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IEEE

Abstract—Most existing microwave filter yield optimization
methods target a small number of sensitive design variables
(e.g., around 5). However, for many real-world cases, more than
10 sensitive design variables need to be considered. Due to
the complexity, yield optimization quality and efficiency become
challenges. Hence, a new method, called yield optimization for
filters based on surrogate model-assisted evolutionary algorithm
(YSMA), is proposed. The fundamental idea of YSMA is to
construct a single high-accuracy surrogate model offline which
fully replaces electromagnetic (EM) simulations in the entire
yield optimization process. Global optimization is then enabled
to find designs with substantial yield improvement efficiently
using the surrogate model. To reduce the number of necessary
samples (i.e., EM simulations) while obtaining the required
prediction accuracy, a customized machine learning technique
is proposed. The performance of YSMA is demonstrated by two
real-world examples with 11 and 14 design variables, respectively.
Experimental results show the advantages of YSMA compared
to the current dominant sequential online surrogate model-based
local optimization methods.

Index Terms—Computationally expensive optimization, mi-
crowave filters, surrogate modeling, yield optimization.

I. INTRODUCTION

M ICROWAVE filters are key components in the front-end
of wireless communication systems [1]. Different from

many electromagnetic (EM) devices, filter responses are very
sensitive to fabrication error. In other words, the performance
of the fabricated filters often degrades significantly due to the
fabrication error. As such, some of the fabricated filters are
not qualified to be used. Yield is defined as the ratio of the
number of qualified fabricated filters to the total number of
fabricated filters considering fabrication error [2]. The higher
the yield, the more robust the design, saving more fabrication
and tuning costs.

Filter yield optimization starts from an existing design
that already has good performance but may not be robust.
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The yield optimization algorithm then searches around this
existing design, trying to fine tune it by maximizing yield
[3]. The search range for yield optimization cannot be too
small because a robust design near the existing design may
be out of the very small search range, and thus, leads to little
yield improvement. On the other hand, a large search range
is also not necessary, because filter responses often degrade
significantly even when a small deviation is added to the
existing design parameters. Also, filter yield optimization does
not aim at finding a robust design far away from the existing
design. Hence, the search range is often decided empirically
considering the above factors. In this paper, the search range
is set to ±0.05%λ, where λ is the wavelength of the center
frequency of the targeted filter. (For example, considering
a filter working at 10 GHz, the search range is ±0.015
mm.) This empirical setting shows effectiveness for several
tested real-world cases working at different frequencies. When
adding a deviation that is more than ±0.05%λ to the existing
design, samples satisfying the specification to be a qualified
filter product can hardly be found.

A critical challenge for filter yield optimization is the speed
of yield estimation. In most cases, to obtain an accurate filter
response, EM simulation is needed, which is computationally
expensive. The traditional way to estimate yield is the Monte-
Carlo (MC) method, involving at least a few hundred EM
simulations for a single candidate design. Despite that parallel
computing is available, directly employing the traditional MC
method is still unaffordable. Therefore, surrogate modeling
methods are introduced and widely used [4], [5]. Surrogate
models, which are often constructed by machine learning
techniques, map the filter design parameters to the filter
responses or features extracted from filter responses [6], [7].
Because they are computationally much cheaper than EM
simulations, using surrogate models to estimate yield in the
filter yield optimization process becomes a routine [7].

Widely used surrogate modeling methods in filter yield
optimization include artificial neural networks (ANN) [7],
[8], polynomial chaos (PC) [9]–[12] and Gaussian process
(GP) [13]. Besides directly employing the above techniques,
filter design knowledge is employed to improve the surrogate
model quality. Important progress is the feature and transfer
function-based method, e.g., [8], [14]–[16]. Features or trans-
fer function parameters (e.g., poles, zeros, gains) are extracted
from the response for surrogate modeling, largely reducing the
complexity of the landscape to be modeled and shows clear
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prediction quality improvement.
However, most existing filter yield optimization methods

target a small number of sensitive design variables (e.g.,
around 5) [8], [10]–[12]. In many real-world filters, the number
of sensitive design variables is more than 10. Enabling efficient
yield optimization for such cases is the aim of this paper. When
handling more than 10 design variables, there are two main
challenges for existing filter yield optimization methods.

First, most existing methods use a sequential or online
surrogate modeling method [11], [17]. Specifically, a surrogate
model is built within the fabrication error range for yield
estimation. Once the algorithm iterates to a new candidate
design, the surrogate model is rebuilt until convergence. When
the number of sensitive design variables grows from a few
to more than 10, the number of necessary EM simulations
to build a reasonable surrogate model grows drastically (e.g.,
more than 15 times for PC modeling [18], Section III (A)).
Hence, consecutive online surrogate model building leads to
unaffordable time. Second, most existing methods use local
optimization methods [10], [11]. Searching locally around an
existing design, which is the aim of filter yield optimization,
does not necessarily mean that the filter yield optimization
problem is convex. On the contrary, our experiments show that
when considering more than 10 sensitive design variables, the
filter design landscape is multimodal and the quasi-Newton
method [19] is often trapped in local optima, leading to insuf-
ficient yield improvement. Hence, yield optimization quality
becomes an even more important challenge.

To address the above challenges, a new method, called
yield optimization for filters based on surrogate model-assisted
evolutionary algorithm (YSMA), is proposed. A single high-
accuracy surrogate model for the entire yield optimization
process is built offline. The necessary number of EM simula-
tions becomes affordable. Differential evolution [20], carrying
out global optimization, is then employed, which obtains
designs with much more significant yield improvement than
using local optimization. Building a high-accuracy surrogate
model efficiently is the key to YSMA, and a customized
machine learning technique is therefore proposed. Particularly,
a method with quadratic support vector machine (SVM)-
based classification and radio basis function neural network
(RBFNN)-based regression using the extracted features is
designed. Experiments and comparisons verify the advantage
of YSMA.

The remainder of the paper is organized as follows. Section
II presents the background knowledge. Section III elabo-
rates on the YSMA method, including the workflow, the
new customized surrogate modeling method, the optimization
method, and parameter setting rules. Section IV presents the
performance and advantages of YSMA using two real-world
microwave filter examples with 11 and 14 sensitive design
variables, respectively. The concluding remarks are provided
in Section V.

II. BACKGROUND KNOWLEDGE

A. Yield Estimation
Yield value describes the robustness of a given design x =

[x1, ..., xd]. In yield optimization, it is assumed that the given

design x meets the design specifications without considering
fabrication error. In machining, the fabrication error variable
ξ = [ξ1, ..., ξd] is added to x. The exact value of ξ is not
controllable and can only be represented as a random number
following a certain distribution. For the real design x + ξ,
when the specifications can still be met, the fabricated filter is
qualified and is defined as ys(x, ξ) = 1; Otherwise, ys(x, ξ) =
0.

The yield of x is the probability of ys(x, ξ) = 1, which is
defined by:

Pr (ys(x, ξ) = 1) = E [ys(x, ξ)] =

∫
ys(x, ξ)ρ(ξ)dξ (1)

where ρ(ξ) is the probability density function of ξ.
In most cases, it is difficult to directly solve (1) analytically

and the MC method [21] can be used as an estimation, which
is defined as:

Pr (ys(x, ξ) = 1) =
1

Ns

Ns∑
i=1

ys(x, ξi) (2)

where Ns is the total number of samples.

B. Vector Fitting and Feature Extraction

Vector fitting (VF) is a rational approximation method that
is widely used in modeling and optimization of microwave
devices [22]–[24]. Particularly, it is attracting attention in filter
S-parameter response modeling and optimization in recent
years. As shown in [15], [16], compared to directly modeling
the S-parameters with respect to design variables by off-the-
shelf machine learning methods, using VF to extract transfer
function parameters to represent S-parameters obtains higher
model quality. In this method, a reduced-order passive rational
model to fit the frequency responses (e.g., S-parameters over
frequency) as shown in (3) is obtained by VF and the accuracy
is often high.

F (s) ≈
M∑

m=1

cm
s− am

+d+ e · s (3)

where s = 2πj · f (f is the frequency).
VF is a pole relocation technique where the poles are

improved by iteratively solving a linear problem until conver-
gence. When it converges, the poles am, residuals cm, terms
d and e are obtained. In this paper, we call these parameters
feature variables h = [a, c, d, e], which are used to represent
the S-parameter response of a candidate filter design.

C. Artificial Neural Networks

ANN is widely used in microwave device design optimiza-
tion [25], [26]. It has the ability of learning, association,
memory, and fault tolerance, which is an effective method
for classification and regression. Particularly, it shows good
performance in modeling nonlinear functions [27]. The basic
element of an ANN is a neuron, whose structure is shown in
Fig. 1(a), where wi, i = 1, 2, ..., N are the weights, β is the
bias, and f(η) is the activation function.
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Figure 1. Concepts of ANN. (a) A neuron and (b) A three-layer network.

The neurons can be linked together to construct a network
as shown in Fig. 1(b). In the forward direction, each neuron
receives data from neurons in the previous layer with dif-
ferent weights. A weighted sum is obtained, which is then
transformed by its activation function to obtain the output
of the neuron. The output serves as the input of neurons in
the next layer. In this way, signals will propagate through
the network layer-by-layer until the output layer. Backwardly,
to minimize the error between the predicted outputs and the
desired outputs, w and β can be optimized, which is called
training. When the error is within an acceptable tolerance, the
training terminates and the hyperparameters, i.e., w and β,
are decided. The ANN is then ready to be used for prediction.
There are many kinds of ANNs whose performance can be
very different for a targeted problem. In Section III, we
will analyze the characteristics of the filter yield optimization
problem and select a proper ANN type for it.

D. Support Vector Machines

Support vector machine (SVM) is another machine learning
method, which is widely used in classification [28]. In YSMA,
SVM is used as a binary classifier. SVM aims to find a
hyperplane to segregate two categories. The criteria to define
the best hyperplane are: (1) The objects belong to the correct
category; (2) The margin (i.e., the distances between nearest
data point (either category) and the hyperplane) is maximized.
By solving the above constrained optimization problem, the
hyperparameters to define the hyperplane can be obtained,
which can be used to classify new objects.

When the categories to be segregated are not linearly
separable, a kernel function can be introduced. The kernel
function transforms a low-dimensional input space to a higher-
dimensional space, and thus converts a non-separable problem
to a separable problem. The hyperplane can then be obtained.
More details are in [29].

E. Differential Evolution

Evolutionary algorithms have strength in handling multi-
modal optimization problems and are therefore widely used in

global optimization [20]. Evolutionary algorithms mimic the
process of natural selection. They often contain initialization,
selection, genetic operators, and termination. These operators
correspond to a certain facet of natural selection with the
idea of fitter individuals will survive and produce, while unfit
individuals will die off and have less chance to contribute to
the gene pool of future generations. By iteratively carrying out
this process, the fitness (i.e., optimality) of individuals in the
population is improved and the optimal decision variables can
eventually be obtained.

Differential evolution (DE) is arguably one of the currently
most powerful evolutionary algorithms [20] and is used in
microwave design optimization [6], [30]. In each iteration, it
uses mutation, crossover, and selection operators. The muta-
tion operator generates the difference vector(s) from selected
individual vectors and adds it/them to other selected individual
vectors so as to explore the search space. To enhance the
population diversity, a crossover operation comes into play
after mutation. The selection operator then determines the
survived vector for the next generation based on a greedy
selection criterion. In this work, DE is selected as the global
optimizer for yield optimization.

III. THE YSMA ALGORITHM

A. Challenges and Main Ideas of YSMA

Recall the two major challenges when handling filter yield
optimization tasks with more than 10 sensitive design variables
(Section I), which are efficiency and yield optimization quality.
For the former, when the number of variables is more than
10, each yield evaluation involves a large number of EM
simulations even employing surrogate models. For example,
when using PC models [31] with 3 orders (i.e., good ac-
curacy), the number of EM simulations needed for a single
surrogate model is 868 when there are 10 variables, compared
to 56 when there are 5 variables. Considering this, current
dominant sequential (or online) surrogate model-assisted local
optimization methods, requiring repeated surrogate modeling
in optimization, may become unaffordable. For the latter,
although the search space is small, the function landscape
is highly multimodal based on our experiments (also shown
in Section IV). Hence, local optimization is highly likely to
be trapped in a local optimum, resulting in insufficient yield
improvement. Carrying out global optimization is therefore
necessary to obtain substantial yield improvement.

To address both challenges, a new framework is proposed.
In contrast with the dominant method of sequentially building
a set of surrogate models, a single offline high-accuracy
surrogate model is built covering sufficient but not excessive
search ranges. In contrast with the dominant local search-based
yield optimization, global search is enabled. We assume that
less than 5000 EM simulations in total for surrogate modeling
are often affordable considering the current computing speed
and resources. Also, the EM simulations for offline sampling
can be performed in parallel.

Given the above, the central problem becomes how to meet
the high accuracy requirement using a few thousand samples.
This is not trivial because the filter design landscape is very
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Figure 2. Flow diagram of the YSMA algorithm.

sensitive to design parameters [6]. Thus, a customized machine
learning method is proposed. Compared to most existing
methods which regress between the design variables and S-
parameters or transfer function parameters, we introduce a
two-stage hybrid regression and classification method to con-
struct the surrogate model. When the accuracy requirement is
satisfied, DE will be used to carry out the global optimization.
The flow diagram of YSMA is shown in Fig. 2.

Given an existing design x0, the modeling space [a, b]d

(x0± 0.05%λ as recommended in Section I), and the fabrica-
tion error δ (e.g., 0.005 mm), the algorithm works as follows.

Step 1: Generate 1.1n × d (d is the number of de-
sign variables) samples from the modeling space
[a, b]d. Carry out EM simulations to obtain their S-
parameters. Randomly select n × d samples as the
training set, and 0.1n× d samples as the test set.

Step 2: From the S-parameters of each sample in the
training set, extract feature variables h using the
VF method (Section II (A)), assign labels (i.e., 1/0)
according to the min(max(|S11|)) specification to
define a qualified/not qualified product.

Step 3: Construct a RBFNN regression model between de-
sign variables (x) and feature variables (h) (Section
III (B)).

Step 4: Construct a SVM classification model between
feature variables (h) and labels (l) (Section III (B)).
The hybrid model is L(x) = fSVM (fRBF (x)).

Step 5: Use the test set to evaluate the accuracy of the
hybrid model. If the accuracy meets the threshold, go
to Step 6. Otherwise, add 0.1n× d training samples
(including EM simulations) and go to Step 2.

Step 6: Use DE algorithm to obtain the robust design by
maximizing the yield (Section III (C)). The search
range is [a + δ, b − δ]d. In this process, the yield
values are estimated by MC simulations and L(x) is
used to replace EM simulations.

B. Hybrid RBFNN-SVM Model for Yield Estimation

Because there is no EM simulation online, the surrogate
model accuracy is the center of YSMA. Existing methods

Extract the 

features h

Extract the 

labels l

The RBFNN model 

h = fRBF (x, ξ)

The SVM model

l = fSVM (h)

ytrain

xtrain

Figure 3. Flowchart of the hybrid surrogate model.

mostly use a feedforward multilayer perceptron neural net-
work (MLPNN) to regress the design variables and the filter
response [14], [32]. However, there might be two drawbacks:
(1) Filter response sometimes degrades significantly (e.g.,
max(|S11|) = −5 dB) when considering fabrication error,
especially when there are more than 10 considered design vari-
ables. Hence, the output can be irregular: some performances
are far from the specifications (i.e., very different response or
feature variables compared to most other samples around the
specifications), largely increasing the regression difficulty. (2)
The MLPNN is a global approximation network and the output
is controlled by all weights. Hence, several optimal settings
(e.g., number of neurons in the hidden layer(s), activation
functions) must be available together to obtain a high accuracy
model, which is not easy. Being trapped in local optima in
training and overfitting may also happen.

Hence, we propose a hybrid surrogate model as shown
in Fig. 3. RBFNN maps the design variables x and feature
variables h. Note that due to the characteristics of the fil-
ter design landscape, identifying the correct type of ANN
is essential considering the surrogate model quality. Using
feature variables h alleviates the drawbacks of irregular data
mentioned in the last paragraph, but the training data points
are still not ideal for an MLPNN according to our experiments.
Thus, RBFNN is selected considering the characteristics of the
training data. Also, RBFNN is a local approximation network.
By the RBF kernel, a local area of the input space is considered
and thus, only a few weights affect the output. Moreover, the
input space for filter yield optimization is very close to the
existing design x0, which is small. Also, because only the
mapping between the hidden layer and output layer needs to be
trained, which is linear, the global optimum can be obtained.
All of the above makes RBFNN have better accuracy than the
widely used MLPNN for this particular problem.

To further avoid the effect of irregular output as mentioned
above, regression is changed to classification. Hence, samples
with largely degraded performance or those with performances
just below the specifications are all labeled as 0. A powerful
and robust classifier, SVM, is then selected to construct the
overall model L(x) = fSVM (fRBF (x)). Implementation
details are as follows.

A regularized RBFNN [33] is used, which has three layers.
The weight between the input layer and hidden layer is 1. In
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the hidden layer, the number of neurons is the same as that of
input samples. The activation function is RBF, which is shown
in (4).

ϕ(x) = exp

(
−‖x− c‖

2

2σ2

)
(4)

where c are radial basis centers. In regularized RBFNN,
the radial basis centers are the input samples themselves.
The width parameter σ is uniform to all neurons, which is
σ = dm/

√
2N , where dm is the maximum distance between

the radial basis centers, and N is the number of neurons in
the hidden layer. The hidden layer maps the low-dimensional
nonlinear separable inputs to the high-dimensional linear sep-
arable space for the output layer. It can be seen that when xi

is far away from cj , the output of the hidden layer neuron
decays exponentially. The activation function of the neurons
in the output layer is linear, and a weighted sum of the outputs
of the hidden layer neurons form the final outputs (i.e., h).


ϕ11 ϕ12 · · · ϕ1N

ϕ21 ϕ22 · · · ϕ2N

...
...

...
...

ϕN1 ϕN2 · · · ϕNN

 ·

w1

w2

...
wN

 =


h1

h2

...
hN

 (5)

where w1 is the weight vector with 1×N element.

ϕij = ϕ (‖xj − ci‖) , i, j = 1, · · · , N (6)

SVM is then used to construct a classification model from
label pairs (hi,li). A standard SVM model is used here, and
the working principle is described in Section II (D). Based on
our pilot experiments, the above filter classification problem is
not linearly separable. Hence, a kernel function is introduced.
Empirical analysis on various filters shows that quadratic
polynomial kernel is among the competent ones, which is as
follows.

K(hi,hj) = φ(hi)
Tφ(hj) = (hT

i hj + r)2 (7)

where r is a polynomial constant.
Two parallel hyperplanes are then constructed, which are:

$Tφ(h) + bs ≥ +1 (8)

$Tφ(h) + bs ≤ −1 (9)

All the samples above the upper hyperplane belong to the
qualified filters and vice versa. The distance between the two
hyperplanes is defined as the margin dm = 2

‖$‖ .
Then, dm is maximized subject to fabricated filters are in

correct categories to obtain the optimal hyperparameters. The
hyperplanes can then be determined and the SVM model can
be used for classification. The above constrained optimization
problem is as follows.

min
$,bs

1

2
$T$ + κ

∑
ϑi (10)

subject to li
(
$Tφ(hi)

T + bs
)
≥ 1− ϑi

ϑi ≥ 0

where $ is the normal vector to the hyperplane. κ>0 is the
penalty coefficient of the error term. The slack variables ϑi
refers to the degree of classification error of sample hi.

C. DE Algorithm for Yield Global Optimization

With the hybrid surrogate model to estimate yield accu-
rately, EM simulations are fully replaced and efficiency no
longer becomes a challenge. Global optimization can then
be used. The maximization goal is the yield value, which is
estimated by the hybrid surrogate model:

Pr (l(x, ξ) = 1) =
1

n

n∑
i=1

fSVM (fRBF (x+ ξi)) (11)

DE is used as the global optimizer aiming to find the design
variable x∗ with the maximum estimated yield value. Note that
other global optimization algorithms are also feasible. Our
initial investigation shows that particle swarm optimization
obtains slightly worse but comparable results with DE. Details
of DE optimization are as follows.

In the Gth generation, the mutation is firstly carried out.
Two candidate designs are subtracted to generate a difference
vector, which is weighted and added to a third randomly
selected candidate design. The result is a mutant vector vi,G.

vi,G = xr1,G + Fs · (xr2,G − xr3,G) (12)

where the indices r1 , r2, and r3 are mutually exclusive
random integers within the population size. Fs is the scaling
factor and refers to the differential vector weight.

After mutation, a trial vector ui,G is formed by recom-
bination of the mutation vector vi,G and the target vector
xi,G, which is also a candidate design. This is called the
crossover operation. Binomial crossover is used here, which
is as follows.

uj,i,G =

{
vj,i,G if rand(0, 1) ≤ CR
xj,i,G otherwise

(13)

where CR is the crossover rate, j is the component index of
a vector.

At last, selection takes place to choose the better one
between the trial vector and the target vector according to
the estimated yield values. The selection process is defined as
follows:

xi,G =

{
ui,G if ys(ui,G) > ys(xi,G)

xi,G otherwise
(14)

D. Parameter Settings

YSMA has the following parameters: the modeling range,
the number of samples to build the hybrid surrogate model,
the order of VF, the threshold to accept the hybrid RBFNN
and SVM model, and DE parameters. The modeling range
is defined as ±0.05%λ, where λ is the wavelength of the
center frequency of the targeted filter. The reason for this
setting is described in Section I. There are interesting re-
search works studying the selection of subspace for surrogate
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modeling when considering yield optimization for antennas
and microstrip circuits, e.g., [34], [35]. Our future work will
include related methods for determining the search range.

In terms of the number of samples, we use 1.1n× d as the
initial value (Section III (A)). Using various filters working in
different frequencies, the empirical setting is n = 200 and this
number is not sensitive. Regarding the order of VF, starting
from 2Nr+2, where Nr is the number of resonators, the order
of VF increases until both the average errors of S11 and S21

fitting (see (15)) are smaller than 0.3 dB.
Regarding the threshold, good accuracy is needed because

no online EM simulation is carried out. On the other hand, a
very high model accuracy requirement is not suggested. The
model accuracy depends on the number of samples (i.e., sim-
ulation time) and the ability of the machine learning methods.
Often, the initial design is obtained by 3D EM simulation-
based design optimization without considering yield and the
initial yield is often low. A surrogate model with reasonably
high accuracy is sufficient when expecting sufficient yield im-
provement (e.g., increasing 30% to 80% instead of increasing
97% to 99.5%). Hence, the suggested overall model accuracy
threshold is 85% considering the number of samples used (i.e.,
efficiency) and the ability of the machine learning method. For
DE parameters, the setting is that the population size is 4×d,
Fs = 0.8, CR = 0.5, following [20].

IV. RESULTS AND COMPARISONS

In this section, two real-world filter examples are used
to demonstrate the performance of YSMA. The first one
is an X-band filter with 11 sensitive design variables and
the second one is a C-band filter with 14 sensitive design
variables after sensitivity analysis. To verify the advantages of
our proposed hybrid surrogate modeling method, comparisons
with popular machine learning methods are carried out. To
verify the advantage of optimization quality, comparisons with
the dominant quasi-Newton method are also carried out. Both
examples are run on a PC with Intel 3.20 GHz Core (TM)
i5 CPU and 20 GB RAM under Windows operating system.
CST Microwave Studio is used as the EM simulator. Although
no parallel computing is applied in the experiments, YSMA is
straightforwardly compatible with parallel computing. All the
time consumptions in the following are wall clock time.

A. Example 1

The first filter example is an X-band waveguide bandpass
filter, which is shown in Fig. 4. The working frequency range
is 9.8 GHz to 9.85 GHz. The section of the waveguide is 22.86
mm × 10.16 mm (WR-90). The sensitive design parameters
are x = [l1, l2, l3, l4, l5, k12, k23, k34, k45, qe1, qe2]. The filter is
modeled in CST Microwave Studio with about 27,000 meshes,
and each simulation costs about 3 minutes. The existing design
is x0=[18.950, 19.994, 19.817, 19.750, 18.770, 4.373, 4.377,
5.526, 4.987, 8.455, 8.948] (mm). The requirement for a
fabricated filter to be qualified is |S11| ≤ −16 dB between
9.8 GHz to 9.85 GHz. The estimated yield value by 40 × d
EM simulations is 47.5%.

1

2

3

4

5

k23

qe1

k34

k23
k23

l2

l3

l1

l4

l5

qe2

Port 1

Port 2

Figure 4. Example 1: the X-band bandpass filter.

YSMA is firstly employed. According to the parameter
setting rules in Section III (D), 2420 samples are firstly used,
where 2200 samples are used for training and 220 samples
are used for testing, costing about 120 hours without parallel
computing. Note that in filter development, testing and tuning
are often the most time-consuming process, which could
cost months [36], [37]. Compared to that, the efficiency of
YSMA is sufficient even without parallel computing. When
parallel computing is used (e.g., 10 computers in parallel),
the efficiency can be considered reasonably high. In all the
S-parameter-based accuracy tests in the following, the error is
calculated by the following equation and the unit is dB.

Ē =

∑K
k=1

∑J
j=1 |Sp − Sr|
K · J

(15)

where Sp is the predicted S-parameter, Sr is the simulated S-
parameter at a certain frequency, J is the number of sampled
frequency points, and K is the number of testing samples.

The Ē of VF (14 order) is less than –50 dB, which is
highly accurate, and the number of dimensions of h is 59.
RBFNN model is then constructed. The Ē for both S11 and
S21 parameters are smaller than 0.2 dB for the RBFNN model.
To show the advantages of the RBFNN for regressing x and
h, MLPNN is compared. As said in Section III (B), optimal
settings for various hyperparameters are needed to obtain an
accurate MLPNN. Different numbers of layers are tried and the
optimal number of neurons are tuned manually. The following
three MLPNNs show reasonably good performances: MLP1

has 1 hidden layer with 15 neurons; MLP2 has 2 hidden layers
with 12 neurons in each layer; MLP3 has 3 hidden layers and
10 neurons in each layer. Further increasing the number of
layers does not improve the performance based on our trials.
The comparison result is shown in Table I. Clear advantages
of RBFNN can be observed. The predicted S-parameters of
RBFNN and the best MLPNN (i.e., MLP3) using a randomly
selected test sample are shown in Fig. 5.

SVM is then used to classify labels (l) from predicted fea-
tures (h). Here, classification accuracy refers to the probability
of correct judgment, i.e., a qualified product is judged as
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Table I
Ē VALUES OF S-PARAMETERS FOR RBFNN AND MLPNN FOR EXAMPLE

1 (IN DB)

Ē RBFNN MLP1 MLP2 MLP3

S11 0.113 6.071 5.887 3.954
S12 0.147 22.173 20.498 15.232

Figure 5. Predicted S-parameters using RBFNN and MLPNN for example 1.

qualified and a not qualified product is judged as not qualified.
The classification accuracy is 92.6% using the test set. To ver-
ify the appropriateness of SVM for filter yield classification,
popular machine learning methods are compared, including
bagged trees [38], subspace discriminant [39] and subspace K-
nearest neighbor methods [40]. The implementation is based
on MATLAB Deep Learning Toolbox. Using the same training
and test set, the comparison result is shown in Table II. It can
be seen that SVM has good accuracy and outperforms the
reference classification methods.

The overall accuracy (i.e., from design variables to judg-
ment of qualified/unqualified products) comparisons with other
widely used machine learning methods used in filter and other
EM device (e.g., antenna, coupler) yield optimization [11],
[34], [41] are carried out using the test set. Here, the accuracy
still refers to the probability of correct judgment as before. The
reference methods include PC and GP. The result is shown in
Table III. It can be seen that the proposed hybrid model can
obtain 95% accuracy and has significant advantages over PC
and GP. Note that the accuracy between the SVM model and
the hybrid model has a reasonable difference. This is due to the
combined prediction error of the RBFNN and SVM models.
The predicted yield of the existing design x0 is 47.5%, which
is the same as that estimated by 40× d EM simulations.

Table II
ACCURACY OF DIFFERENT CLASSIFICATION METHODS FOR EXAMPLE 1

SVM Bagged
trees

Subspace
discriminant

Subspace
k-nearest
neighbors

Accuracy (%) 92.6 89.5 84.4 76.6

Table III
OVERALL ACCURACY OF DIFFERENT MACHINE LEARNING METHODS

FOR EXAMPLE 1

Hybrid RBFNN-SVM model PC GP
Accuracy (%) 95.0 88.7 84.3

Table IV
YIELD IMPROVEMENT COMPARISONS FOR EXAMPLE 1

Methods Initial yield Optimized yield Yield improvement
YSMA 47.5% 79% 31.5%

Quasi-Newton 47.5% 48% 0.5%
DE+PC model 47.5% 61.5% 14%
DE+GP model 47.5% 57% 9.5%

Since 85% is the threshold to accept the hybrid model,
no further samples are needed, and DE optimization can be
launched. For the yield estimation in the optimization process,
40 × d samples are used, which are predicted by the hybrid
surrogate model, so as to obtain the objective function value.
Because no EM simulation is carried out online, DE optimiza-
tion using 1000 generations costs less than 30 minutes. The
optimal design with maximum predicted yield is x∗=[18.941,
19.991, 19.817, 19.749, 18.770, 4.383, 4.387, 5.516, 4.977,
8.465, 8.958] (mm). The estimated yield is 82.5% compared
to 79% using 40×d EM simulations, showing good accuracy.

Using the same hybrid model, a quasi-Newton optimizer
is employed. The implementation is based on MATLAB
Optimization Toolbox. The optimization converges to a local
optimum with a yield of 48%. 40 × d EM simulations are
also used for each yield estimation in collaboration with the
quasi-Newton method (i.e., no prediction error), which is very
computationally expensive, and the final result is also 48%.
This shows the contrast between global optimization and local
optimization for filter yield optimization when considering
more than 10 sensitive design variables. Methods using the
same DE optimizer but combined with PC and GP surrogate
models are also carried out. The comparison results are shown
in Table IV. The effectiveness of the proposed hybrid model
is shown because the power of the global optimizer is largely
decreased when using PC and GP surrogate models.

B. Example 2

The second filter example is an C-band waveguide bandpass
filter, which is shown in Fig. 6. The working frequency range
is 4.9 GHz to 5.1 GHz. The section of the waveguide is 42.00
mm × 17.00 mm (WR-42). The sensitive design variables are
x=[Qe1, Qe2, L1, L2, L3, L4, L5, L6, K12, K23, K34, K45,
K56, K25] which are shown in the figure. The filter is modeled
in CST Microwave Studio with about 14,000 meshes, and
each simulation costs about 2 minutes. The existing design
is x0=[2.984, 2.802, 50.262, 86.599, 41.451, 43.830, 43.167,
50.004, 2.702, 3.308, 21.261, 2.925, 2.432, 12.036] (mm).
The requirement for a fabricated filter to be qualified is
|S11| ≤ −16 dB between 4.9 GHz to 5.1 GHz. The estimated
yield value by 40× d EM simulations is 56%.

YSMA is firstly employed. According to the parameter
setting rules in Section III (D), 3080 samples are firstly used,
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Figure 6. Example 2: the C-band bandpass filter.

Table V
Ē VALUES OF S-PARAMETERS FOR RBFNN AND MLPNN FOR EXAMPLE

2 (IN DB)

Ē RBFNN MLPbest

S11 0.280 17.557
S12 0.124 23.407

where 2800 samples are used for training and 280 samples are
used for testing. However, the accuracy of the hybrid RBFNN-
SVM model is 83%. Hence, two infilling of 20×d each (Step
5, Section III (A)) are performed until the accuracy is higher
than 85%, which is the threshold. Therefore, 3640 samples
are finally used, costing about 120 hours without parallel
computing.

The Ē of VF (18 order) is less than −60 dB, which is
highly accurate, and the number of dimensions of h is 75.
RBFNN model is then constructed. The Ē for both S11 and
S21 parameters are smaller than 0.3 dB for the RBFNN model.
MLPNN is also compared. As in example 1, different numbers
of layers are tried and the optimal number of neurons are tuned
manually. The best one has 1 hidden layer and 15 neurons.
The comparison result is shown in Table V. Clear advantages
of RBFNN can be observed. The predicted S-parameters of
RBFNN and the best MLPNN using a randomly selected test
sample are shown in Fig. 7.

Table VI
ACCURACY OF DIFFERENT CLASSIFICATION METHODS FOR EXAMPLE 2

SVM Bagged
trees

Subspace
discriminant

Subspace k
nearest

neighbor
Accuracy (%) 91.4 87.1 84.7 52.6

Table VII
OVERALL ACCURACY OF DIFFERENT MACHINE LEARNING METHODS

FOR EXAMPLE 2

Hybrid RBFNN-SVM model PC GPR
Accuracy (%) 85.6 78.5 75.0

Figure 7. Predicted S-parameters using RBFNN and MLPNN for example 2.

Table VIII
YIELD IMPROVEMENT COMPARISONS FOR EXAMPLE 2

Methods Initial yield Optimized yield Yield improvement
YSMA 56% 97.2% 41.2%

Quasi-Newton 56% 62.2% 6.2%
DE+PC model 56% 85% 29%
DE+GP model 56% 84% 28%

In terms of verifying the advantages of the SVM classifier,
the same comparison as example 1 is carried out and the
comparison result is shown in Table VI. The classification
accuracy of SVM is 91.4% and an advantage is shown
compared to other reference methods.

For the overall accuracy, like example 1, the hybrid model
is compared with PC and GP using the same training and test
sets. The result is shown in Table VII. It can be seen that
the proposed hybrid model can obtain 85.7% accuracy and
has significant advantages over PC and GP. The difference
between SVM classification accuracy and overall accuracy is
also due to the combined prediction error of the RBFNN and
SVM. The predicted yield of the existing design x0 is 56%,
compared to 56.6% by 40× d EM simulations.

DE optimization is at last launched. All the settings are the
same as example 1, costing less than 30 minutes. The optimal
design with maximum predicted yield is x∗=[2.976, 2.800,
50.282, 43.781, 41.431, 86.684, 43.170, 49.997, 2.701, 3.294,
21.281, 2.927, 2.422, 12.028] (mm). The estimated yield is
100% compared to 97.2% using 40 × d EM simulations,
showing good accuracy. Using the same hybrid model, quasi-
Newton optimization is compared. The optimization converges
to a local optimum with a yield of 62.2%. The comparison
results are shown in Table VIII. This again shows the necessity
of introducing global optimization when considering more
than 10 sensitive design variables in filter yield optimization.
Because using 40 × d EM simulations in collaboration with
the quasi-Newton method is computationally too expensive,
the experiment in example 1 is not repeated. In terms of the
effectiveness of the proposed hybrid model in contrast with
PC and GP surrogate models, the same observation can be
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made as example 1 according to Table VIII.

V. CONCLUSIONS

In this paper, the YSMA algorithm has been proposed. To
the best of our knowledge, YSMA is the first method for filter
yield optimization considering more than 10 sensitive design
variables. Experiments show significant yield improvement
(i.e., 30% to 40%) within a practical timeframe as well
as advantages compared to the current dominant filter yield
optimization methods. The effectiveness of YSMA comes
from the proposed customized machine learning method for
this particular problem, which is also compatible with other
filter optimization techniques, and the introduction of global
optimization into this research topic. Future works include
investigating a more systematic method for defining the sur-
rogate modeling and search range by adapting the existing
interesting related research.
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