up computed from 755
trajectories. The flow conditions were the following: depth-averaged velocity of water
v̄ = 92.5 cm s−1, mean flow depth h = 2 cm, Froude number Fr = v̄/√gh = 2.1,
flow Reynolds number Re = v̄h/νw = 18 × 103 (νw kinematic viscosity), Shields
number Sh= %h sin θ/[(%p− %)d] = 0.042. For these flow conditions, long-wavelength
bed forms developed. Figure 6 also shows the theoretical probability distribution
(3.10), whose parameters were fitted using the method of moments: ūs= 29.9 cm s−1

and ζ = ūs
√

tr/Du = 5.7. Additional tests (PP and QQ plots) are presented in the
supplementary material.

There is a fairly good agreement between these data and the truncated Gaussian
distribution (3.10). Taking a closer look at the tail of the distribution reveals, however,
that the theoretical distribution overestimates the velocity quantiles for up > 1 m s−1

(i.e. when the particles moved faster than the mean water flow). This result compares
well with the observations made by Martin, Jerolmack & Schumer (2012) with similar
flow conditions (7 mm particles, mean particle velocity ranging from 0.3 to 0.8 m s−1,
water velocity in the 0.6–0.8 m s−1 range, bed inclination of 5◦). They also found that
the Gaussian distribution closely matched the empirical probability distribution of the
velocity components.

Our results contrast with those obtained by Roseberry et al. (2012), Furbish et al.
(2012b) and Lajeunesse et al. (2010), who found that the empirical probability
distribution of particle velocity up was well captured by an exponential distribution.
This discrepancy may originate from the differences in the experimental set-up. Indeed,
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FIGURE 6. (Colour online) Probability distribution for the particle velocity. The histogram
represents the empirical probability density function of up. The thick (black) solid line is
the theoretical distribution (3.10) with ūs = 29.9 cm s−1 and ζ = 5.7. The thin (shown in
red online) line shows the exponential probability distribution Pu(u)= e−u/ūs/ūs, still with
ūs = 29.9 cm s−1.

these authors used fine sand: 0.5 mm for Roseberry et al. (2012) and 1–2 mm for
Lajeunesse et al. (2010). Moreover, the flows were subcritical: Fr∼ 0.3 for Roseberry
et al. (2012) and Fr< 0.95 for Lajeunesse et al. (2010). For Roseberry et al. (2012),
the mean particle velocity was in the 3–5 cm s−1 range, yielding an estimated ratio
ūs/v̄ lower than 0.15, i.e. at relatively low sediment transport rates (whereas we had
ūs/v̄ ∼ 0.3 in our experiments).

Although there is experimental evidence for the theoretical velocity distribution
(3.10), the diversity of experimental data shows that its range of application is unlikely
to cover all sediment sizes. We note, however, that in either case, the truncated
Gaussian and exponential laws are thin-tailed, a result that can be anticipated as it is
uncommon for the highest particle velocities to exceed fluid velocities. Therefore, the
high fluctuations of sediment transport rates are unlikely to stem from a thick tail of
the velocity distribution.

5.2. Fluctuations of the particle flux in the absence of bed exchanges
Here we address the case of sediment transport over a fixed corrugated bed. There is
thus neither entrainment nor deposition (λ′ = µ= σ = 0). The experimental set-up is
presented in Böhm et al. (2004).

Experiments were conducted using a 6.5 mm wide flume, inclined at θ = 5◦. The
bed was composed of an array of half-cylinder of equal size (3 mm). The moving
particles were glass beads with diameter 6 mm. Their density was 2500 kg m3.
Particles were fed into the flume at an inflow rate ṅ0 = 8 beads s−1. Particle motion
was tracked over a 22.5 cm length using a high-speed camera (Pulnix TM-6505 AN
operated at 130 Hz with a field of 640× 192 pixels). Figure 7 shows the probability
density function of the particle flux ṅ obtained from a sequence of 8000 frames
(i.e. over about 1 min). The flow conditions were the following: depth-averaged
velocity of water v̄= 53 cm s−1, mean flow depth h= 1 cm, Froude number Fr= 1.7,
flow Reynolds number Re= 5300 and Shields number Sh= 0.11.
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FIGURE 7. (Colour online) Probability density function of the particle flux. The histogram
represents the empirical probability density while the solid line is the theoretical
distribution (B 2) with ūs = 44 cm s−1 and ζ = 2.71.

Figure 7 also shows the theoretical probability distribution Pṅ (B 2), whose
parameters were obtained by averaging the trajectory features: ūs = 44 cm s−1 and
var u= 10−2 cm2 s−2, yielding ζ = 2.71 (Böhm et al. 2004). Additional tests (PP and
QQ plots) are presented in the supplementary material. The theoretical distribution
(B 2) captures the main trends, but taking a closer look at the data (the cumulative
distribution function and QQ plot, shown in the supplementary material) reveals that
there is a systematic deviation between the empirical and theoretical distributions.
The main reason for this discrepancy is the slight deviation from the expected
Poissonian distribution for the number of moving particles (see the supplementary
material). Theory requires that the variance var N be equal to the mean value 〈N〉, but
experimentally we found that the variance of N was twice as small as the mean value:
var N = 2.1 but 〈N〉 = 4.2. This was probably the consequence of the supply system
(consisting of a star wheel injecting particles at constant rate) and the short length
of the flume (2 m), leading to overly steady particle arrivals. Spikes are conspicuous
in both the empirical and theoretical probability distributions. They result from the
finite-size effects of the observation window: each spike corresponds to a finite
number of particles within the observation window. Theory tends to smear out the
spike amplitude for ṅ > 5 beads s−1 whereas experiments exhibited marked peaks for
particle fluxes as large as 13 beads s−1.

5.3. Fluctuations of the particle flux as a result of bed exchanges
The last application concerns the transport of particles with exchanges with the bed.
The experimental set-up and data are presented by Ancey et al. (2006) and Ancey
et al. (2008). The flume configuration is identical to that presented in § 5.2 except
that now there is a bed composed of the same beads as those injected at the flume
inlet. Here we present some data obtained with a flume inclination of θ = 5◦ and
varying inflow rate ṅ0 (from 5 to 20 beads s−1). All of the data drawn from Ancey
et al. (2008) are shown in the supplementary material. Table 1 summarizes the features
of the four experiments presented here.

Figure 8 shows the empirical probability density function Pn(n) and the theoretical
distribution, the negative binomial law (3.2) with parameters given by (3.3) and (3.4).
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Run name (e) (g) (i) (j)

ṅ0 (beads s−1) 5.3 8.0 15.4 20.0
h (mm) 10.2 12.2 16.9 19.4
v̄ (m s−1) 0.41 0.44 0.48 0.53
Re 4020 4550 5280 5910
Fr 1.42 1.38 1.24 1.26
Sh 0.11 0.13 0.19 0.21
ūrol (m s−1) 0.06 0.06 0.08 0.07
ūsal (m s−1) 0.28 0.29 0.32 0.32
ūs (m s−1) 0.14 0.13 0.15 0.14
E (beads s−1) 48.5 68.1 103 150
D (beads s−1) 47.9 67.9 102 151
〈N〉 9.46 13.8 22.8 34.2
var N 70.7 64.5 72.1 128
〈ṅ〉 (beads s−1) 5.72 7.74 15.6 20.6
σ (s−1) 5.12 4.95 4.52 4.39
µ (s−1) 4.42 3.89 3.09 3.22
λ′ (s−1) 6.48 14.5 32.7 39.9

TABLE 1. Flow characteristics for experiments (e), (g), (i), and (j) carried out at
θ = 5◦. Varying parameter: inflow rate ṅ0 (imposed at the flume inlet). Water flow
characteristics v̄ and h and time-averaged values of the Reynolds, Froude and Shields
numbers characterizing bed load and water flow. For each experiment, we measured the
particle velocity ūrol in the rolling regime, their velocity ūsal in the saltating regime, and
the mean particle velocity ūs. We also measured the mean number of deposited/entrained
particles and then deduced the entrainment and deposition rates E and D. We also counted
the mean number of moving particles 〈N〉 as well as its variance var N. Using (2.2) with
1x = 22.5 cm, we deduced the mean particle flux 〈ṅ〉 in the control volume. From the
deposition and entrainment rates together with the number of moving particles, we inferred
estimates of the entrainment and deposition parameters µ, λ′ and σ . See the supplementary
material for the full set of experiments.

There is remarkably good agreement between data and theory for all experiments
(see also the supplementary material). Compared with our earlier findings (Ancey
et al. 2008), this result shows that we can remove the emigration/immigration process
(which was our first attempt to model the advection and dispersal of a particle current)
without altering the performance of the model. As we have investigated steady uniform
flow conditions, this behavioural similarity between the two formulations is not really
a surprise.

Figure 9 shows the empirical and theoretical probability density functions Pṅ(ṅ).
In that case, concordance between theory and experiments is less marked for the
experiments presented here; in the supplementary material, we show that much better
agreement is obtained at steeper slopes. One possible reason for this discrepancy
is the existence of two populations of moving particles with two distinctive mean
velocities. As shown by table 1, there is a size factor of about five between the
velocities in the rolling and saltating regimes. Comparing the different runs also
shows that the larger the number of moving particles, the better the agreement. This
may be an indication either that theory performs less well in the limit N→ 0 or the
computation of the sediment transport rate developed in the supplementary material
is biased as we assumed that the probabilities Pn(n) and Pu(up) were independent
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FIGURE 8. (Colour online) Probability density functions for the number of moving
particles in experiments (e), (g), (i) and (j). The dots represent the empirical probability
density while the dashed curves are the theoretical distributions (3.2).

in order to obtain Pṅ(ṅ) by taking the Fourier transform of the convolution product.
This requires further work.

6. Concluding remarks

This paper is a first stab at modelling the transport of coarse particles by a
turbulent water stream, considering four processes in the particle motion: advection,
dispersion, entrainment and deposition. Although in reality, water flow and sediment
transport are interrelated in a complex nonlinear way, we have assumed in a first
step that water is an external control parameter that drives sediment transport, but
is not significantly affected in turn by the variations in the particle flux or bed
elevation (see the discussion on the Saint–Venant–Exner equations in § 1). As a
consequence, all background information on turbulence structure and effects on
particle entrainment has been implicitly summarized in the flow resistance and
entrainment/deposition parameters. This assumption is more or less realistic in the
absence of bed forms or intense sediment transport, two mechanisms that produce a
strong interplay between the water and sediment phases (Powell 1998). This working
assumption enables us to derive analytical results. Including phase interdependency
would require numerical simulations (see the last paragraph of this section). Another
simplification is the assumption of unidirectional flow. Formally, extension of the
model to two-dimensional configurations is possible, but again requires numerical
simulations. Finally, we have ignored variations in particle size, therefore leaving
aside all of the problems related to grain sorting, hiding effects and bed armouring
(Parker 2008; Wilcock, Pitlick & Cui 2009).
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FIGURE 9. (Colour online) Probability density functions for the particle flux in
experiments (e), (g), (i) and (j). The dots represent the empirical probability density
function while the dashed curves are the theoretical distributions (B 2) with ζ = 4. This
parameter was fixed arbitrarily, but provided that ζ > 3, we found that altering ζ did not
change the shape of Pṅ(ṅ) significantly for these runs.

The four processes involved in the particle transport are associated with four
characteristic times: tc = 1/(σ − µ) is the time pertaining to the exchanges between
bed and stream. Notably, it is also the autocorrelation time for the evolution of the
number of moving particles for steady-state flow conditions. Particle dispersion is
characterized by two times: td = 1x2/Du (diffusion time) and tr (relaxation time).
As usual, advection is best described by the time necessary for a particle to cross
the control volume of length 1x: ta = 1x/ūs. Two dimensionless numbers have
emerged from our analysis: the classic Péclet number Pe = ta/td = ūs1x/Du and
the dimensionless group ζ = ūs

√
tr/Du. Our model breaks down in the limit ζ → 0.

Indeed, in this limit, the forcing exerted by the water stream is not sufficient to
impose the mean advection velocity ūs(v̄, h) on the particles; as shown by figure 3,
the mean particle velocity at equilibrium differs significantly from ūs when ζ < 1.
Another critical point is the asymmetric distribution of particle displacements when
ζ < 2, leading to anisotropic particle diffusion (see the supplementary material). The
domain ζ < 2 may correspond to flow conditions associated with incipient particle
motion, but even for these conditions, it is unclear whether the mean particle velocity
can be arbitrarily small or whether instead, particles set in motion reach a velocity
that systematically exceeds a certain threshold. Available experimental data do not
provide any evidence for the former possibility and if this holds true more generally,
the ζ < 2 domain may be unattainable in practice. As illustrated by figure 10, ζ
influences the shape of the probability distribution of the particle flux Pṅ. Smaller ζ
values lead to smoother probability distributions. This parameter has, however, little
influence on the mean and variance of the distribution Pṅ. Although rarely used in
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FIGURE 10. (Colour online) Shape of the probability density function Pṅ(ṅ) given by (B 2)
in a log-linear plot for different values of ζ (the arrow shows increasing ζ values): ζ =0.5
(black solid line), ζ = 1 (black dotted line), ζ = 2 (purple solid line), ζ = 3 (blue dotted
line), ζ = 4 (blue dashed line) and ζ = 5 (red solid line). All of the other parameters
are kept constant: 1x = 1 m, ūs = 1 m s−1, r = 1 (λ′ = µ) and p = 0.5 (σ = 2λ′). The
mean particle flux 〈ṅ〉 is 1.541, 1.115, 1.007, 1.000, 1.000 and 1.000 beads s−1 when ζ
is increased from 0.5 to 5. The square coefficient of variation var ṅ/〈ṅ〉2 is 2.410, 2.362,
2.209, 2.109, 2.062 and 2.040 beads2 s−2 when ζ is increased from 0.5 to 5.

the context of sediment transport, the Péclet number is instrumental in the assessment
of diffusion-induced effects on the particle flux. This effect has been documented
through the typical problem of advection and scattering from an instantaneous source
of sediment (see figure 4).

One particularly interesting result is related to the advection diffusion equation (4.3)
that governs the variations in the mean particle activity 〈γ 〉. We come to conclusions
similar to those drawn by Furbish et al. (2012a) about the form that the particle flux
should take. The governing equation (4.3), derived from the microscopic description
of particle transport, matches the Exner equation (1.3) provided that (i) the particle
transport rate q̄s is defined at the macroscopic scale as

Q(x, t)= 〈γ 〉ūs − ∂

∂x
(Du〈γ 〉), (6.1)

and (ii) the term ∂t〈γ 〉 is negligible relative to entrainment and deposition rates.
The latter assumption is well-established (Cui et al. 2005). Using a Lagrangian
approach, Furbish et al. (2012a) obtained a slightly different equation: Q(x, t) =
〈γ up〉 − 1

2∂x(Dp〈γ 〉), where Dp denotes the particle diffusivity and is related to the
second moment of particle displacements instead of the velocity fluctuations like
in our approach. The difference, which lies in the factor 1

2 weighting the spatial
gradient, results essentially from a different notation convention, see (3.8) where the
velocity diffusivity was (arbitrarily) weighted by a factor of two. As a consequence,
the results of the present stochastic analysis closely follow those obtained by Furbish
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et al. (2012a): even at the macroscopic scale, diffusive effects are present in the
Exner equation, which modulate, to a varying degree, the advection term.

The existence of diffusive effects in the Exner equation may lead to the conclusion
that by smoothing out particle activity variations 〈γ (x, t)〉 along the bed, particle
fluctuations dissipate short-wavelength perturbations and so make the bed more
stable. Yet, as exemplified by Turing patterns in certain reaction–diffusion systems
such as the Belousov–Zhabotinsky reaction in chemistry (Hoyle 2006), diffusion
may amplify instabilities instead of dampening them under a slight perturbation
by noise. Stability analysis goes far beyond the scope of this paper, but we keep
in mind that upon studying the fluctuations of the number of moving particles N
in § 3, we interpreted the steady-state probability distribution of N as a Poisson
distribution, whose parameter rp evolved randomly. When working in the probability
a-space for an isolated control volume (see § A.4), we have found that the Poisson
parameter a fluctuates randomly around an asymptotic position a∞, with a finite
variance given by (A 32) in the limit of t → ∞: var a = µa∞/κ . This variance is
controlled by the collective entrainment parameter µ. In particular, var a may become
arbitrarily high when κ→ 0, i.e. when µ→ σ . The present analysis substantiates our
previous findings: in the absence of collective entrainment (µ = 0), the fluctuations
are Poissonian, which leads to a rather simple macroscopic behaviour (Ancey et al.
2008; Heyman et al. 2013). In contrast, for µ> 0, fluctuations are non-Poissonian and
may vary significantly over time, affecting the macroscopic behaviour by the growth
of spatial correlations, which reflects local increases in the particle activity. Even for
steady uniform flow conditions (with no bed forms), the variance and the coefficient
of variation (B 5) of the particle flux may become very large. For time-dependent
flow conditions and especially when bed forms migrate, the expected behaviour of
fluctuations is quite complicated. The generalized Langevin equation (4.18) reveals
that the noise structure, characterized by a square multiplicative noise term, differs
significantly from the white noise term used by Jerolmack & Mohrig (2005) to model
the stochastic development of bed forms. Altogether, the Langevin equation (4.18)
provides us with little reason to believe that in real flow conditions, marked by time
dependence and bed form migration, one can obtain consistent time averages of the
particle activity and sediment transport rates. In our opinion, this explains the failure
in both the laboratory (Singh et al. 2009) and the field (Bunte & Abt 2005; Recking
et al. 2012) to arrive at robust estimates of transport rates when the sampling rate is
changed.

Lastly, it is worth noting that the theoretical framework presented here is
fairly easy to implement numerically compared with other stochastic methods for
reaction–diffusion problems. Numerical simulations of multivariate master equations
are fraught with difficulty and are relatively slow (Allen 2007; Gillespie 2007; Hita
& Ortiz de Zárate 2013). The strength of the Poisson representation used here is
that by working in a continuous probability distribution space, we handle Langevin
stochastic differential equations instead of multivariate master equations. There are
a number of numerical techniques that perform well for Langevin equations with
multiplicative noise (Dornic, Chate & Munoz 2005; Iacus 2008). Here, the governing
equations of the Poisson rates a in (A 29) or b or (4.18) belong to the class of
Feller or Cox–Ingersoll–Ross processes, which have attracted considerable attention
(Iacus 2008). The availability of standard numerical methods opens up considerable
possibilities for the numerical solution of the Saint–Venant equations (1.1)–(1.2)
coupled to a stochastic Exner equation.
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Appendix A. Poisson representation in the one-cell configuration
A.1. Erosion and sedimentation

Because we will use the same mathematical tools as those used in the stochastic
formulation of chemical kinetics, we draw an analogy between chemical equations and
the exchanges between the bed and the stream. Our problem is tantamount to studying
two chemical species: the moving particles M and the bed particles B. For deposition,
we envision two mechanisms: (i) a moving particle M can come to rest at rate σ0 and
thus be transformed into a bed particle B, (ii) a trajectory of a moving particle M can
be disturbed by a bed particle, transforming M into a bed particle B at rate σ1. We
can summarize these transformations as

M
σ0−→B or M+B

σ1−→B+B. (A 1)

Note that we have no means of differentiating the different deposition processes
occurring at rates σ1 and σ0. We then pose σ = σ0 + σ1 and treat sedimentation as
a single process. Similarly, we consider two mechanisms for entrainment. The first
mechanism reflects the usual scenario of particle entrainment as a result of the fluid
action. A bed particle can be entrained by the fluid and set in motion at rate λ′

B
λ′−→M. (A 2)

The second mechanism considers that a moving particle can interfere at rate µ with
a bed particle and entrain it

M+B
µ−→M+M. (A 3)

We refer to the former mechanism as individual entrainment and to the latter as
collective entrainment. Some words of explanation are needed to justify the use of

http://dx.doi.org/10.1017/jfm.2014.074


Microstructural approach to bed load transport 157

‘collective.’ The probability that a single moving particle dislodges a bed particle when
impacting the bed (or by modifying the fluid stress field, which in turn destabilizes
a bed particle) during an increment of time 1t is µ1t. Since there are N = n
independent particles at time t, then using the addition law of probability, we deduce
that the resulting probability is µn1t. For individual entrainment, the probability is
λ′1t regardless of the number of particles in the cell.

Let us now translate these exchange rules into statistical terms. We consider the
following exchanges over the time increment 1t, which is assumed to be sufficiently
small that two events cannot occur in (t, t + 1t). The corresponding transition
probabilities of entrainment (birth) are respectively

P(n→ n+ 1, 1t)= λ′1t+ o(1t), P(n→ n+ 1, 1t)=µn1t+ o(1t). (A 4)

A moving particle can come to rest within the window, at rate σ for each moving
particle (death). The transition probability is thus

P(n→ n− 1, 1t)= nσ1t+ o(1t). (A 5)

With these assumptions and the discrete Chapman–Kolmogorov equation

P(n, t+1t)=
+∞∑
−∞

P(n+ i, t)P(n+ i→ n, 1t), (A 6)

we obtain a set of equations

P(n, t+1t) = σ(n+ 1)1tP(n+ 1, t)+ P(n− 1, t){λ′ + (n− 1)µ}1t
+P(n, t){1−1t(λ′ + nσ + nµ)} + o(1t), (A 7)

for n= 1, 2 . . . , and

P(0, t+1t)= σP(1, t)1t+ P(0, t)(1− λ′1t)+ o(1t), (A 8)

for n = 0. Upon rearranging the terms and letting 1t→ 0, we obtain the forward
master equation

∂

∂t
P(n, t) = (n+ 1)σP(n+ 1, t)+ (λ′ + (n− 1)µ)P(n− 1, t)

− (λ′ + n(σ +µ))P(n, t), (A 9)
∂P(0, t)
∂t

= σP(1, t)− λ′P(0, t). (A 10)

At time t= 0, there are N =N0 particles within the control volume, so we set

P(n, 0)= δ(n−N0), (A 11)

where δ denotes the Kronecker delta function. The master equation (A 9) can be
solved analytically using standard techniques (Gardiner 1983).
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A.2. Steady-state behaviour
One way of solving the forward master equations (A 9)–(A 10) makes use of the
probability generating function (Gardiner 1983)

G(z, t)=
∞∑

n=0

znP(n; t), (A 12)

which makes it possible to transform the master equations into a single partial
differential equation. Multiplying equations (3.1)–(A 10) by zn and summing over n,
we obtain

∂

∂t
G(z, t)= Lz[G] (A 13)

with Lz[G] = λ′(z− 1)+ {σ +µz2 − (µ+ σ)z} ∂
∂z G.

We have introduced the linear operator Lz[G] (acting on z) for subsequent use in
§ A.3 (see the supplementary material for further information). Solving (A 13) and
making use of the initial condition (A 11), we find that for µ > 0, the generating
function takes the form

G(z, t |N0 = n)=
(

σ −µ
(Cµ−µ)z+ σ −Cµ

)n+λ′/µ (
(Cσ −µ)z+ σ(1−C)

σ −µ
)n

,

(A 14)

where C = e−t(σ−µ) (function C corresponds to the autocorrelation function for flows
at equilibrium), while for µ= 0

G(z, t |N0 = n)= [1−C(1− z)]n exp
[
λ′

σ
(z− 1+C(1− z))

]
, (A 15)

where C= e−σ t. Two steady-state behaviours emerge from the generating function in
the limit of t→∞ (as σ >µ, we have C→ 0)

Gs(z)=
(
σ −µ
σ −µz

)λ′/µ
, (A 16)

which turns out to be the probability generating function of the negative binomial
distribution

Ps(n)=NegBin(n; rnb, p)= Γ (r+ n)
Γ (rnb)n! p

rnb(1− p)n, n= 0, 1, . . . , (A 17)

with rnb = λ′/µ and p = 1 − µ/σ , and where Γ denotes the gamma function. The
mean is

〈N〉 = λ′

σ −µ, (A 18)

and the variance is

var N = λ′σ
(σ −µ)2 . (A 19)
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For µ = 0, we obtain the Poissonian solution Gs(z) = e−λ′(z−1)/σ , corresponding to
the Poisson distribution of rate rp = λ′/σ ,

Ps(n)= (rp)
n

n! e−rp, (A 20)

n = 0, 1, . . . . We retrieve the behaviour expected under Einstein’s theory (Ancey
et al. 2006): the sporadic motion of each particle is described as a Bernoulli process,
and as the sum of N Bernoulli processes is also a binomial process, N behaves like a
binomial variable. Recall that the binomial distribution converges towards the Poisson
distribution when n→∞ while the product np remains fixed. Therefore, the Poisson
distribution with parameter np can be used as an approximation to the binomial
distribution Bin(n, p) provided that n is sufficiently large and p is sufficiently small.

It is worth noting that despite appearances, the solutions corresponding to the µ>
0 and µ = 0 cases are connected. Indeed, the negative binomial distribution can be
interpreted as a compound probability distribution where the mixing distribution of
the Poisson rate is a gamma distribution

Ps(n)=
∫

a

e−aan

n! Ga(a; α, β)da=NegBin(n, rnb, p)= Γ [rnb + n]
Γ [rnb] prnb(1− p)n,

(A 21)

with α = rnb = λ′/µ and β = 1/p− 1= µ/(σ − µ). So, interestingly, we retrieve the
Poisson distribution even in the case µ> 0, but hidden behind the stochastic variations
of its rate λ′. A physical interpretation can then be put forward. In the absence of
collective entrainment (µ = 0), the behaviour is Poissonian with a fixed rate rp =
λ′/σ dictated by entrainment and deposition of individual particles. When collective
entrainment occurs (µ > 0), the behaviour can still be seen as Poissonian, but with
a random rate. This random rate follows a gamma distribution, whose parameters are
greatly influenced by µ, especially when µ→ σ (β→∞). This observation prompts
us to seek a generalized solution to the forward master equations (3.1)–(A 10) in the
form of a Poisson representation.

A.3. Poisson representation
Following Gardiner (1983), we assume that we can expand P(n, t) as a superposition
of Poisson distributions

P(n, t)=
∫

C

e−aan

n! f (a, t)da, (A 22)

where the integration is made over a domain C to be specified and f (a) is an
integrable function. This representation can be seen as a Laplace-like transformation
that allows us to pass from a discrete probability space, referred to as the n-space,
to a continuous probability space, hereafter called the a-space. In general, we cannot
take for granted that the function f is a genuine probability density function. Indeed,
the existence and uniqueness of f can be shown, the constraint

∫
C

f (a)da = 1 is
satisfied, but it cannot be demonstrated that f is always positive. In the present case,
we will show that such a condition is systematically and so, f is a genuine probability
density function. The Poisson representation technique is thus just a means to deal
with probabilities in another space, allowing us to pass from discrete to continuous
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probabilities, which will make analytical calculations much easier. Moreover, the
Poisson representation capitalizes on many interesting properties, the most important
being that the forward master equations (3.1)–(A 10) in the n-space are represented
by a Fokker–Planck equation in the a-space. Another interesting feature is that the
moments in the n- and a-spaces are related. Indeed, it can be easily checked that the
p-factorial moment of n is equal to p-moment of a

〈n(n− 1) . . . (n− p+ 1)〉 =
∞∑

n=0

n(n− 1) . . . (n− p+ 1)P(n, t)

=
∫

C

apf (a)da= 〈ap〉, (A 23)

which implies that 〈n〉 = 〈a〉 and 〈n2〉 = 〈a2〉 + 〈a〉 (see the supplementary material
for the proof). This property will be quite useful below when mapping the a- and
n-spaces.

Let us now see in more detail what the Poisson representation tells us. The
generating function (A 12) can be written as

G(z, t)=
∫

C

exp[a(z− 1)]f (a, t)da= {K, f }, (A 24)

where the braces represent the inner product and K the Laplace kernel

{f , g} =
∫

C

f (a)g(a)da, K(z, a)= exp[a(z− 1)], (A 25)

for any functions f and g in the a-space. In the supplementary material, we show that
the initial differential problem (A 13)

∂G
∂t
= Lz[G] with G(z, t)= {K(z, a), f (a, t)}, (A 26)

is equivalent to the following differential problem{
K,
∂f
∂t

}
= {K,M∗a [f ]} (A 27)

with

M∗a [f ] =µ
∂2af
∂a2
− ∂

∂a
[(λ′ − a(σ −µ))f ].

The governing equation for f is then

∂f
∂t
=µ∂

2af
∂a2
− ∂

∂a
[(λ′ − a(σ −µ))f ]. (A 28)

This is a second-order nonlinear parabolic diffusion equation, which has the same
structure as that of a Fokker–Planck equation. This opens up interesting avenues for
further use and interpretation (see § A.4). The solutions to (A 28) have been studied
by Feller (1951). Equation (A 28) has also been used in economics to model short-
term interest rates (Cox, Ingersoll & Ross 1985). Note that (A 28) is singular at a=
0 (transformation from a parabolic to a hyperbolic problem). Feller (1951) showed



Microstructural approach to bed load transport 161

that for λ′ < µ, the problem is nearly regular and solutions with different boundary
conditions can be determined. For µ<λ′, there exists a positivity and norm preserving
solution of the initial value problem such that both it and its flux vanish at a = 0.
This means that a= 0 acts both as an absorbing and a reflecting barrier. If the former
condition is met (λ′ < µ), f tends to infinity when a→ 0, which means that a = 0
corresponds to the highest probabilities (mode of f ), but is never reached. In the latter
case, f (a, t)= 0, the mode of f is somewhere within (0,∞). In all cases encountered
here (σ −µ> 0 and λ′ > 0), the solution is a genuine probability density function (a
non-central chi-squared distribution) (Cox et al. 1985). In the long term (when ∂tf =0),
when integrating (A 28), we retrieve the gamma distribution f (a)= Ga(a; α, β) with
parameters α = λ′/µ> 0 and β =µ/(σ −µ)> 0.

A.4. Langevin representation
As (A 28) takes the form of a Fokker–Planck equation with drift and diffusion
functions A(a)= λ′ + a(µ− σ) and D(a)= 2µa, we can also interpret the process in
terms of a Langevin equation for a(t):

da= Adt+√DdW(t)= (λ′ − a(σ −µ))dt+
√

2µaξ(t)dt, (A 29)

where ξ = dW(t)/dt represents the increments of a Wiener process W(t) (white noise)
satisfying 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′). Note the amplitude of the noise term
is modulated by the collective entrainment parameter µ. In the absence of collective
entrainment (µ= 0 then D= 0), the process is purely deterministic in the a-space and
we have

da
dt
= λ′ − a(σ −µ)⇒ a(t)= λ′

σ −µ + a0 exp[−(σ −µ)t].
When collective entrainment occurs (µ > 0), the process is random, with a
multiplicative noise term. In that case, the solution to (A 29) subject to a(0)= a0 is

a(t)= a∞ + (a0 − a∞)e−κt +
√

2µe−κt
∫ t

0
eκt′
√

a(t′)dW(t′), (A 30)

with κ = σ − µ and where a∞ = 〈a〉s = λ′/(σ − µ) denotes the mean solution in a
steady state. We then deduce the expectation

〈a(t)〉 = a∞ + (a0 − a∞)e−κt. (A 31)

After integration and a few algebraic manipulations (see the supplementary material),
we find that the variance is

var a(t)= 2
µ

κ
a0e−2κt(eκt − 1)+ µ

κ
a∞e−2κt(eκt − 1)2. (A 32)

The covariance for t> s is

cov(a(s), a(t))= 〈(a(s)− 〈a〉)(a(t)− 〈a〉)〉 = e−κ(t−s)var a(s), (A 33)

which shows that the autocorrelation function is

C(τ )= cov(a(s), a(s+ τ))
var a(s)

= e−τ/tc, (A 34)

where tc = κ−1 denotes the autocorrelation time.
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A.5. Implications for the number of particles or particle activity
After this mathematical stroll in the a-space, let us highlight some key points. We
started with a counting problem, in which we were interested in computing the
evolution of N particles in a control volume, knowing that particles can be entrained
(through individual or collective entrainment mechanisms controlled by λ′ and µ,
respectively) or deposited (at a rate σ ). The governing equation for N is given
by the master equations (3.1)–(A 10). Instead of working in a discrete probability
space, we can work in a continuous probability space, the a-space, without using any
approximation or assumption such as the truncated Kramers–Moyal or system-size
expansion that we used in an earlier paper (Ancey 2010). The resulting representation
is thus strictly equivalent to the original master equation (3.1). In this space, the
time-dependent response of the system or its steady-state solution can be computed
exactly. Using the Poisson representation (A 22), we thus find again that in the
n-space, the steady-state solution is the negative binomial distribution (3.2). Using
the definition of the Poisson representation (A 22) or the relationships between the a
and n moments, we can deduce the probability distribution function P(n, t) and its
moments 〈np〉 at any order p. For instance, the mean number of particles 〈N〉 in V
is

d
dt
〈N〉 = λ′ − κ〈N〉, (A 35)

or in terms of the particle activity

d
dt
〈γ (t)〉 = λ− κ〈γ (t)〉. (A 36)

We have also found that the steady state is approached for t� tc = κ−1 and when
µ>0, a(t) comes close to a constant value a∞=λ′/(σ −µ). However, the fluctuations
prevent its attainment. Indeed, the corresponding distribution f (a) in the a-space is the
gamma distribution Ga(a; α, β) with α= λ′/µ and β =µ/(σ −µ). When λ′<µ<σ ,
Ga(a;α,β) tends to infinity when a→0, which implies that there is a high probability
that a remains close to 0 without reaching it. When 0<µ<λ′, the peak of probability
is located at a= (α− 1)β= (λ′−µ)/(σ −µ)= a∞−µ/κ . In both cases, a is expected
to fluctuate with variable amplitude around the asymptotic value a∞.

Another interesting feature is revealed by the solution (A 30) to the Langevin
equation (A 29): starting from its initial value, a relaxes exponentially to the
steady-state value a∞. In the absence of collective entrainment (µ = 0), this value
is reached asymptotically, which means that in the n-space, the distribution of
N being the Poisson distribution, the fluctuations are Poissonian and bounded
(〈N〉 = var N = λ′/σ ). Collective entrainment adds noise to these Poissonian
fluctuations: in (A 30), the strength of the noise term is

√
2µa. A square-root

nonlinear multiplicative noise term may amplify the fluctuations of a, thus giving
rise to large and non-Poissonian fluctuations of N in the n-space. From this
perspective, the collective entrainment parameter µ controls the deviations from
the Poissonian fluctuations. Note also that when µ→ σ , the autocorrelation time tc

becomes indefinitely long, which means that in practice, time series of sediment
transport rates may exhibit bursts of activity over fairly long periods of time.
Counterintuitively, though, the parameter µ has no effect on the coefficient of variation
var1/2 N/〈N〉=√σ/λ′. This coefficient is independent of µ and can become very large
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only when λ′→ 0, which implies that fluctuations become much larger than the mean
value for incipient sediment transport conditions.

All of these features demonstrate that, depending on the specific values taken by
the parameters λ′, σ and µ, a wide range of situations from well-behaved Poissonian
fluctuations to wilder non-Poissonian fluctuations may be observed. The actual
behaviour is therefore much richer than that exhibited by the deceptively simple
mean-field equation (A 35) for the mean value 〈N〉.

Appendix B. Sediment transport rate
Using our definition of the sediment transport rate (2.2), we can calculate the

instantaneous particle flux

ṅ(t; V )= 1
1x

N(t)∑
i=1

Up,i, (B 1)

where both N and Up,i are random variables. For a stationary process, their probability
distributions are given by (3.2) (or (3.5) if µ = 0) and (3.10), respectively. The
probability density function of the sum of random variables drawn from the same
distribution can be calculated by taking the Fourier transform of the convolution
product, then inverting the result. After a little bit of work, we eventually find that

Pṅ(ṅ)= Ps(0)δ(ṅ)+ ζ1x
ūs

√
2
π

∞∑
k=1

Ps(k)
exp[−ζ 2((ṅ1x− kūs)

2/2kū2
s )]√

k(1+ erf(
√

kζ/
√

2))
, (B 2)

where Ps(k) is given by (3.2) if µ > 0 and (3.5) if µ= 0. Note that the probability
density function of ṅ is discontinuous at ṅ=0: there is a finite probability Ps(0)= (1−
µ/σ)λ

′/µ for µ > 0 (Ps(0)= exp(−λ′/σ) for µ= 0) that there is no moving particle
within the window, in other words, that the particle flux is zero. Provided that there
is at least one moving particle, Pṅ jumps to another finite value.

As the structure of Pṅ(ṅ) in (B 2) is complicated, it is a priori difficult to
draw conclusions about the part played by each parameter in the fluctuations of
ṅ. Some remarkable features can, however, be deduced from numerical solutions and
approximations. Figure 10 shows examples of variations of Pṅ(ṅ) for ζ ranging from
0.5 to 5. For low ζ values, the probability density function varies smoothly and
slowly except for the point of discontinuity ṅ = 0, as explained above. Increasing ζ
leads to (i) a faster (but still exponential-like) decay at larger values of ṅ, which is
little influenced by the actual value of ζ , and (ii) the development of sharp peaks of
probability for the lowest values of ṅ: in a dilute flow much of the flux is carried
by a couple of particles and, in the absence of velocity fluctuations, the particle flux
exhibits this bumpy landscape in which each peak corresponds to the crossing of one
particle.

Numerical estimations have also shown that ζ influences the moments of the
probability density function Pṅ(ṅ), but this influence is vanishingly small for ζ > 2.
Assuming that there is no correlation between the fluctuations of N and U, we can
deduce the moments of ṅ. For instance, making use of (3.3) and (3.11), we find that
the steady-state particle flux can be approximated by

〈ṅ(t; V )〉 ≈ 1
1x
〈N〉〈u〉eq. = ūs

1x
λ′

σ −µFeq.(ζ ). (B 3)
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Equivalently, we can use the volumetric transport rate defined by (2.1)

〈qs(t; V )〉 ≈ $p

1x
〈N〉〈u〉eq. = ūs

λ

σ −µFeq.(ζ ), (B 4)

whose square coefficient of variation is

var qs

〈qs〉2 ≈
(

Feq.(ζ )+ 1
ζ 2

)
1

F2
eq.(ζ )

σ + λ′
λ′
− 1. (B 5)

We fall back into the same discussions about the origins of fluctuations (see § A.5).
Again, we find that large fluctuations (relative to the mean) are observed when ζ→ 0
or λ′→ 0, i.e. for flow conditions that correspond to incipient sediment motion. It
is worth noting that although it controls the nature of the fluctuations, the collective
entrainment parameter µ plays no part in determining the coefficient of variation.
Collective entrainment has thus significant effects on the correlations and probability
distributions of sediment transport rates, but does not influence the relative amplitude
of the fluctuations. For flow conditions pertaining to intense sediment transport
(ζ � 1), Feq. is close to unity, which implies that the square coefficient of variation
is σ/λ, thus becoming independent of particle velocity fluctuations.

Although Einstein (1950) used probabilistic concepts to derive his bed load equation,
he did not end up with a probability distribution for the sediment transport rate. As
mentioned in § A.2, the arguments used by Einstein (1950) lead to a binomial variation
of the number of moving particles, thus a Poisson distribution in the limit p→ 0
(i.e. µ→ σ ) and N� 1. This means that intense sediment transport exhibits bounded
Poissonian fluctuations, with the coefficient of variation var1/2 qs/〈qs〉 = r−1/2

p given
by the steady-state Poisson distribution (3.5). Hamamori (1962) is credited with the
first attempt to derive the probability distribution for the sediment transport rate. He
considered that bed load transport rate fluctuations arise from the migration of bed
forms. He obtained a non-parametric density distribution function of the bed load
transport rate

P(qs)= 1
4〈qs〉 log

(
4
〈qs〉
qs

)
, (B 6)

which implies that the fluctuations are bounded: 0 < qs < 4〈qs〉, and that the square
coefficient of variation is constant: var qs/〈qs〉2= 7/9. More recently, Turowski (2010)
used a two-parameter distribution derived from the normal distribution, called the
Birnbaum–Saunders distribution

P(qs)= qs + α
2βqs
√

2παqs
exp

[
−(qs − α)2

2αβ2qs

]
, (B 7)

with α and β two calibration parameters. The mean value is 〈qs〉 = α(1 + β2/2)
and the coefficient of variation is found to range from 0 to

√
5. Figure 11 shows

the comparison of the probability distributions (B 2), (B 6), (B 7) for a particular
case. As the fluctuations are bounded, Hamamori’s relation is unable to capture the
exponential tail of the distribution and tends to overestimate the bed load transport
rate significantly (compared with what (B 2) predicts) in the limit of ṅ→ 0. This
latter shortcoming is also observed for the Birnbaum–Saunders distribution, but the
tail behaviour is consistent with that predicted by our model (B 2). On the whole, the
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FIGURE 11. (Colour online) Comparison of the probability density function P(ṅ) in a log-
linear plot: Hamamori’s equation (B 6) (with 〈ṅ〉 = 1 bead s−1) and Birnbaum–Saunders
distribution (B 7) (with α = 0.451 and β = 1.556). We also report the probability density
function Pṅ(ṅ) for ζ = 5 (1x= 1 m, ūs= 1 m s−1): when the number of moving particles
follows the negative binomial distribution (3.2) (solid (red online) line) with r= 1 (λ′=µ)
and p = 0.5 (σ = 2λ′) or the Poisson distribution (3.5) (dashed (red online) line) with
rp = 1 bead s−1. Except for the Poisson distribution (whose variance equals the mean),
the coefficient of variation is

√
2 and all of the distributions have the same mean (〈ṅ〉 =

1 bead s−1).

general impression one gets from figure 10 is that the Birnbaum–Saunders distribution
smooths out the ups and downs in the probability distribution (B 2). Although the
point of this paper is not to discuss the agreement with field and experimental data,
note that the high-resolution data confirm (i) the significant proportion of zero values
of the particle flux and (ii) the highly fluctuating nature of time series, two features
that are consistently described by (B 2) and figure 11 (Ancey et al. 2006, 2008;
Radice 2009; Singh et al. 2009).
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