
IE
E
E
 P

ro
o

f

2 IEEE ANTENNAS & PROPAGATION MAGAZINE A U G U S T  2 0 1 81045-9243/18©2018IEEE

Pedro Yuste, Juan M. Rius, Jordi Romeu, Sebastián Blanch, 
Alexander Heldring, and Eduard Ubeda

A Microwave Invisibility 
Cloak
The design, simulation, and measurement of a simple and effective 
frequency-selective surface-based mantle cloak.

<AU: Please check whether the edited title and added 
subtitle are acceptable.>

XXXXXX

I
n recent years, there has been a growing interest in developing 

invisibility cloaks that can conceal an object. These techniques 

are often based either on coating a dielectric or conducting 

object with a homogeneous plasmonic layer of negative per-

mittivity [1] or on a creating multilayer structure [2] that cancels 

the scattering of the cloaked object (i.e., scattering cancelation 

technique). <AU: Please check whether the preceding 

edited sentence conveys the intended meaning.> The 

technique may also be based on an inhomogeneous layer that 

bends electromagnetic waves around the region occupied by the 

cloaked object without interacting with it (i.e., transformation 

optics technique) [3].

Plasmonic- and transformation-based cloaks require mate-

rials of constituent properties not found in nature. The use of 

metamaterials made of lattices of subwavelength details [4], 

[5] achieves nonphysical values of dielectric permittivity and 

magnetic permeability, allowing the practical implementation of 

such cloaks in the microwave frequency band that is of interest 

here [6], [7].

An alternate approach is to optimize the cloak parameters to 

minimize scattering [8]–[11]. When the coating consists only of 

isotropic nonmagnetic dielectrics, the graded refraction index 

is physically realizable by varying doping profiles or nanoper-

foration [9], [10]. Transformation-based and plasmonic cloaks 

have important handicaps, such as bulky metamaterial layers, 

narrow bandwidth, sensitivity, and difficult implementation of 

the inhomogeneous refraction index profile or the negative con-

stitutive parameters. The use of a frequency-selective surface 

(FSS) [12] as a mantle coat to achieve scattering cancelation [13], 

[14] allows for the easy building of a cloak for electrically thin 

cylinders using a simple, ultrathin, patterned conducting surface 

with important practical advantages, such as having a low pro-

file, being lightweight, and having a broader band of operation. 

An excellent review of cloaking history and a summary of the 

scattering cancelation technique for both plasmonic and mantle 

cloaks can be found in [15].

Reducing forward scattering from electrically thin cylinders 

was first addressed by Kildal in the 1990s [16] by using the con-

cept of hard and soft surfaces [17]. The topic is still under active 

research, using either hard surfaces [18] or FSS mantle cloaks 

[19]–[21]. <AU: Please check whether the preceding edited 

sentence conveys the intended meaning.> Recent advances 

include the ability to cloak the cylinder at both polarizations [22] 

using anisotropic FSS [23].

An FSS is probably the most cost-effective and easiest-to-

implement choice for putting scattering cancelation into prac-

tice. The electromagnetic behavior of an FSS can be described 
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by means of surface impedance; hence, ,Zs  which relates the 

averaged tangential electric field on the surface to the averaged 

induced electric current density:

 ,E JZt s s$=  (1)

 ,H H Jn s
out in

# - =t ^ h  (2)

where Hout  is the magnetic field in the outer face of the FSS 

and Hin  is the magnetic field in the inner face. The average 

surface impedance Zs  is ideally assumed uniform along the 

metasurface.

The geometry of an FSS cloak, consisting of a very thin 

metallic layer, can be designed to implement the average surface 

impedance that minimizes the scattered field. Moreover, at 

microwave frequencies, the FSS can be assumed lossless; thus, 

its average surface impedance is purely reactive, ,Z jXs s=  if the 

power dissipated at the FSS is zero:
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Although the scattering cancelation technique and the 

design of FSS mantle cloaks have been fully addressed in the 

literature, the complete presentation of theory development, 

design procedure, simulation techniques, prototype building, 

and measurement results is scattered among many books and 

articles, leading the novice practitioner to leap from one source 

to another to get the overall picture. The aim of this article is to 

didactically present the complete process, letting readers repro-

duce it and easily build a simple and inexpensive cloak like that 

of [19]. In particular, the derivation of the scattering coefficients 

in (15) is fully developed in the section “Mantle Cloaking Fun-

damentals” because it cannot be found in the references cited 

here or in the references cited by the literature. <AU: Please 

check whether the preceding edited sentence conveys the 

intended meaning.> Although some books derive the scatter-

ing coefficients for bare dielectric cylinders, we have not found 

the derivation given here for the coated case. 

MANTLE CLOAKING FUNDAMENTALS

Consider the scenario presented in Figure 1. A circular cylinder 

of radius ,a  dielectric permittivity equal to ,1f  and magnetic 

permeability equal to 1n  was coated with a zero-thickness sur-

face of impedance Zs  (i.e., the cloak), located at .at =  For 

practical purposes, we consider a nonmagnetic cylinder of 

.1 0n n=  The value of the coat surface impedance Zs  was 

designed to achieve cancelation between the scattering from the 

bare dielectric cylinder and that from the coat.

Let us assume a TMz-polarized <AU: Kindly spell out 

TMz.> impinging plane wave propagating along the x axis,

 ,E e E eE z z cosi jk x jk
0 0

0 0
= =

t z- -t t  (4)

where e jwt  harmonic time variation is assumed. According to 

the Jacobi-Anger expansion, the plane wave can be expressed in 

terms of cylindrical harmonics as [25]

 .E j J k eE zi n

n

n
jn

0 0t=

3

3
z-

=-

t ^ h/  (5)

Similarly, the cylindrical wave expansion for the scattered elec-

tric field outside the dielectric cylinder is

 ,E E a H k eE z z ( )s
z
s

n

n
n

jn
0

2
0t= =

3

3
z

=-

t t ^ h/  (6)

where an  is the scattering coefficient and H( )
n
2  is the Hankel 

function of the second kind [25] that represents outward travel-

ing cylindrical waves.

The total electric field inside the cylinder is expanded in 

cylindrical harmonics as

 ,E b J k eE z n

n

n
jn

0 1
in t=

3

3
z

=-

t ^ h/  (7)

where bn  is the coefficient of the cylindrical modes inside the 

dielectric. Outside the cylinder, the total field is

 .E E Es iout
= +  (8)

The magnetic-field boundary condition at the coating layer, 

,at =  for the layout of Figure 1 is

 ,H H J
Z
E

n z za z a s

z

a

out in
# z- = =z z t t

t
=

=
=

t tt t^ h  (9)

where Zs  is the coat surface impedance and nt  the unit normal 

to the surface.

The magnetic field inside and outside the cylinder was 

obtained from the electric field (7) and (8) after applying Max-

well-Faraday curl equation:

 ■ magnetic field inside ( ):a1t
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FIGURE 1. A geometrical layout of the dielectric cylinder (in 
yellow) and the cloak (in red).
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where the prime symbol denotes the derivative with respect to 

the argument of Bessel functions [25].

Since (9) states that ( )E Z H Hz s
out in

= -z z  at ,at =

.
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(12)

According to the boundary condition for the electric field 

)(E E 0z z a
out in
- =t=  and using (8) together with the cylindrical 

mode expansions (6) and (7),
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(13)

The combination of (12) and (13) easily leads to the following 

system of equations:
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(14)

The solution for the scattering coefficients an  using Cramer’s 

rule is
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 (15)

where ( / ) .( / )n1 0 1 1 0h h f f= =

Because we have only one degree of freedom, ,Zs  only a sin-

gle cylindrical harmonic of the scattered field can be zeroed to 

minimize scattering. If the cylinder is electrically thin, ,a % m  

the dominant harmonic is the lowest order, and, therefore, we 

design Zs  to achieve :a 00 =

 ,Z jX j
n J k a J k a J k a J k a

J k a J k a
s s

1 0 0 1 1 1 0 0 1

0 0 0 0 1h
= =

-^ ^

^ ^

^ ^h h

h h

h h
 (16)

where we have used the identity ( ) ( )J ka J ka0 1=-l  [25] to 

remove the derivatives. For electrically wider cylinders, ~ ,a0 m  

we could consider minimizing the square sum of the lowest-

order coefficients a a0
2

1
2
f+ +  instead of forcing .a 00 =

This result gave the surface reactance of the cloaking coat 

attached to an electrically thin cylinder that minimized the 

scattered field and, thus, reduced its visibility. The polyvinyl 

chloride (PVC) cylinder to coat here had dielectric permittivity 

. ,2 723rf =  measured with the waveguide method [26], and a 

radius . .a 1 34 cm=  At the design frequency of 3.77 GHz, the 

required coat impedance was . .Z j192 5s X=

The coat was implemented with an FSS [12]. One of the sim-

plest and easiest-to-build FSS designs is the mesh grid shown in 

Figure 2. For this metasurface, the equivalent surface imped-

ance Zs  depended on geometrical dimensions as follows, for the 

TM-polarized <AU: Kindly spell out TM.> case [27]:

 ,ln csc
sinZ j D

D
w

4
1

1
s
TM

r

s
0

2

f
h
m

r i
= -

+
` ` cjj m  (17)

where D is the mesh period, w the strip width, / ,c 3 10 m s8
$=  

and si  is the angle of incidence. <AU: Kindly check that the 

preceding edited sentence conveys the intended mean-

ing.>

To obtain a surface reactance of .192 5X at 3.77 GHz for 

normal incidence / ,2si r=  the period and strip width of the 

mesh-grid FSS cells are .D 2 1 cm=  and . ,w 1 9 mm=  respec-

tively.

NUMERICAL SIMULATION

The simulation model is a replica of the PVC cylinder to be 

cloaked and measured, but it is shorter in length. It was a 

33.6-cm-long circular cylinder with radius . .a 1 34 cm=  Rela-

tive permittivity of the dielectric material (i.e., PVC) was experi-

mentally measured with the waveguide method and found to be 

. .2 723rf =

The incoming TMz-polarized plane wave impinged per-

pendicularly to the cylinder axis, oriented parallel to the z-axis, 

with the angle of incidence ( / ).2ii r=  The FSS mesh-grid 

dimensions (Figure 2) were .D 2 1 cm=  and . .w 1 9 mm=  The 

copper grid was modeled as an infinitely thin surface of conduc-

tivity equal to .m60 106 1 1
$ X

- -  The dielectric cylinder and coat 

model was centered at the coordinate origin.

The cloak metasurface was meshed into RWG <AU: Kindly 

spell out RWG.> basis functions [28] (Figure 3) and the dielec-

tric cylinder into pairs of tetrahedrons [29]. The problem was 

modeled with the surface-volume [30] electric field integral 

equation [31] and discretized by the method of moments [32]. 

The numerical code used was called fast integral equation solver 

for scatterers and antennas in three dimensions (FIESTA-3-D) 

[33], a software package developed at the AntennaLab of the 

Universitat Politècnica de Catalunya.

D

W

y

x x y

z

Pr

θi

FIGURE 2. The mesh-grid FSS geometry. <AU: From where 
was this image obtained, and do you have permission from 
the source to use it?>
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FSS IMPEDENCE

After full-wave computation of the field scattered by the cloaked 

three-dimensional (3-D) cylinder along a circle of radius t in 

the xy plane and centered at the origin, ( ),Ez
s
3D z  we obtained 

the zeroth-order scattering coefficient a0  and the cloak surface 

impedance as follows.

Since a0  is the coefficient of the lowest-order cylindrical 

harmonic of the two-dimensional (2-D) field scattered by the 

infinite cylinder, ,Es
2TM D  we first had to use the approximate 

relation

 E E
Le

s
z
s

j
2 3

4

TM D D.
mt
r

 (18)

to estimate the 2-D scattering of the infinite cylinder from the 

3-D computation for a finite cylinder of length .L  Equation 

(18) is valid in the far field for electrically long cylinders, with 

,L & m  and normal plane-wave incidence polarized parallel 

to the cylinder axis [34]. This relation can be easily derived by 

comparing the 2-D scattered field

 ,
j
KR

E jk J
H

d R
4

( )
s

z
C

22
0
2

DTM D t tt th= - = -l l l^
^

h
h#  (19)

with the 3-D case

 ,E jk J
R

e d Rr r r r
4/

/
Dz

s
z

CL

L jKR

3 3
2

2
Dh

r
= - = -

-

-

l l l^ h##  (20)

for r t=  (observer in the xy  plane), after using the large 

argument approximation for H( )
0
2  [see (23)] and the parallel ray 

approximation .e e ejkR jkr jkr r
.

$- - lt

Notice that the main approximation here assumes that the 

induced current in the 3-D case is z-directed, uniform along the 

z-direction, and the same as in 2-D:

 J JJ r z z.z z33D 2D D. .t tl l lt t^ ^ ^h h h  (21)

This assumption will be valid if the edge effects can be neglect-

ed, which needs .L & m

The cylindrical harmonic coefficients of the 2-D scattered 

field of (6), ,an  were computed from the Fourier series coeffi-

cients of ( ) ( )E Es
z
s

2TM D z z=  as

 , .a
H k

E e d
2

1
( )n
n

z
s jn

2
0 0

2

r t
t z z=

r z-

^
^

h
h#  (22)

Using the large argument approximation of the second-kind 

Hankel function,

 , ,H k
k

e k2( ) ( )
n

j k n2
0

0
2 4 0

0
" 3.t

r t
tt

r r
- - -^ h  (23)

and substituting (18) and (23) into (22) for n 0=  led to

 .a
L
j

E d
2

s
0

0

2
z z=

r
^ h#  (24)

Now, one can find the cylindrical FSS impedance of the cloak 

by isolating Zs in (15):

 ,Z
a n H J a H J n J J J J

j a H J J J
s

0 1 00 11 0 10 01 1 00 11 01 10

0 0 00 01 00 01h
=

- + -

+^ h
 (25)

where

,J J k a J J k a00 0 0 01 0 1= =^ ^h h

,J J k a J J k a10 1 0 11 1 1= =^ ^h h

and

.H H k a H H k a( ) ( )
00 0

2
0 10 1

2
0= =^ ^h h

Figure 4 shows the evolution of the surface impedance Zs  

as a function of frequency. At the design frequency of 3.77 GHz, 

the reactance (i.e., the red line) was .190 0X instead of the 

theoretical value of . .192 5X  As expected, the real part of the 

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

z

y

x

FIGURE 3. The mesh-grid FSS structure and a zoomed view of the triangle mesh. <AU: From where was this image obtained, 
and do you have permission from the source to use it?>
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surface impedance was much smaller than the reactance (i.e., 

the green line).

It is interesting to compare the computed surface impedance 

for the cylindrical FSS with the required reactance for ideal 

cloaking from (16) (i.e., the blue line in Figure 4). The two lines 

cross each other at 3.78 GHz with an almost-zero resistance at 

that frequency. Therefore, the cloak is expected to work success-

fully at a frequency of 3.78 instead of 3.77 GHz.

We can also compare this with the surface impedance of the 

planar infinite mesh grid, for which (17), used to design the cell 

dimensions, is valid. Infinite planar periodic structures can be 

easily analyzed using Floquet mode theory from the simulation 

of a single cell. Since Floquet modes were not implemented in 

the FIESTA-3-D code, computer simulation technology (CST) 

was used [35]. In the CST, two Floquet ports were placed at 

both sides of a mesh-grid cell and computed S-parameters. The 

FSS impedance, ,Zs  was related to parameter S11  using the 

equivalent transmission line model of Figure 5:

 ,Z Z
S
S

2
1

s 0
11

11

cell

cell
=-

+c m  (26)

where ,S S e( / )j d
11 11

2
cell port=

r m  with d  being the length of the 

transmission line from the Floquet port to the FSS plane and 

S11port  being the reflection coefficient computed by CST at the 

ports. The black line in Figure 4 shows the reactance computed 

for the infinite planar mesh-grid FSS. The real part Rs  is zero at 

all frequencies, since Zs  is purely reactive in the ideal case.

The planar FSS reactance at the design frequency (i.e., 

.184 9X  at 3.77 GHz) was very close to the value obtained 

by the full-wave 3-D simulation of the cylindrical FSS (i.e., 

. ).190 0X  This suggests that the mesh-grid geometry was cor-

rectly designed and the bending of the FSS in a curved surface 

did not significantly change the surface impedance near 3.77 

GHz.

There are frequencies at which the surface reactance of the 

cylindrical FSS departed from the value for the infinite planar 

mesh grid computed by CST, having a very significant real part 

that ideally should be zero. This behavior resembles a kind of 

resonance specific to the cylindrical case and suggests that there 

are frequencies at which the design of the cloak using (17), valid 

for the planar case, may not work as expected.

FULL-WAVE SIMULATION OF MANTLE CLOAKING 

To assess cloaking performance, we simulated the bare dielec-

tric cylinder and the cloaked one with FIESTA-3-D [33]. 

Frequency (GHz)
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FIGURE 4. The simulated surface impedance of the cylindrical 
FSS as a function of frequency (real part Rs  in green and 
imaginary part Xs  in red), together with the reactance of the 
infinite planar mesh-grid FSS determined using computer-
simulated technology software (in black) and the required 
reactance for ideal cloaking from (16) in blue. The cylindrical 
FSS reactance at the 3.77-GHz design frequency is .190 0X  
instead of the theoretical value of .192 5X  and achieves the 
required reactance for ideal cloaking at a frequency of 3.78 
GHz with an almost-zero resistance at that frequency.
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Port 2

Unit
Cell

E0e–jk0x

I
→

Z0 = 120 π Ω Z0 = 120 π ΩZs

d = λ /4 d = λ /4

FIGURE 5. A transmission line model for an FSS of impedance 
Zs  and normal incident plane wave.
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Far-Field  Sum (E s) for All Azimuth Angles
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FIGURE 6. The integration of ( )Es z  for z  as a function of 
frequency for the bare dielectric cylinder (blue line) and the 
coated cylinder (red line).
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Figure 6 shows the integration of far fields ( )Es z  for z angles 

around the cylinder, which, according to (22) and (24), is pro-

portional to the dominant scattering coefficient a0  that should 

ideally be null. Figure 7 shows the cloak attenuation computed 

by subtracting the two results of Figure 6: the red line is the 

FIESTA-3-D simulation result, while the blue line corresponds 

to the theoretical calculation of the 2-D cylindrical expansion 

coefficient a0  with (15), using the ideal planar FSS impedance 

given by (17), which provides a 00 =  at the design frequency 

(i.e., 3.77 GHz).

The simulated cloaking effect was very good. The FIESTA-

3-D full-wave simulation (i.e., the red line in Figure 7) gave 

almost a 30-dB scattering reduction and agreed well with the 

theoretical value of the 2-D scattering coefficient .a0  The cloak-

ing frequency was slightly shifted from the design value (i.e., 

3.77 GHz) to 3.78 GHz, exactly as was predicted from the com-

puted reactance of the cylindrical FSS in Figure 4.

The cloaking performance can also be observed in the far-

field pattern at the 3.77-GHz design frequency (Figure 8) in 

contrast with the noncloaking pattern at a far-away frequency 

(Figure 9). The cloaked-cylinder pattern of Figure 8 has the 

shape of the n 1=  cylindrical harmonic, after cancelation of the 

a0 coefficient of the dominant zeroth-order mode. Since, in this 

case, .k a 1 751 =  at 3.77 GHz, the first-order harmonic a1  was 

not small enough, and we could have obtained a better result by 

minimizing .a a0
2

1
2

+

MANUFACTURING AND EXPERIMENTAL TESTING 

PROTOTYPE

The cloak prototype was a simple 32 × 4-cell cylindrical copper 

sheet, as depicted in Figures 2 and 3. The geometrical dimen-

sions were the same as in the model simulated with FIESTA-

3-D in the section “Numerical Simulation,” except for the PVC 

cylinder length (1 m) and the cloak height (51 cm), and, thus, 

coated only the center part of the cylinder. Since the main lobe 

of the transmitting antenna impinged over only the coated part 

of the cylinder, the simulations for an incident plane wave, as 

discussed in the “Numerical Simulation” section, should have 

approximately predicted the measurement results.

The PVC cylinder was bought from Lumetal Plastic S.L. 

<AU: Please spell out S.L., if appropriate.> (http://www.
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cloak bare  The full-wave computation 
for a 3-D cylinder (red line) is compared to the theoretical 
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FIGURE 8. The bistatic RCS <AU: Kindly spell out RCS.> 
patterns for the bare (blue) and cloaked (red) cylinders at the 
3.77 GHz design frequency.

Bistatic RCS at 2.75 GHz
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FIGURE 9. The bistatic RCS patterns for the bare (blue) and 
cloaked (red) cylinders at 2.75 GHz, far away from the design 
frequency. 
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lumetalplastic.com/en/) and used as is, with no modification. 

The copper sheet had a thickness of ,70 mn  and it was pat-

terned by a standard chemical photoetching process. First, the 

photoresist was deposited on the copper sheet, and the desired 

pattern was transferred through a film mask. The plastic film 

and the copper coat after the chemical process are shown in 

Figure 10. The full 32 × 4-cell sheet was assembled using four 

different 8 × 4 sections. Finally, the FSS structure was carefully 

glued to the surface of the dielectric cylinder. To achieve a very 

thin and uniform glue layer, 3-n  <AU: Please check that the 

change of “M” to “μ” is correct.> photo-mount glue was 

sprayed over the copper sheet, and the dielectric cylinder was 

rolled over the glue.

MEASUREMENT OF BISTATIC SCATTERING

The first set of measurements corresponded to the bistatic prob-

lem. The setup for the bistatic measurement is shown in Figure 

11. The whole setup was placed in an anechoic chamber to avoid 

the effect of unwanted reflections. Two ridge-horn antennas 

Cylinder

Rx AntennaTx Antenna

Network Analyzer

FIGURE 11. The bistatic scattering measurement setup at four 
different angles. Tx: Transmit; Rx: Receive. <AU: Kindly check 
that Tx and Rx are spelled out correctly. Also, from where 
was this image obtained, and do you have permission from 
the source to use it?> 
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FIGURE 12. The measured electric field was integrated 
around the cylinder by the coherent sum of all the bistatic 
measurements. The scattered field was attenuated about 10 
dB by the cloak in a frequency band around 3.39 GHz.

Emitter

Receiver

Network Analyzer

Cylinder
2 mm

102 mm

930 mm

151 Frequency

Samples

1-D Measurement: 25 × 1 Steps

2-D Measurement: 25 × 5 Steps

90 mm

FIGURE 13. The forward near-field 2-D measurement setup 
with two stepping motors. 1-D: one dimensional. <AU: 
Kindly check that 1-D is spelled out correctly.>

Rx Antenna

Tx Antenna

Cylinder

FIGURE 14. The forward near-field 2-D measurement setup. 
<AU: From where was this image obtained, and do you 
have permission from the source to use it?>

(a) (b)

FIGURE 10. (a) A black-and-white plastic film mask, e.g., a 
negative image, was used to print the mesh-grid design 
on the copper sheet metal. (b) The final resulting 8 × 4-cell 
section of cloak. <AU: From where were these images 
obtained, and do you have permission from the source to 
use them?>
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that cover the frequency range 2–15 GHz were mounted on 

tripods and connected to each of the ports of an automatic 

network analyzer. One of the antennas remained fixed, and the 

other was placed at 45°, 90°, 135°, and 180°. The S11  measure-

ment provided the back-scattering at 0° and S12  at the remain-

ing positions. Time-domain gating was applied to filter out the 

antenna reflection in the S11  measurements.

Figure 12 shows the coherent summation of the bistatic 

measurements obtained at different angular positions as a func-

tion of the operating frequency. Despite 

the simple cloak design, the scattering 

attenuation achieved by this prototype 

was approximately 10 dB. Noticeably, 

the attenuation peak was located at 3.4 

GHz instead of the design frequency 

(i.e., 3.77 GHz). The most likely expla-

nation for this discrepancy is the lack 

of manufacturing precision, since small 

inaccuracies lead to variations of the 

surface impedance that shift the can-

celation frequency of the field scattered 

by the cloak with that of the dielectric 

cylinder. Although the technique was 

narrow-band in nature, a remarkable 

bandwidth of the order of 100 MHz 

was achieved.

MEASUREMENT OF NEAR-FIELD 

MAGNITUDE 

A second set of measurements was car-

ried out to measure the field distribu-

tion behind the cylinder. The goal of 

the measurements was to verify that the 

field distributions measured around the 

cloaked-cylinder prototype resembled 

those that would be measured without 

the presence of the cylinder. A ridge-

horn antenna was used to produce the 

illuminating fields on the test zone. The 

measuring distance was chosen to be 

at least ten wavelengths away from the 

antenna to ensure plane-wave condi-

tions on the cylinder. No specific level 

calibration was performed since only 

relative measurements were of interest, 

e.g., comparing the fields without the 

cylinder, with the cylinder, and with the 

cloaked cylinder.

Two stepping motors were used to 

measure the magnitude and phase of 

the forward near field in a 2-D grid. As 

shown in Figure 13, the emitter anten-

na remained static while the receiv-

er was moved along five rows in the 

y-direction, measuring 25 field samples 

in each row in the x-direction. The anechoic chamber setup can 

be observed in Figure 14.

Figures 15 and 16 show the measurements in the 2-D 

grid of Figure 13 for, respectively, the frequency of minimum 

scattering (i.e., 3.39 GHz) and a frequency far away from the 

cloaking band (i.e., 2.75 GHz). The grid was located behind the 

cylinder in the forward near-field zone, at a minimum distance 

of approximately 50 cm from the cylinder surface, as shown in 

Figures 13 and 14.
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FIGURE 15. The 2-D measurement of forward-field magnitude for the free-space 
measurement (i.e., the incident field with no cylinder) and the bare dielectric and 
cloaked cylinder at the frequency of minimum scattering (i.e., 3.39 GHz). As expected, 
the cloak partly restores the incident-field distribution for operating frequencies in 
the cloaking band.
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FIGURE 16. The 2-D measurement of forward-field magnitude for the free-space 
measurement (i.e., the incident field with no cylinder), the bare dielectric cylinder, 
and the cloaked one at a frequency far away from the cloaking band (2.75 GHz). At 
this frequency, there is no cloaking effect, and the incident field is heavily distorted 
by the presence of the bare or cloaked cylinder.



IE
E
E
 P

ro
o

f

10 IEEE ANTENNAS & PROPAGATION MAGAZINE A U G U S T  2 0 1 8

Results for the free-space measurement (i.e., with no cyl-

inder), the bare dielectric cylinder, and the cloaked one were 

compared. The free-space measurement with no cylinder gave 

the picture of the incident field that impinged over the cylinder. 

The presence of the bare cylinder distorted the incident field, 

producing a reflection (i.e., standing wave) in the backward 

direction and shadow in the forward direction. It was expected 

that the scattered-field attenuation due to the cloak (Figure 

12) would reduce its magnitude to one much smaller than that 

of the incident field for operating frequencies in the cloaking 

band (i.e., 3.39 GHz). The total field (i.e., incident plus scattered) 

was, therefore, similar to the incident one: the cloaked cylinder 

was nearly transparent and did not perturb the incident field. 

However, this cloaking effect should 

not be visible at other frequencies (i.e., 

2.75 GHz), for which the incident field 

should be heavily distorted by the pres-

ence of the bare or cloaked cylinder.

In the free-space measurement, we 

observed the 2-D field distribution of 

the transmitting horn antenna (i.e., the 

incident field). The bare dielectric cyl-

inder distorted the field in both Figures 

15 and 16. As expected, the cloak partly 

restored the incident-field distribution 

at 3.39 GHz (i.e., the cloaking band) in 

Figure 15, but not at 2.75 GHz (i.e., far 

away from the cloaking band) in Figure 

16.

To check the performance of for-

ward near-field cloaking versus operat-

ing frequency, in Figure 17 we have 

integrated into the 2-D near-field grid 

the absolute value of the difference 

between the free space and the bare or 

cloaked-cylinder near-field magnitudes. 

Since the cloaked-cylinder near field 

Frequency (GHz)
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2.75 GHz

3.39 GHz

3.61 GHz

2 2.5 3 3.5 4 4.5 5 5.5

Bare Cylinder

Cloaked Cylinder

2-D Integral of Absolute (|Ecylinder
| – |Efree space

|)

FIGURE 17. The absolute value of the difference between 
the free-space (i.e., incident) field and the cloaked-cylinder 
field magnitudes, integrated for all points into the 2-D 
near-field grid. The red and blue lines correspond to the 
difference between the free-space field and, respectively, 
the bare- or cloaked-cylinder fields. The black circles show 
the frequencies of 2.75 and 3.39 GHz, corresponding to the 
results in Figures 15 and 16, and the frequency for which 
the cloak best restores the incident field (i.e., 3.61 GHz), 
corresponding to Figure 18.
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FIGURE 18. The 2-D measurement of forward-field magnitude for the free-space 
measurement (i.e., the incident field with no cylinder) and the bare dielectric and 
cloaked cylinder at the frequency of minimum difference between the free-space 
and the cloaked-cylinder near field (i.e., 3.61 GHz). The cloak partly restores the 
incident-field distribution.
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FIGURE 19. The absolute value of the difference between the 
free-space and the cloaked-cylinder field magnitudes along 
the first row (i.e., the x-direction) of the 2-D measurement 
grid versus the frequency. The cloaking band between 3.4 
and 3.7 GHz—in which the incident and the cloaked-cylinder 
fields are similar so that the difference between them is 
small—is clearly visible as a horizontal, dark blue region.
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was similar to the incident one for operating frequencies in the 

cloaking band, we observed that the difference between them 

was, indeed, much smaller in the cloaking band than outside. 

This effect was not visible for the bare-cylinder near field.

Figure 17 shows a result similar to that of the bistatic scat-

tering measurement in Figure 12, but the forward near-field 

cloaking band was between 3.4 and 3.7 GHz, while in Figure 

12 the maximum attenuation of far-field scattering was between 

3.3 and 3.4 GHz. Figure 18 shows the forward near field for 

the free-space and bare- and cloaked-cylinder measurements 

at the frequency of 3.61 GHz, for which the cloak best restored 

the incident field. Again, the total field distribution was heavily 

distorted by the presence of the bare cylinder, while the near 

field with cloak resembled the unperturbed incident field (i.e., 

the free-space measurement, without the cylinder), as expected.

It is remarkable that, according to Figure 4, in the band 

between 3.4 and 3.7 GHz, the surface impedance of the cylin-

drical FSS was close to the value of 192.5 Ω, which theoretically 

canceled the scattered field at 3.77 GHz. To display the similar-

ity between the free space and the cloaked-cylinder near-field 

magnitudes versus operating frequency, Figures 19 and 20 show 

two cuts of the difference between the two field magnitudes; 

Figure 19 shows a horizontal cut in the x-direction along the 

first row of the 2-D measurement grid, while Figure 20 shows 

a vertical cut along the forward y-direction, which is the center 

column of the 2-D measurement grid.

The cloaking band between 3.4 and 3.7 GHz, in which the 

incident and cloaked-cylinder fields were similar so that the 

difference between them was small, is visible as a dark blue, 

horizontal region in Figure 19 and a vertical region in Figure 20.

Figure 21 displays the near-field magnitude along the first 

row (i.e., the x-direction) of the 2-D measurement grid for the 

three measurements—free space (i.e., with no cylinder), bare, 

and cloaked cylinders—at the frequency of best incident-field 

restoration (i.e., 3.61 GHz). As expected, the near field was dis-

torted by the presence of the bare cylinder, and the scattering 

cancelation due to the cloak produced a cloaked-cylinder field 

close to the incident one.

CONCLUSIONS

A full process for the design, simulation, prototyping, and 

measurement of a simple and effective FSS-based mantle cloak 

for electrically small dielectric cylinders at 3.77 GHz has been 

presented. Full-wave 3-D simulations showed excellent agree-

ment with theory. An original approach has been introduced 

to compute the effective surface impedance of the cylindrical 

metasurface, from either measured or simulated far fields.

Experimental prototype measurements showed about 

10-dB scattered-field attenuation at a relatively broad band of 

100 MHz at 3.4 GHz, although the scattering cancelation tech-

nique was theoretically narrow-band. Near-field measurements 

in the forward direction demonstrated that the cloak partly 

restored the incident field in a wider band between 3.4 and 3.7 

GHz.
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An FSS is probably the 

most cost-effective and 

easiest-to-implement 

choice for putting 

scattering cancelation 

into practice.

The aim of this article is 

to didactically present 

the complete process.

The incident and 

cloaked-cylinder fields 

were similar so that 

the difference between 

them was small.

The magnetic field 

inside and outside the 

cylinder was obtained 

from the electric 

field (7) and (8) after 

applying Maxwell-

Faraday curl equation.

This result gave the 

surface reactance 

of the cloaking 

coat attached to an 

electrically thin cylinder 

that minimized the 

scattered field and, 

thus, reduced its 

visibility. 

The cloak is expected 

to work successfully 

at a frequency of 3.78 

instead of 3.77 GHz.

The bending of the FSS 

in a curved surface did 

not significantly change 

the surface impedance 

near 3.77 GHz.

The total field 

distribution was 

heavily distorted by the 

presence of the bare 

cylinder.


