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A Middleware Platform for a Biologically Inspired
Network Architecture Supporting Autonomous

and Adaptive Applications
Junichi Suzuki, Member, IEEE, and Tatsuya Suda, Fellow, IEEE

Abstract—This paper describes and empirically evaluates the
middleware platform of a new network architecture called the
Bio-Networking Architecture. The Bio-Networking Architec-
ture is inspired by the observation that the biological systems
(e.g., bee colonies) have already developed mechanisms neces-
sary to achieve future network requirements such as autonomy,
scalability, adaptability, and simplicity. In the Bio-Networking
Architecture, a network application is implemented as a group of
distributed, autonomous and diverse objects called cyber-entities
(CEs) (analogous to a bee colony consisting of multiple bees). Each
CE implements a functional service related to the application
and follows simple behaviors similar to biological entities (e.g.,
reproduction and migration). In the Bio-Networking Architecture,
beneficial application characteristics (e.g., autonomy, scalability,
adaptability, and simplicity) arise from the autonomous inter-
action of CEs. The middleware platform in the Bio-Networking
Architecture, the bionet platform, provides reusable software
components for developing, deploying, and executing CEs. The
components abstract low-level operating and networking details,
and implement high-level runtime services that CEs use to per-
form their services and behaviors. The components in the bionet
platform are designed based on several biological concepts (e.g.,
energy exchange and pheromone emission). This paper describes
key designs of the bionet platform and empirically demonstrates
that the bionet platform is efficient, scalable, reusable, and signifi-
cantly simplifies development of network applications.

Index Terms—Autonomic computing middleware, autonomous
and adaptive network applications, biologically inspired network
architecture for distributed computing.

I. INTRODUCTION

F
UTURE network applications are expected to be au-

tonomous, scalable, adaptive to dynamic network envi-

ronments, and to be simple to develop and deploy. In order

to realize future network applications with such desirable

characteristics, the authors of this paper observe that various

biological systems have already developed the mechanisms
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necessary to achieve the key requirements of future network

applications such as autonomy, scalability, adaptability, and

simplicity. The authors of the paper believe if network ap-

plications are modeled after certain biological concepts and

mechanisms, they may be able to meet these requirements of

future network applications.

The Bio-Networking Architecture [1]–[5] applies key con-

cepts and mechanisms in biological systems to design network

applications.1 One of the key concepts in biological systems

is emergence. In biological systems, beneficial system prop-

erties (e.g., adaptability) often emerge through the simple and

autonomous interactions among diverse biological entities. The

Bio-Networking Architecture applies the concept of emergence

by implementing network applications as a group of distributed,

autonomous, and diverse objects called cyber-entities (CEs).

This is analogous to a bee colony (a network application) con-

sisting of multiple bees (CEs). Each CE implements a functional

service related to the application and follows simple behaviors

similar to biological entities, such as reproduction, death, mi-

gration, and environment sensing.

Similar to entities in the biological world, CEs in the Bio-Net-

working Architecture are designed to provide a sufficient degree

of diversity. Different CEs may implement different services.

For instance, a CE may implement an airline reservation service,

while another CE may implement a hotel reservation service. A

CE may implement a Web service and contain Web pages. Dif-

ferent CEs may implement different behavior policies. For in-

stance, a CE may have a migration policy of moving toward a

user, while another CE may have a migration policy of moving

toward a node, where resource availability is higher.

Similar to an entity in the biological world, each CE in the

Bio-Networking Architecture may store and expend energy for

living. CEs may gain energy in exchange for performing a ser-

vice, and they may pay energy to receive a service from other

CEs and to use network and computing resources. The abun-

dance or scarcity of stored energy may affect various behav-

iors of a CE. For example, an abundance of stored energy is an

indication of higher demand for the CE; thus, the CE may be

designed to favor reproduction in response to higher levels of

stored energy. A scarcity of stored energy (an indication of lack

of demand or ineffective behaviors) may eventually cause the

CE’s death.

1The Bio-Networking Architecture was first proposed in [2], later adopted by
NTT [3], and also adopted by the Object Management Group (OMG) as a part
of its standard specification for super distributed objects (SDO) [6].

0733-8716/$20.00 © 2005 IEEE
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In the Bio-Networking Architecture, application function-

ality emerges from the collaborative execution of services

carried by CEs, and beneficial application characteristics (e.g.,

autonomy, scalability, adaptability, and simplicity) arise from

the simple and diverse behaviors among CEs and from the

autonomous interaction of individual CEs.

This paper describes and empirically evaluates the design of

the middleware platform in the Bio-Networking Architecture,

called the bionet platform [4]. The bionet platform runs on a

virtual machine, and CEs run atop the bionet platform. It pro-

vides reusable software components for developing, deploying

and executing CEs. The components abstract low-level oper-

ating and networking details (e.g., network I/O and concurrency

control for executing CEs), and implement high-level runtime

services that CEs use to perform their services and behaviors.

The components are designed based on several biological mech-

anisms (e.g., migration, replication, reproduction, energy ex-

change, and pheromone emission) so that CEs satisfy future

network requirements. Empirical measurements show that the

bionet platform is efficient, scalable, reusable, and significantly

simplifies development of network applications.

This paper is organized as follows. Section II overviews key

design principles of the Bio-Networking Architecture. Based

on the design principles described in Section II, Section III

identifies functionalities that the bionet platform performs.

Section III also describes the design of the CEs and bionet plat-

form. Section IV shows the results of empirical measurements

to evaluate the bionet platform and applications implemented

on the bionet platforms. Section V concludes with some dis-

cussion on future work.

II. DESIGN PRINCIPLES OF THE

BIO-NETWORKING ARCHITECTURE

In the Bio-Networking Architecture, CEs are designed based

on the three principles described below in order to interact and

collectively provide network applications that are autonomous,

scalable, adaptive, and simple.

1) Decentralization: CEs are decentralized. There are no

central entities to control and coordinate CEs (i.e., no directory

servers and no resource managers). Decentralization allows

network applications to be scalable and simple by avoiding

a single point of performance bottleneck and failure [7], [8]

and by avoiding any central coordination in developing and

deploying CEs [8].

2) Autonomy: CEs are autonomous. CEs monitor their local

network environments, and based on the monitored environ-

mental conditions, they autonomously interact without any in-

tervention from human users or from other controlling entities.

3) Adaptability: CEs are adaptive to dynamically changing

environmental conditions (e.g., user demands, user locations,

and resource availability) over the short-term and long-term.

The short-term adaptation is achieved through designing CE be-

havior policies to consider local environmental conditions [2].

For instance, CEs may implement a migration policy of moving

toward a bionet platform that forward a large number of user re-

quests for their services. This results in the adaptation of CE lo-

cations, and CEs concentrate around the users who request their

Fig. 1. Bionet platform architecture.

services. The long-term adaptation occurs as a result of the nat-

ural selection (using energy) from diverse behavioral policies of

CEs. Diverse behavioral policies of CEs may be created manu-

ally by human CE developers or created through crossover and

mutation during replication and reproduction of CEs. Through

natural selection using energy,2 beneficial behavior policies are

retained, while detrimental behavior policies become dormant

or extinct over many successive generations, and the CEs spe-

cialize and improve themselves according to long-term environ-

mental changes [5].

III. CES AND THE BIONET PLATFORM

The bionet platform provides an execution environment for

CEs. It consists of two types of software components. The

first type of components, supporting components, abstracts

low-level operating and networking details (e.g., network I/O

and concurrency control for executing CEs). The second type

of components, runtime components, provides runtime services

that CEs use to perform their services and behaviors. The bionet

platform is implemented in Java,3 and each bionet platform

runs on a Java virtual machine (JVM) (Fig. 1). Each CE is

implemented as a Java object and runs on a bionet platform

(Fig. 1).

A. Cyber-Entities (CEs)

A CE consists of three main parts: attributes, body, and

behaviors (Fig. 2). Attributes carry descriptive information

regarding the CE (e.g., CE ID and description of a service it

provides). The body implements a service that the CE pro-

vides and contains materials relevant to the service (e.g., data,

application code, or user profiles). For instance, the CE may

implement control software for a device in its body, while

another CE may implement a hotel reservation service in its

body. A CE that implements a Web service may contain Web

2As described in Section I, a CE may store and expend energy for living.
CEs with beneficial behavior policies will acquire more energy and reproduce
more often than CEs with detrimental behavior policies. CEs with detrimental
behavior policies will eventually become extinct due to lack of energy.

3The current code base of the bionet platform contains approximately 30 600
semicolons.
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Fig. 2. Design of a CE.

pages in its body. CE behaviors implement nonservice related

actions that are inherent to all CEs. Examples of behavior

include migration, reproduction, and energy exchange.

1) CE Attributes: The current design of the bionet platform

defines four mandatory attributes that every CE maintains:

1) globally unique ID (CE GUID); 2) reference (or pointer) to

the CE; 3) description of the service that the CE provides; and

4) price (in energy units) of the service that the CE provides.

A GUID is a 32-digits string data created from the information

provided by the platform where the CE was originally created

(i.e., the Internet protocol (IP) address of the platform, JVM

identity hash code4 of the GUID generator on the platform, the

time when the CE was created on the platform, and a random

number5 generated by the JVM that the platform runs on).

A CE’s GUID is unique and does not change throughout the

lifetime of a CE. A CE’s reference is a pointer that other CEs

use to send messages to the CE. It encapsulates the IP address

and port number of the platform where the CE currently resides

on. When a CE migrates, it obtains a new reference at the

platform it migrates to. A CE’s reference is represented as a

stringfied CORBA object [9]. The description of a service is

the name of the service that a CE provides, and the price of

a service represents the amount of energy required to receive

the service that the CE provides. In addition to four mandatory

attributes, the current design of the bionet platform allows CEs

to specify optional attributes.

Attributes are implemented as name-value pairs defined with

the OMG constraint language [10]. Table I shows an example

of mandatory attributes of a CE that provides a Web service at

the price of 100 energy units.

2) CE Body: The body implements the service that a CE

provides and contains materials relevant to the service (e.g.,

data, application code or user profiles). Implementation of a CE

body is left to the developer of the CE.

3) CE Behaviors: CEs are autonomous and follow simple

biological behaviors. Some example behaviors are explained

next.

4This hash code is obtained by calling System.identityHashCode().
5Random numbers are generated with java.util.Random (default op-

tion because of its efficiency) or java.security.SecureRandom.

TABLE I
EXAMPLE OF CE ATTRIBUTES

• Migration: CEs may migrate from one bionet platform to

another.

• Communication. CEs may communicate with other CEs

for the purposes of, for instance, requesting a service, for-

warding a discovery query, or exchanging energy.

• Energy exchange and storage: CEs may receive and store

energy in exchange for providing services to other CEs.

CEs also expend energy. For instance, CEs may pay en-

ergy units for services that they receive from other CEs.

In addition, when a CE uses resources on a bionet plat-

form (e.g., CPU and memory), it may pay energy units to

the platform.

• Lifecycle regulation: CEs may regulate their lifecycles.

CEs may make a copy of themselves (replication), pos-

sibly with mutation of the replica’s behavioral policy. Two

parent CEs may create a child CE (reproduction) pos-

sibly with crossover and mutation of the child’s behavioral

policy. CEs also may die (death) as a result of lack of en-

ergy. If energy expenditure of a CE is not balanced with the

energy units it receives from providing services to other

CEs, it will not be able to pay for the resources it needs,

i.e., it dies from lack of energy. CEs with wasteful behav-

ioral policies (e.g., replicating or migrating too often) will

have a higher chance of dying from lack of energy.

• Relationship maintenance: CEs may establish and main-

tain relationships with other CEs. A relationship contains

information regarding the partner CE, for instance, the at-

tributes of the partner CE. Relationships are autonomously

maintained by the participant CEs. Such relationships

may have a variety of uses, including creating applications

from a group of CEs or performing discovery to search

for CEs.

• Discovery: CEs may seek for other CEs of certain at-

tributes by forwarding queries to CEs that they have re-

lationships to.

• Pheromone emission: CEs may emit and leave a

pheromone (or a trace) behind on a bionet platform

when they migrate to another platform. This is to indicate

their presence to other CEs. A pheromone contains the

emitter’s GUID and a reference to the platform that the

emitter migrated to. Pheromones are emitted with certain

strength and may decay over time. Pheromones may have

a variety of uses, including improving the performance of

discovery.

• Environment sensing. CEs may sense their local environ-

ment. For instance, a CE may sense the local environment

to learn which CEs are in the environment and what

services they provide. A CE may also sense pheromones

(e.g., which CEs left pheromones on remote bionet
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Fig. 3. Class diagram around CyberEntityImpl.

platforms) and resources (e.g., CPU processing power

and memory space available on remote bionet platforms).

The bionet platform implements behaviors explained above.

Each behavior is implemented by one or more runtime compo-

nents provided by the bionet platform. When a behavior is in-

voked, a corresponding runtime component (or components) is

called.

B. Supporting Components in the Bionet Platform

As described earlier in this section, the supporting compo-

nents in the bionet platform abstract low-level operating and net-

working details. The package edu.uci.ics.bionet.ce

on Fig. 3 shows some of the key supporting components in

the bionet platform. CyberEntityImpl is the base class for

CEs. Developers of CEs define their own CEs by extending this

class as subclasses of this class. It provides a set of operations

and variables that are common among all the CEs. The opera-

tions and variables are used to implement attributes, body, and

behaviors of CEs in the following manner.

Each attribute of a CE is implemented as a typed pair of a

name and a value, and attributes of a CE are implemented as a

list of the typed pairs in the class TypedNameValueList.

CyberEntityImpl has a variable attributes, which is

typed in TypedNameValueList, to maintain attributes of a

CE. The operations of TypedNameValueList allow CEs to

define, modify, and obtain their attributes. Implementation of

a CE body is left up to the developer of the body. The bionet

platform only assumes that it is implemented as one or more

arbitrary operations in a subclass of CyberEntityImpl.

The operations that implement a body are called by the run()

operation derived from the interface Runnable upon an

arrival of a request for the corresponding service. Behaviors

of a CE are implemented by the runtime components of the

bionet platform. CyberEntityImpl includes a variable

availableBionetServices, which is a list of references

to the runtime components available on the bionet platform. In

invoking a behavior, a CE examines availableBionet-

Services and obtains references to the runtime components

that implement the behavior.

The key designs of the supporting components in the bionet

platform form a foundation of a standard specification at the

SDOs special interest group (SIG) of the OMG [6]. The SDO

SIG standardizes a uniform object model for supporting hetero-

geneous hardware devices and software services in highly dis-

tributed environments. The package org.omg.SDOPackage

on Fig. 3 shows some of the components defined in the OMG

SDO specification. The interface SDO is a uniform representa-

tion of heterogeneous hardware devices and software services.

Multiple SDOs may form relationships between themselves

using the interface Organization in order to, for example,

create a group of SDOs and forward discovery queries among

group member SDOs. The class ServiceProfile is used

to define properties of SDO’s function (e.g., identifier and

name of SDO’s function). The interface Configuration

is to configure (i.e., define and modify) the properties stored

in ServiceProfile, and the interface Monitoring is to

monitor and obtain the properties stored in ServicePro-

file.

The components in the OMG SDO specification are imple-

mented by the supporting components in the bionet platform

(Fig. 3). For example, CyberEntityImpl (in the bionet

platform) implements SDO. TypedNameValueList (in the

bionet platform) implements ServiceProfile, Config-

uration, and Monitoring. The bionet platform serves as

a reference implementation of the OMG SDO specification.

C. Runtime Components in the Bionet Platform

1) Architecture of the Bionet Platform: The runtime compo-

nents in the bionet platform provide runtime services that CEs

use to perform their services and behaviors. In order to maxi-

mize the degree of decentralization and autonomy of CEs, CEs

only use the runtime components on the platform they reside.

CEs do not invoke any runtime components running on a remote

bionet platform. In addition, there are no runtime components

that control or coordinate other runtime components.

The current design of the bionet platform defines six run-

time components as shown in Fig. 1. The bionet class loader

dynamically loads a CE class definition into JVM when a CE
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is newly created on a bionet platform or when a new CE mi-

grates from another bionet platform.6 The bionet message trans-

port performs functionalities required for communication be-

tween different CEs and between different bionet platforms,

such as marshalling and transmitting of messages. The bionet

container maintains a reference table to the CEs running on a

bionet platform, and it uses the table to dispatch incoming mes-

sages to CEs. The bionet services implement CE behaviors. A

platform representative contains the information (e.g., address)

on a bionet platform. It is used by CEs and runtime components

to reference a bionet platform. For example, the pheromone that

a CE emits when migrating to another bionet platform contains

a platform representative of the CE’s destination platform. A

CE context is an entry point for a CE to access underlying run-

time components (e.g., bionet services). It examines whether a

runtime component requested by a CE is available on a bionet

platform, and if it is, it returns a reference to the requested com-

ponent to the CE. A CE context is created and associated with a

CE by a bionet service (the lifecycle management service to be

explained below) when the CE is newly instantiated on a bionet

platform (either due to a creation of a new CE, replication or

reproduction of an existing CE, or on the arrival of a CE from

another bionet platform).

2) Bionet Services: The bionet platform provides nine

bionet services. Table II summarizes the nine bionet services.

These nine bionet services along with the runtime compo-

nents that the bionet platform provides (described earlier in

Section III-C) implement eight CE behaviors described in

Section III-A. The implementation of each CE behavior is

described below7 in detail.

a) Migration Behavior: The bionet platform provides the

migration service (a bionet service), which implements the func-

tionalities necessary to support the migration behavior of CEs.

The current implementation only supports weak migration [13],

where a CE migrates only with its data state.8 When a CE mi-

grates, the migration service on the bionet platform where the

CE resides transmits the class name, class definition, and run-

time data state of the CE to the migration service on a destination

bionet platform. The class definition and data state are serialized

at an origin bionet platform and deserialized on a destination

by using the Java serialization mechanism. A destination-side

migration service loads the received class definition into JVM

using the bionet class loader (a runtime component), and then

instantiates a CE with the received data state.

b) Communication Behavior: The bionet platform pro-

vides the bionet message transport (a runtime component),

6The bionet class loader is a customized class loader that extends JVM’s (de-
fault) system class loader.

7The bionet platform has some commonality with existing mobile agent plat-
forms such as Aglets [11], AgentSpace [12], and Hive [8]. For instance, both the
bionet platform and existing mobile agent platforms support mobility of agents
(i.e., CEs) and facilitate abstraction of low-level operating details and communi-
cation between agents. Unlike existing mobile agent platforms, the bionet plat-
form applies biological concepts and supports services such as energy manage-
ment, pheromone emission, and distributed discovery that are not supported in
existing mobile agent platforms. In addition, unlike existing mobile agent plat-
forms, the bionet platform is fully decentralized and does not require any central
entities such as directory servers.

8It does not support strong migration, where a CE migrates with both of its
data and execution state [13].

TABLE II
LIST OF THE BIONET SERVICES

which implements the functionalities necessary to support the

communication behavior of CEs.9 The bionet message transport

handles marshalling messages, establishing and maintaining

network connections, transmitting messages, unmarshalling

messages, and managing threads to accept incoming messages.

The current implementation uses the CORBA IIOP [9] as a

message transport protocol on transmission control protocol

(TCP).

c) Energy Exchange and Storage Behavior: The bionet

platform provides the energy management service (a bionet ser-

vice), which implements the functionalities necessary to support

the energy exchange and storage behavior of CEs. The energy

management service maintains a table, called the energy table,

which contains pairs of CE’s GUID and energy level of each

CE on the same bionet platform. Using the energy table, the en-

ergy management service allows a CE to pay energy units to

other CEs for the service it receives and to the bionet platform

for the resources (e.g., CPU and memory) it utilizes. Upon re-

ceiving a service, the energy management service decreases the

energy level of a CE that received a service by the price of the

service, and contacts the energy management service on the re-

mote platform to increase the energy level of a CE that provided

the service. In paying for platform resources that a CE utilizes,

the energy management service periodically decreases the en-

ergy level of a CE by the unit price of resources it utilizes.

9In the current implementation of the bionet platform, the communication
behavior of CEs is implemented by the bionet message transport, which is not
a Bionet Service (see Fig. 1). The bionet message transport is designed as a
runtime component separate from the bionet services. This is because the bionet
message transport is used not only by CEs but also by the bionet services. For
example, during a CE’s migration, migration services on two bionet platforms
communicate with each other using the bionet message transport.
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d) Lifecycle Regulation Behavior: As described in
Section III-A, CEs may replicate, reproduce or die as a part of
the lifecycle regulation behavior. The bionet platform provides
the lifecycle management service (a bionet service), which
implements the functionalities necessary to support the life-
cycle regulation behavior of CEs (i.e., to initialize, replicate,
reproduce, and destroy CEs).

In order to initialize CEs, the lifecycle management service
provides the initialization operation. This initialization opera-
tion is called when a CE is newly instantiated (either due to a
creation of a new CE, replication or reproduction of an existing
CE, or on the arrival of a CE from another bionet platform). The
initialization operation creates a CE Context, associates the cre-
ated CE context to the CE, assigns a GUID to the CE,10 registers
the CE to the bionet container, registers the CE to the energy
table in the energy management service, and starts running the
initialized CE.

In order to replicate CEs, the lifecycle management service
provides the replication operation. This replication operation
makes a copy (child) of a parent CE using the Java serialization
mechanism, possibly executing a mutation on the child CE’s be-
havioral policy, and calls the initialization operation of the life-
cycle management service. When a CE reproduces a child CE
with another CE, the CE calls the reproduction operation pro-
vided by the lifecycle management service. The reproduction
operation makes a copy (child) of the CE that called the op-
eration, executes a crossover to inherit the behavioral policies
of parent CEs, possibly executing a mutation on the child CE’s
behavioral policy, and calls the initialization operation of the
lifecycle management service. The behavioral policies of CEs
evolve through mutation and crossover as described in Sections I
and II.11

In order to destroy a CE, the lifecycle management service
provides the destruction operation. The destruction operation
frees the resources (e.g., memory and threads) that a dying CE
utilizes, removes an entry for the dying CE from the energy table
in the energy management service, and unregisters the dying CE
from the bionet container. In the current implementation of the
bionet platform, the destruction operation is called only by the
energy management service when the energy level of a CE be-
comes zero. No CEs are allowed to call this operation to destruct
other CEs.

e) Relationship Maintenance Behavior: The bionet plat-

form provides the relationship management service (a bionet

service), which implements the functionalities necessary to sup-

port the relationship maintenance behavior of CEs. The rela-

tionship management service allows CEs to establish, examine,

update and eliminate their relationships. When a CE establishes

a relationship with another CE, it invokes the relationship man-

agement service with its relationship partner CE’s GUID and/or

reference. The service then examines if the specified relation-

ship partner CE exists, and if it does, obtains the relationship

partner CE’s attributes, and creates a relationship by assigning

the obtained attributes to the created relationship.

10This step of assigning a GUID is not necessary for a migrated CE. A CE
migrated from another bionet platform already has GUID.

11Note, however, that the current implementation of the bionet platform does
not support evolution mechanisms using mutation and crossover yet. Please see
[5] for more details regarding evolution of CEs.

When a relationship of a CE becomes invalid, for example

due to migration of a relationship partner CE, the CE that finds

the invalid relationship may invoke the relationship manage-

ment service to update or destroy the relationship.

f) Discovery Behavior: The bionet platform provides the

Social Networking Service (a bionet service), which imple-

ments the functionalities necessary to support the discovery

behavior of CEs. The social networking service allows CEs to

discover other CEs with certain attributes by forwarding queries

through relationships among CEs. The social networking ser-

vice defines and implements four key phases in discovery;

query initialization, query matching, query forwarding, and

query hit backtracking.

In query initialization, a CE (discovery originator CE), be-

gins a discovery process by generating a query with the social

networking service. Each query contains its GUID to distin-

guish it from other queries, a hops-to-live count to determine

the scope of discovery, and search criteria that describe the CEs

being sought. Search criteria in a query are written in the OMG

constraint language [10]. The example below shows the search

criteria to seek Web service CEs whose service price is less than

150 energy units

serviceType HTTP/1.1' and serviceCost 150.0.

The query matching is performed when a discovery originator

CE initializes a query or a CE receives a query from another

CE. The social networking service provides an evaluator object

to examine whether the received query (i.e., the query’s search

criteria) matches a given CE. If the query matches, a query hit

is generated and returned to the discovery originator CE. Other-

wise, the query is forwarded to other CEs through relationships

among CEs.

In query forwarding, queries are forwarded from a CE to an-

other CE through their relationships, seeking the CEs that sat-

isfy given search criteria. At each CE receiving a query, the so-

cial networking service decrements the hops-to-live value in a

received query, and if the value becomes zero, the query is dis-

carded. Otherwise, the query is forwarded to the relationship

partner CEs. In forwarding a query, the social networking ser-

vice maintains a record of the query’s GUID, the CE from which

the query is received and the CE to which the query is forwarded.

The query hit backtracking is performed when a query

matches a CE. A query hit is generated and returned back to

the discovery originator CE, following the reverse route of the

query forwarding path that led to the CE being returned as a

matching query hit.

g) Pheromone Emission Behavior: The bionet platform

provides the pheromone emission service (a bionet service),

which implements the functionalities necessary to support the

pheromone emission behavior of CEs. This service allows a

CE to emit and leave its pheromone (i.e., a trace) behind on a

bionet platform when it migrates to another bionet platform.

A pheromone contains the emitter’s GUID and the platform

representative of the bionet platform that the emitter migrated

to. The pheromone emission service keeps a pheromone list

that contains pheromones emitted on the platform that it runs
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on. In the current implementation of the bionet platform, the

pheromone emission service deletes pheromones from its

pheromone table after a certain time.

h) Environment Sensing Behavior: As described in

Section III-A, CEs may detect various environmental condi-

tions through the environment sensing behavior. In order to

support the environment sensing behavior, the bionet platform

allows each CE to sense: 1) the CEs running on the same

and remote bionet platforms; 2) pheromones emitted on the

same and remote bionet platforms by other CEs; 3) resource

availability on the same and remote bionet platforms; and

4) network traffic load and traffic patterns on the same and

remote bionet platforms. The bionet platform provides several

bionet services, each of which implements sensing of each

environmental condition described above.

The bionet platform provides the CE sensing service (a bionet

service), which allows a CE to sense other CEs on the same and

remote bionet platforms. The CE sensing service maintains a list

of references to the CEs that are on the local bionet platform, and

returns the reference list when invoked by a CE. In order to sense

CEs running on remote bionet platforms, the CE sensing service

contacts the CE sensing services on a remote bionet platform

and obtains a list of the CEs on the remote bionet platform.

The bionet platform provides the pheromone sensing service

(a bionet service), which allows a CE to sense the pheromones

emitted on the same and remote bionet platforms. When called

by a CE, the pheromone sensing service accesses a pheromone

list maintained by the pheromone emission service on the same

platform and returns the list to the CE. The pheromone sensing

service can also find a specific pheromone with the GUID of a

CE that left the pheromone. In order to sense the pheromones

on remote bionet platforms, a CE asks the pheromone sensing

service to contact other pheromone sensing services running on

remote bionet platforms.

The bionet platform provides the resource sensing service (a

bionet service), which allows a CE to sense resource availability

on the same and remote bionet platforms. The resource sensing

monitors resources such as CPU and memory available on the

same platform, and maintains the type, amount, and unit price

of each resource (in energy units). CPU availability is calculated

by measuring the current CPU utilization.12 Memory availability

is obtained by executing a garbage collection and measuring the

amount of free memory in JVM. In order to sense the resource

availability on remote bionet platforms, a CE asks the resource

sensing service to contact the other resource sensing services

running on remote platforms.

The bionet container13 (a runtime component) allows a CE to

sense the network traffic load and traffic patterns on the same

and remote bionet platforms. It monitors network traffic load on

the same bionet platform by counting the number and size of

12Since measurement of CPU utilization is not available through the standard
Java APIs, CPU utilization is measured with a non-Java library implemented
with C and Java Native Interface.

13In the current implementation of the bionet platform, the bionet container is
not a bionet service (see Fig. 1), It is designed as a runtime component separate
from the bionet services. This is because the bionet container is used not only by
CEs but also by the bionet services. For example, during a CE’s migration, the
bionet container (and the bionet message transport) are used by the migration
services on two bionet platforms to communicate with each other.

TABLE III
CONFIGURATIONS OF PCS USED IN EMPIRICAL EVALUATION

incoming messages. It also monitors network traffic patterns on

the same bionet platform by recording the sources of incoming

messages. The bionet container also finds the sender CE of an

incoming message by obtaining a reference to the sender CE

through parsing the incoming message. In order to sense the net-

work traffic load and traffic patterns on remote bionet platforms,

a CE asks the bionet container to contact the bionet containers

on remote bionet platforms.

IV. EMPIRICAL EVALUATION

This section empirically evaluates the simplicity of devel-

oping network applications with CEs. It also empirically exam-

ines the efficiency and scalability of the bionet platform.

A. Configurations for Empirical Evaluation

In the empirical evaluation of the bionet platform presented

in this section, various measurements were obtained assuming

varying numbers of CEs (from 1 through 8000 CEs) and bionet

platforms (from 1 through 16 bionet platforms). A maximum of

eight Windows 2000 PCs are used in the empirical evaluation,

each running the Java 2 standard edition JVMs (version 1.4.2 01

from Sun Microsystems). These eight PCs were divided into

four groups of two PCs in each group, depending on their CPU

speed and memory size, as shown in Table III. These PCs were

connected through 100 Mb/s Ethernet.

B. Application Development Using CEs

In order to examine how the bionet platform reduces the com-

plexity of developing network applications, three different net-

work applications are implemented using CEs.14

In the first network application, Web services are imple-

mented using CEs. The body of a Web service CE contains a

set of files, accepts HTTP request messages from users, and

returns the requested files to the users. In this Web service

application, users are also implemented as CEs.

In the second network application, the peer-to-peer content

discovery protocol in Gnutella [15] is implemented using CEs.

Each CE represents a network node in Gnutella and contains

a set of files in its body. The relationships between CEs corre-

spond to the links between Gnutella nodes. Similar to searching

for files in Gnutella by forwarding queries through the links

among nodes, CE’s search for files by forwarding queries

through the relationships among CEs.

In the third network application, a new and improved version

of Gnutella discovery protocol, GnutellaPlus, is implemented

14A software engineering discipline suggests investigating at least three ap-
plications on a framework in order to examine generality and reusability of the
framework [14].
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TABLE IV
APPLICATIONS IMPLEMENTED USING THE BIONET PLATFORM

using CEs. Unlike Gnutella, which searches for files with file

names, GnutellaPlus allows CEs to specify name-value pairs as

file search criteria. For example, with GnutellaPlus, CEs can

search for files with their keywords, the date when they were

created/revised or the names of their authors.

Table IV shows the empirical evaluation of the three network

applications described above. It shows that it is fairly simple and

easy to implement network applications on the bionet platform.

The reusable components in the bionet platform help to reduce

the lines of code and development time.

C. Empirical Evaluation of the Bionet Platform

This section describes empirical evaluation of the bionet plat-

form and includes eight separate measurements using different

configurations. The first five measurements use one or two PCs

of the group A configuration shown in Table III. The last three

measurements use eight PCs (two PCs from each of the four

configurations shown in Table III).15

1) Overhead of Bionet Platform Initialization: In order to

evaluate the overhead of initializing a bionet platform, Table V

shows the bootstrap overhead (i.e., the time for the bionet plat-

form to initialize each runtime component) and the bootstrap

memory footprint (i.e., the amount of memory space each run-

time component consumes when it is initialized) for each run-

time component. Table V shows that a bionet platform initializes

its runtime components efficiently with small memory footprint.

2) Overhead of CE Deployment: In order to evaluate the ef-

ficiency of deploying a CE on a bionet platform, Table VI shows

the time required for the bionet platform to execute key steps

of CE deployment. The measurement examined the following

key deployment steps; instantiating a CE, initializing an instan-

tiated CE with the Lifecycle Management Service, locating the

CEs on the same bionet platform with the CE Sensing Service,

and establishing relationships to the located CEs with the rela-

tionship management service. In the step to instantiate a CE, the

measurement examined two cases; the case where a human de-

veloper manually instantiates a new CE, and the case where a

parent CE replicates (makes a copy of) itself. Table VI shows

that the overhead of deploying a CE is small and that the bionet

services used to deploy a CE are efficient. The overhead differ-

ence between the two cases to instantiate a CE is due to the time

to make a copy of a parent CE in the replication process.

15Please note that although there exists research to empirically evaluate the
scalability of agent platforms (such as the bionet platform described in the
paper), the number and the scope of such empirical evaluation is rather limited
[12]. For instance, Auctionbot is concluded scalable through a measurement
with only 90 agents [16], illustrating difficulty of empirically examining scal-
ability of agent platforms. In this paper, the scalability of the bionet platform
was examined with 8000 CEs and 16 bionet platforms.

TABLE V
BOOTSTRAP OVERHEAD AND MEMORY FOOTPRINT

OF EACH PLATFORM COMPONENT

TABLE VI
OVERHEAD OF CE DEPLOYMENT

3) Message Transmission Latency and Throughput: In order

to examine the time required for a message to travel between

two CEs on different bionet platforms (i.e., the message trans-

mission latency) and the number of messages that such CEs can

exchange per second (i.e., throughput), in the following mea-

surements, a single CE (a sender CE) is deployed on a bionet

platform, and the varying number of CEs (receiver CEs) are de-

ployed on another bionet platform to receive messages from the

sender CE. The two bionet platforms run on different PCs. The

number of receiver CEs varies from 1 to 1000, and the sender

CE randomly chooses one of the receiver CEs and sends an

empty message to the receiver CE. The bionet message transport

and the bionet container perform message transmission. On the

sending bionet platform, the bionet message transport creates a

message, establishes a TCP connection to the receiving bionet

platform, and transmits a message on the connection. On the

receiving bionet platform, the bionet message transport accepts
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Fig. 4. Message transmission latency.

Fig. 5. Throughput.

the incoming message, and the bionet container dispatches the

message to a receiver CE.

Fig. 4 shows the message transmission latency in the bionet

platform.16 It also shows the message transmission latency in

well-known Java-based distributed object platforms (JacORB

[17] and Java IDL [18]) for the purpose of comparison. Fig. 4

shows that the message transmission latency in the bionet plat-

form is small and comparable with the other distributed object

platforms. Fig. 4 also shows that the message transmission la-

tency remains relatively constant as the number of receiver CEs

increases, indicating that the bionet platform (i.e., the bionet

message transport and bionet container) scales well. This is be-

cause the bionet message transport creates only one TCP con-

nection between the sending and receiving platforms, and the

sender CE transmits messages to multiple receiver CEs over the

same TCP connection. The bionet message transport does not

create a separate connection for each receiver CE.

Fig. 5 shows the throughput between two CEs on different

platforms.17 Similar to Fig. 4, Fig. 5 compares the throughput of

JacORB and Java IDL. Fig. 5 shows that the throughput of the

bionet platform (bionet message transport and bionet container)

is comparable with existing distributed object platforms. This

figure also shows that the throughput remains mostly constant as

the number of CEs increases, indicating that the bionet container

scales well. This is because the bionet container implements

a hash-based table that contains references to the CEs on the

same bionet platform. The overhead for the hash-based table to

16Note that the bionet message transport and bionet container of the bionet
platform contribute to the message transmission latency.

17Note that the bionet message transport and bionet container of the bionet
platform contribute to the throughput.

TABLE VII
OVERHEAD OF DISCOVERY USING SOCIAL NETWORKING SERVICE

dispatch an incoming message to a target CE does not change

even if the number of CEs increases.

4) Overhead of Discovery Using the Social Networking Ser-

vice: In order to evaluate the overhead of the social networking

service in discovery, GnutellaPlus, one of the three network ap-

plications described in Section IV-B, is used in this measure-

ment. Two CEs (i.e., a discovery originator CE and a discovery

target CE that matches the search criteria) are deployed on two

different bionet platforms (on different PCs). The search target

CE has the attributes described in Table I.

In discovery, the discovery originator CE issues a query that

contains '

as discovery criteria using the social networking service

(query initialization phase). The discovery originator CE for-

ward the query to a relationship partner CE using the social net-

working service (query forwarding phase). Upon the receipt of

a query, the relationship partner CE examines whether the dis-

covery criteria in the query matches its attributes using the social

networking service (query matching phase), and if they match,

returns a query hit to the discovery originator CE using the so-

cial networking service (query hit backtracking phase).

Table VII shows that the overhead of the social networking

service in each phase of discovery is small. Note also that the

time to perform query matching is very small (under 13 ms), and

this is because the social networking service caches a received

query and bypasses the overhead of parsing search criteria in

subsequent queries. Although this measurement is for two CEs,

given the small overhead shown in Table VII, the social net-

working service is expected to scale well for discovery in larger

scale.

5) Overhead of Migration Using the Migration Service: In

order to evaluate the time required for a CE to migrate from a

bionet platform to another bionet platform using the migration

service, two bionet platforms are deployed on different PCs, and

CEs of varying sizes from 31 KB to 8 MB migrate from a bionet

platform to the other using the migration service. The overhead

of migration includes the time for the migration service on an

origin bionet platform to serialize a CE into mobile code, the

time for the bionet message transport to transmit the mobile

code from the origin bionet platform to the destination bionet

platform, and the time for the migration service on the destina-

tion platform to deserialize the incoming mobile code and in-

stantiate a CE.

Fig. 6 shows that the overhead of the migration service is

small and that the migration service allows CEs to efficiently

migrate from a platform to a platform. Note also that a mea-

surement study for Aglets [19], a well-known mobile agent plat-

form, indicates that the migration service and Aglets’ migration
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Fig. 6. Migration overhead.

TABLE VIII
OVERHEAD OF ENVIRONMENT SENSING WITH

THE PHEROMONE SENSING SERVICE

service are comparable in their performance. Fig. 6 also shows

that, as the size of CE increases, the overhead of the migration

service increases linearly, indicating that the migration service

scales.

6) Overhead of Environment Sensing Using the Pheromone

Sensing Service: In order to evaluate the time required for

pheromone sensing (i.e., environment sensing) using the

pheromone sensing service, 16 bionet platforms are deployed

on eight PCs (two platforms on each PC), and two CEs are

deployed. One CE randomly migrates 15 times between these

bionet platforms, and when it migrates, it leaves a pheromone

behind on a bionet platform. The other CE senses pheromones

emitted by the migrating CE to locate it. The overhead of

pheromone sensing includes the time for the pheromone

sensing service to find the migrating CE’s pheromone by

accessing a pheromone list maintained by the pheromone emis-

sion service, contact a representative of the bionet platform that

the pheromone specifies (i.e., the platform that the CE migrated

to), and locate the migrated CE on the remote bionet platform.

Table VIII and Fig. 7 show the overhead of pheromone

sensing using the pheromone sensing service. Table VIII shows

the overhead in each phase of pheromone sensing. Fig. 7 shows

how the overhead changes when a CE senses pheromones

emitted on remote bionet platforms that are multiple hops

away. Table VIII illustrates that the overhead of the pheromone

sensing service is small and that the pheromone sensing service

efficiently performs pheromone sensing. Fig. 7 demonstrates

that the overhead increases linearly, as the hop count to the re-

mote bionet platform increases, indicating that the pheromone

sensing service scales.

7) Latency in Relationship Examination and Energy Ex-

change Between CEs: As described in Sections III-A and

III-C, a CE may receive a service from another CE that it has

a relationship to in exchange for energy. Receiving a service

involves using the relationship management service to examine

if there is a valid relationship to the CE that provides a desired

Fig. 7. Overhead of environment sensing (pheromone sensing) using
pheromone emission services.

Fig. 8. Latencies in round-trip latency, relationship examination, and energy
transfer between CEs.

service and the energy management service to pay energy

units for the service received. In order to evaluate the time for

the relationship management service to examine relationships

and the time for the energy management service to exchange

energy, 16 bionet platforms are deployed on eight PCs (two

platforms on each PC), and the varying number of CEs are

randomly deployed on the bionet platforms. The number of

CEs varies from 1 to 500 on each platform (i.e., 16–8000 CEs

in total). Each CE randomly chooses a CE and establishes a

relationship with it. Each CE continuously requests a service

to its relationship partner CE by sending an empty message

(considered as a service request). It examines if its relationship

is valid18 before sending a message using the relationship man-

agement service. Upon receiving a service request message, a

relationship partner CE immediately sends back a reply mes-

sage (considered as a service) to the CE that sent the service

request message. When receiving a reply service (a service),

a CE transfers 100 energy units to its relationship partner CE

using the energy management service.

Fig. 8 illustrates the overhead of examining relationships

using relationship management service (denoted as “relation-

ship examination” in Fig. 8) and the overhead of exchanging

energy using the energy management service (denoted as “en-

ergy transfer” in Fig. 8). For the purpose of comparison, Fig. 8

also shows the delay to exchange a service request message and

a service message between two CEs (denoted as “round-trip

18In this measurement, when a CE examines its relationship, the relationship
is always valid because its relationship partner CE does not migrate nor die.
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Fig. 9. CPU utilization of the bionet platform and CEs.

latency” in Fig. 8). Fig. 8 demonstrates that the overhead of ex-

amining relationships and that of exchanging energy are small,

compared with the round-trip latency of exchanging messages

between two CEs. For instance, for 8000 CEs, the overhead of

examining relationships and the overhead of exchanging energy

are 4.7% and 7.1%, respectively, of the round-trip latency. This

demonstrates that the relationship management service and the

energy management service are efficient. Fig. 8 also illustrates

that the overhead increases linearly, as the number of platforms

and CEs increases, indicating that relationship management

service and energy management services scale.

8) CPU Utilization of the Bionet Platform and CEs: In order

to evaluate how much CPU power the bionet platform and CE’s

consume, CEs that implement the Web service described in Sec-

tion IV-B are deployed on a bionet platform. In this measure-

ment, each Web service CE contains in its body five files whose

sizes are 500 B, 5 KB, 50 KB, 500 KB, and 5 MB. These file

sizes are taken from the specification of Webstone [20], a per-

formance profiling tool for Web servers. Note that each CE con-

tains an identical set of files, and there is no sharing of files

among CEs. In addition, a user is implemented as a CE, and a

user CE is deployed on the same bionet platform as Web service

CEs. A user CE sends HTTP request messages to a randomly se-

lected Web service CE, and the request rate of the user CE is set

at ten requests per second.

Fig. 9 shows the CPU utilization by the bionet platform and

Web service CEs. Note that as the underlying operating system

consumes approximately 25% of the CPU power, the total CPU

utilization of the PC used for this measurement reaches 100%

when the CPU utilization by the bionet platform and Web ser-

vice CEs reach approximately 75%. In Fig. 9, the CPU utiliza-

tion for a specific file size is obtained when a user CE always

requests the given file size (among the five files that Web CEs

house). Fig. 9 also shows the CPU utilization when a user CE

probabilistically requests files of different sizes. Probabilities

that a user CE follows to request files are taken from WebStone

[20] and are shown in Table IX. The CPU utilization of the prob-

abilistic access case on Fig. 9 shows that approximately 330 CEs

can simultaneously run on a platform under 75% CPU utiliza-

tion. Fig. 9 also shows that the CPU utilization increases almost

linearly as the number of CEs increases up to 290. The bionet

platform scales well to the number of CEs.

TABLE IX
PROBABILITY OF FILE REQUESTS

For the purpose of comparison, Fig. 9 shows the CPU uti-

lization (denoted as “TCP-Web” in Fig. 9) of a Web server im-

plemented in a conventional manner. As with the Web service

CEs, each conventional Web server houses five files of different

sizes, and the number of Web servers is varied in Fig. 9. Fur-

ther, a user randomly selects a conventional and probabilisti-

cally accesses one of the files on the Web server. Unlike Web

service CEs, which use the bionet platform (the bionet message

transport and bionet container) to exchange messages, the con-

ventional Web servers use the TCP interface of the underlyng

operating system to exchange messages. Fig. 9 shows that the

difference in the CPU utilization between the Web service CEs

(denoted as “probabilistic access”) and the conventional Web

servers (denoted as “TCP-Web”) is small, indicating that the

bionet platform does not impose significant performance over-

head on network applications.

V. CONCLUDING REMARKS

This paper describes and empirically evaluates the mid-

dleware platform for a new network architecture, called the

Bio-Networking Architecture. With biologically inspired prin-

ciples and mechanisms, network applications created based on

the Bio-Networking Architecture satisfy the key requirements

of future network applications such as autonomy, scalability,

adaptability, and simplicity. The empirical evaluation shows

that the platform is efficient, scalable, reusable, and signifi-

cantly simplifies development of network applications.

An extended set of empirical measurements are being

planned to provide additional performance implications of the

bionet platform. Further deployment of the bionet platform

and CEs on more realistic environments (e.g., PlanetLab [21])

would identify the impact of the network size and realistic

constraints on the bionet platform performance.
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