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HE buffering effect of cross migration on random genetic drift in partially 
isolated populations was first studied in a very simple model which SEWALL 

WRIGHT called the “island model” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1943, 1951 ) , In this model every population 
receives a fraction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm per generation of its genes from a common gene pool with 
a constant gene frequency. The name “island model” refers to the fact that the 
exchange among islands is effectively independent of the distance between them. 
In other words, every island exchanges genes equally with every other island, 
thus simulating immigration from a common and constant gene pool. The in- 
adequacy of this model for the representation of variation due to geographic, or 
other sources of, isolation soon became apparent. SEWALL WRIGHT later suggested 
another model known as “isolation by distance” (1943, 1946, 1951). The popula- 
tion is then uniformly distributed and individual mobility is defined by a con- 
tinuous distribution. A normal distribution of mobility is often used for simplicity 
though other distributions have also been considered. Two forms of the model 
were analyzed, one for geographic distribution of the population along a line, 
and the other on a surface. Results were given in terms of the mobility (as 
measured by the appropriate parameter or parameters of the mobility distribu- 
tion) and of the population density per unit of length or surface area. These two 
quantities can be convenilently condensed into a single parameter, the “neighbor- 
hood size” which is sometimes sufficient to describe the situation. Similar con- 
tinuous models have also been studied by MALBCOT (1945,1966) who has shown 
that, under the above assumptions, the correlation of gene frequencies in two 
groups separated by a distance, r, decreases exponentially with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI*. 

An interesting and important class of models for the study of isolation by dis- 
tance has been put forward by KIMURA and WEISS (1964) and by MALBCOT 
(1950, 1962). These autlhors assume that the population is distributed discon- 
tinuously, in “colonies” which are of equal size at the points of an infinite regular 
lattice, and that there is a given rate of exchange between colonies i steps apart 
(the “stepping stone model”). In the simplest linear version of this model each 
colony has two neighbors with which it exchanges a fraction m of its gametes, 
m/2 to each. In the simplest two-dimensional case, the colony has four neigh- 
bors with each of which l it exchanges m/4 of its genes. There are six neighbors 
in the three-dimensional version of the model. 
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The mathematical models analyzed by MAL~COT and KIMURA differ slightly 
and give rise to slightly different predictions. These theories predict the expected 
equilibrium variance among an infinite number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunrelated colonies, and the 
correlations of gene frequencies between colonies as a function of their distance 
apart. The unit distance is defined as that between two neighboring colonies. 
Results are generally available for  equilibrium conditions only and depend on 
three parameters, in addition to the number of dimensions: (i) the size of each 
individual colony; (ii) the migratory exchange between neighboring colonies, 
and (iii) a parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(m, for  KIMURA, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk for MALBCOT) which measures collec- 
tively all constant stablizing factors such as recurrent mutation, “linearized” 
selection for the heterozygote, migration from a hypothetical constant external 
reservoir, etc. 

The two types of models of isolation by distance, the continuous and discon- 
tinuous ones, suffer from several limitations. Neither can cope with the fact that 
real populations are almost always very irregular in their geographic distribu- 
tion. Population size, density and mobility are not constant with respect to space 
and time. I t  is also usually difficult, in practice, to represent observed mobility 
in any given population by the functions which these theories employ. 

In the present paper we develop a theory aimed at predicting the amount of 
variation to be expected between gene frequencies of a finite number of colonies 
of different sizes and the correlations between them, with a general migration 
pattern given in the form of a “migration matrix.” The predictions are, of course, 
limited by the approximations made to obtain manageable results and by the 
fact that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAonly one source of random variation is considered, namely that due to 
Mendelian segregation in a finite population. The major advantage to using 
migration matrices is that it makes it possible to use observed migration data 
in the model, without trying to force the migration pattern into a somewhat 
inflexible and usually inappropriate model. An approach to predicting the dif- 
fusion of consanguineous individuals and their probability of marriage, using 
migration matrices, has already been described by CAVALLI-SFORZA, KIMURA and 
BARRAI ( 1960). 

THE MIGRATION MATRIX 

A migration matriv is a formal representation of the displacement over one 
generation among a set of k colonies, villages or, more generally, groups of 
individuals of one species. The main requirement for the definition oi a group to 
be useful is that it should have sufficient stability to be recognizable from one 
generation to the next. The matrix has IC rows and columns, which correspond to 
the k colonies forming the population under investigation, arranged in an arbi- 
trary order. Any one row and column corresponds to just one colony. The ele- 
ments of an observed matrix are the numbers of individuals born in the ith colony 
from parents born in the jth colony (see the numerical example in Table 1).  

Migration matrices obtained separately from fathers and mothers generally are 
different. For the present purpose one can sum or average data from fathers and 
mothers, as was done for Table 1C (see Table 1A and B). It can be proved that, 
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TABLE 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnumerical example oj an observed migration matrix and its forward and backward 

stochastic versions 

A. Father-offspring B. Mother-offspring 
Birthplace of father zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 Total 1 2 3 4 Total 

Birthplace of mother 

1 170 3 12 3 188 1 174 3 10 3 190 1 

p l o g ~ n )  8 0 158 5 171 3 3 1 168 3 175 3 
4 0 1 3 181 185 4 1 2 5 175 183 4 

U n t i l -  2 2 106 4 2 114 2 2 108 0 2 112 2 
place of 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C. Parent-offspring 
Birthplace of parents 

1 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 4 Total 

344 6 22 6 378 
4 214 4 4 226 

11 1 326 8 346 
1 3 8 356 368 

180 110 177 191 658 180 114 183 183 660 360 224 360 374 1318 

D. Backward matrix 
Birthplace of parents 

1 2 3 4 Total 

E. Forward matrix 
Birthplace of parents 

1 2 3 4 

1 .9100 .0159 .(E82 ,0150 1.ooOO 1 .9556 .0268 .%I1 ,0160 
niit l i- 2 ,0177 .9469 ,0177 ,0177 1.OOOO 2 .0111 .9553 ,0111 .0107 

3 .0305 .OM5 ,9056 .0214 progeng 3 .03 18 .0029 ,9422 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Ow 1 1 .OOOO 
4 ,0027 ,0082 ,0217 .9674 1.0000 4 .00B ,0134 ,0222 .9519 

pla, e of 

Total 1.0000 1.OOOO 1.OOOO 1.0000 

Migration matrices are for the Lecce Province. For simplification original values for the single 
villages were condensed into four areas. Matrices A, B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, indicate numbers of individuals born 
in the ith area to parents born in the ith area. Matrix C is the sum of A and B. Matrices D and 
E are the stochastic matrices derived from C. Data from MODIANO et al. (1965). 

if the linear stabilizing factors (see below) are the same in both sexes, the average 
matrix is a very good representation of the total migration process (F. SCUDO, 
personal communication). It is also possible to use matrices in which rows and 
columns represent birth places of husband and wife, if this is the only type of 
data available. In this case, however, a correction is necessary and the resulting 
matrix is only approximate. 

The observed matrix Mal consists of the numbers of individuals which have 
been examined, classified according to birthplace of parent and birthplace of 
offspring. From such a matrix it is possible to form (see Table ID, E) two sto- 
chastic matrices. A stochastic matrix has rows or columns summing to one, so 
that the elements can represent transition probabilities from one generation to 
the next. Matrices D and E of Table 1 are obtained by making rows and columns 
of matrix C, respectively, sum to one. We shall call them the “forward” and the 
“backward” matrices delpending on whether the elements which sum to 1 are 
the columns or the rows. This definition refers to whether the transition is in the 
same direction as the time or opposite to it. In fact the terms of the forward 
migration matrix M’ a j  represent the probabilities that the children of parents 
born in colony j go to colclny i, while in the backward migration matrix, the terms 
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are the probabilities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMij that the children born in the ith colony come from 
parents born in the ith colony. 

The two matrices are different unless the matrix Mij is symmetrical. If there 
are no significant differences between the symmetrical elements of it is con- 
venient to average them. 

The prediction of the numerical composition of a population after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt generations 
of migration depends on the forward matrix. If the initial distribution individuals 
at time t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 in colonies 1, 2, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, is no = (nl, n,, . . . , nk) and they produce 
children who join the ith colony with the probabilities given by the forward 
matrix, the expected composition of the next generation is given by 
(2.1 1 

population after t generations is 
(2.2) nt = no(M* )  
by simple iteration of Equation (2.1). 

When t is sufficiently large, nt, in general, approaches an equilibrium value 
as the product (M*)t  converges to a fixed matrix. The equilibrium composition 
is then independent of the initial state of the population and so can be predicted 
by powering the forward migration matrix and then pre-multiplying it by an 
arbitrary vector. 

In order to predict the variation in gene frequencies within and between 
colonies, the backward matrix has to be used. The forward matrix was discussed 
because of its general relevance to our model. We may wish to test, for example, 
whether we can assume that the migration matrix estimated from the most recent 
generation is valid for a longer period of time. If the present relative proportions 
of sizes of colonies differ significantly from those predicted at equilibrium by this 
recent migration matrix, then the matrix must have differed in the more distant 
past from its present form. 

Let us suppose that a pair of alleles A, a is segregating in each colony. Then 
the deterministic change in gene frequencies as a consequence of migration is 
given in terms of the gene frequencies of the A gene in colony i at the tth genera- 
tion, p i ( t ) ,  by 

n, = no M* 
Provided the migration matrix is constant, the expected composition of the 

k 
~ ~ ( t i - f - 1 )  = 2 p . ( t ) M . .  

3 23 (2 .3)  j=i 

where Mij is the ijth element of the backward migration matrix. This follows 
from the fact that the expected number of A genes in colony i at time t is 

k 

1=1 

M*iJn j ( t )p i ( t )  

where M*ij is the forward matrix and nj(t) is the number of individuals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin 
colony zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj at time t. Thus the proportion of A genes in colony i at t h e  t-kl is as 
given in Equation (2 .3)  where the terms of the backward migration matrix are 
given by 

M*ijnj(t) M . . -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2.4) 2 3  - k 
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The stochastic model we will use assumes that random sampling of genes, 
leading to random genetic drift, takes place for every colony at every generation 
after deterministic migation. The expected proportion of A genes is then com- 
puted deterministically following Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 .3 ) .  Colony sizes may vary but 
will usually, though not necessarily, be considered constant in time for any given 
colony. 

The majority of areas investigated in practice are not totally closed to immi- 
gration from the outside. In our model the numbers of individuals, or genes, per 
colony and thus the total number also, are finite. In the absence of other stabiliz- 
ing forces all alleles would, therefore, eventually always be fixed or lost. How- 
ever, in the presence of the cumulative forces of recurrent mutation in either 
direction, migration from the outside and stabilizing selection, genes will not 
generally become fixed and the variances and covariances tend to non-trivial, 
finite values. 

The stabilizing linear pressures of mutation, migration and (linear) selection 
can formally be introduced, in our model, in terms of a single parameter which 
we call “migration from the outside”. The ith colony has a fraction CY% of its genes 
coming from an external gene pool which may have, ii desired, a characteristic 
gene frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,. Since the calculation of the expected gene frequencies after 
migration involves the use of the backward migration matrix, the observed 
counterpart of the a; are the frequencies of individuals in the ith colony whose 
parents are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAborn outsidle the total area investigated. In man, who is perhaps the 
organism most readily amenable to the study of migration, the simplest way of 
selecting individuals for such a study is to take residents born in the area and 
ask them their parents’ birthplaces. This generates an extra column of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM values 
from which ab values can be computed. 

The method developed in this paper is intended for application to observed 
migration matrices. However, for illustrative purposes and also for a comparison 
with other models, in particular the island and stepping stone models, it is of 
some interest to consider some simple hypothetical migration matrices. Numeri- 
cal and analytical results for a collection of such matrices are discussed in the 
remaining sections of this paper. 

MIGRATION MATRIX DRIFT THEORY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1. Formulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof thre mathematical model: Suppose we have a group of k 
colonies, all segregating for two alleles A, a at a given locus and assume time is 
discrete, being measured in generations. We assume that mating is at random 
within each colony and that differential selection and other stabilizing factors 
affecting the alleles A and a act linearily. Let be the gene frequency of A in 
the ith villages at the nth generation, and let Ni be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe population size of the ith 
colony, assumed constaint, where i = 1, . , . , k. Let [Mi j ]  be the backward migra- 
tion matrix, such that Mij is the proportion of individuals in colony i in the 

present generation who came from colony j ,  and so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz Mij = 1 (see Table 1). 
We assume in addition that, in each generation, a proportion  CY^ of the individuals 

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 =1 
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in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAith colony came in from an external population with a constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA gene 
frequency of xi. The parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01; and xi represent the total effect of all the 
stabilizing factors taken into account by the model. The expected A gene fre- 
quencies in the nth generation in terms of those in the previous generation are 
then given by 

p i @ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (1- 0 1 0  Mij + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai xi, f o r i =  1 , .  . . , k, (3.1) 
as discussed in the previou section. A similar model has been formulated by 
MAL~COT (1951). This equation is also analogous to the equations developed by 
MALBCOT (1962) and KIMURA and WEISS (1964) for their migration models. To 
take account of random sampling variations from generation to generation 
(random genetic drift) we assume that the realized gene frequency in the ith 
colony in the nth generation is the result of a binomial sample of size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2Ni (the 
number o i  genes in the population) with parameter p i (n ) ,  as given by equation 
(3.1). The used to obtain the expected frequencies in the nth generation 
are the realized gene frequencies in the n-1 th generation. Thus we have 

k 

i=1 

for i = 1, . . . , k, where mb3 = (1-01%) M $ j .  This model assumes that migration 
occurs deterministically beiore mating and that population sizes remain constant, 
so that the only componeiit of random drift taken into account is that due to 
genetic segregation in colonies with finite population sizes. When Mal = 0 for 
all i # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, so that the only migration into any colony is from the general popula- 
tion, the model reduces to WRIGHT'S "island model". We are interested in the 
variances and covariances of the gene frequencies in the nth generation in terms 
of the initial gene frequencies. 

3.2. Use of the angular transformation for the derivation of the approximate 
Variances and covariances of the gene frequencies: Following FISHER and FORD 
(1947) and BODMER (1960) , consider the application of the angular transfor- 
mation p = sinL B or B = arc sin vp. It is well known that if jj is a binomial 
sample based on n observations, with expectation p and jj = sin2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, then E ( g )  = 
B 4- O(l/n) and V ( i )  = C / n  -t O(l/n2),  which is effectively independent of B 
and so of p,  so long as p is not near 0 or 1. Here C = 1 /4 if angles are measured 
in radians and (go/=) if angles are measured in degrees. Let, now, pt  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n) = sin2 
e a ( " )  and P z ( n )  = sin2 +$(n) then 

(a) E(82(n)183(n-1), j = 1, . . . , k) = +%(%)  + O(l/N%), 

(b) V(B%(n)lBJ(n-l), j = 1,. . . , k) = C/2Na f O(1/Na2). 
(3.3) 

If further xa = sin2 q a ,  then from equation (3.2a) 

or, since 

when B - ~ / 4  is small, 

sin2 +,(n) = z mt3 sinZ Ot(n-l) + 01% sin' q L  

sin2 B = 1/2 [ 1 4- 2 ( 0  - ~ / 4 )  -t 0 ( e  - =/LE) 3] = B + 1/2 - =/4 -t 0 (6' - =/4) 
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(3.4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl//i(n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA== I: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm i j e j ( n - 1 )  + air; + o(e -7r/4)3 . 
This equation (3.4), is a good approximation to equation (3.2a) so long as all 
the angular transforms are near T/4, or equivalently, so long as all gene frequen- 
cies are near 1/2. The key to the usefulness of the angular transfonnation is that 
the variances of the angular values are dependent only on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANi and not on the 
angles themselves. The dependence of the covariance of the gene frequencies on 
the frequencies, and so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the total previous history of the process, is the major 
block to a simple analytical solution of the process defined by equation (3.2). In 
assuming the validity of the angular transformation throughout the whole process 
we are assuming that the stochastic variation is such that gene frequencies are 
never sufficiently far from 1/2 for the error terms in equations (3.3) and (3.4) 
to accumulate significantly. Numerical calculations (see below) suggest that this 
is reasonable as long as gene frequencies are, in fact, not very close to 0 or 1. 
KIMURA and W E I S S ’  (1’964) treatment of the stepping stone model involves a 
similar approximation. Thus in deriving their equation (1.3) they assume 
that the product terms between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj j ’ s  and ti have expectation zero”, where jj are 

the mean gene frequencies and ti a random variable describing random variation 
from one generation to the next. 

Ignoring the terms of (o(e - r/4)3, equation (3.4), can be rewritten in the 
form 

where m is the matrix (:mij) and 
ai ~i respectively. If we write y = [(Z-m)-l-and +(%-I) = 

Thus 

and so, by further iteration, 

Now, following FISHER and FORD -( 1947) a n d  BODMER (1 960) we can write, 
using equation (3.7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

‘ 6  

(3.5) ($,(%I - ((1 - m)-l) m((j(7L-1) - - [ ( I  - m1-l) 

(3.6) - 

6 referto the vectors Bi(n)  and - -  
- y, then - - .- 

E(+G)I,gG-i)) = m +(n-1) . 

E(?(n) jB(n- ’ ) )  = E[m +(n-l)le(n-2)] = m2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+(n-?) 
- - .- 

(3.7) E [ & ( n ) j Q ( O ) ]  = mn + ( O )  . 

(3.8) v ( e i ( n ) / e ( o ) )  - -  = E [ ( + ~ ( ” )  - (mn _ _  + ( 0 ) ) ~ ) 2 1 e ( o ) ]  - 

= E; [  (+ i (n )  - (m - +(n- l I i  .+ (m +(n-l))i - (m2 +(n-2) > i  + . . . + (mn-1 - +(I))$ - (Gn - + ( o ) ) i ) 2 1 0 ( 0 ) 7  .- 
n ?z 

= z E ( V [  (mn-r+(r))i/O(r-l)] Ido) = Z  V [  (mn-T+(r))ilO(r-l)] - - - - r=1 r=l - 
This follows from equation (3.6), which gives 

and from the fact that all difference pairs (mn-r + ( r ) ) i  - (mlz-‘+l +(r-l))  an d 
(mn-s - (mn-s+l +,(+’)) i, s # r, are independent, because samges taken in 
succes&e generations aye independent given the observed propor tion in the pre- 
ceding generation. For r # n 

E [  ( m n - ~  +(r))i/e(r-l)] = (mn-rtl - +(r-l) ) i  
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k k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmil(+") zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmim(n-r) ~ o V ( + ~ ( r ) ,  + m ( r ~ l d ( p - l ) ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2=1 m=1 - 
l f m  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmij(r) is the ijth term of the matrix m7. 
All the + j ( ' ) ,  j = 1, . . . , k are independent binomial samples given the 
angular gene frequency transforms in the previous generation, so th i t  all the 
covariance terms are zero. From the definition of + ( r )  ( = 

from equation (3.3b) :Equation (3.9) Gves, therefore, for r # n, 

- 7) we have 
v(+pqe(-)) = v ( , e i ( r ) l e ( r - l ) )  = ~ 7 2 ~ ~  + o ( I / N ~ ~ ) ,  

k k [ m i j ( n - r ) ] 2  

(3.10) V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z j =1 m~~(n-7)+~(r)le(r-i)) - = C/2 3=1 ,I; { +0(l/Ni')} . 
Ni 

k 

3 = 1  
When r = n 7 .  I; mij+') + j ( r )  reduces to +i(n), so that from equations (3.8) and 

(3.10),foralli = 1 , .  . . , k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v( e i ( n ) ]  e w )  = v( +i(n)  I e c o ) )  - - c 1 n-1 k 

= -[ - + 2 I; [ m i j ( n - r ) ] 2 / N i ]  + terms of 0 (A). 
Nj  2 Ni r=i j=i 

Rearranging the double summation and ignoring terms of 0 ( 1/Nj2)  

(3.11) 

if angles are measured in radians. This result is, of course, as discussed above 
only strictly valid when 8i(n)  are near ~ / 4  for all i, n and N ,  so all gene frequen- 
cies are near to %. Monte Carlo experiments using a computer indicate, however, 
that the approximation works well over a wide range of gene frequencies (see 
next section). Since V(pi(")) =picn)  ( l - - ~ ~ ( ~ ) )  V(Oi ( " ) ) /C  + O(I/Ni2), the gene 
frequency variances can easily be obtained from the variances of the angular 
transforms. 

Gene frequencies are not usually observed directly, but are based on fitting 
expected to observed phenotype frequencies for a sample of the population, in 
terms of some specific genetic model which gives the expected phenotype fre- 
quencies in terms of gene frequencies. Let $(n) be the set of estimated frequencies 
in the nth generation, which we assumeto be unbiased. Then, following the 
procedure used in deriving equation (3.8) we can write 

k 1 n-1 

v(giw)le(o)) =-[-+ 1 1  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ( m i j ( r ) ) z ]  
- 8 Ni  j=1 Ni r=1 

(3.12) V(&i(n)le(o)) - = E [ ( $ ~ ( " )  - + i ( n )  + + i ( n )  - (m - +(n-1) > i  

+ . . . + (ma-1 ?( l ) ) i  - ( m n  - +(o))i)21!(o)] 

n 

= v ( T i ( n ) l + ( n ) )  + I; v((mn-r + ( r ) ) i l e ( r - l ) ) ,  
- r=1 - - 

since &(a) will be a set of random variables depending only on + ( n )  and inde- 
pendent of the realized gene frequencies in previous generations. The only effect 
of the estimation procedure is, therefore, to add to the result of equation (3.11) 
the sampling variance of the estimated gene frequencies. 
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The covariance between the angular transforms of the gene frequencies in 

colonies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj in the nth generation can be obtained by the same general pro- 
cedure used to obtain the variances. These covariances are independent of the 
sampling variances of the gene frequencies and in addition provide the basis for 
relating the correlation between gene frequencies in different colonies to their 
distance apart, as was done by MALBCOT (1950, 1962) and KIMURA and WEISS 
(1964). 

Following equation (3.8), for all i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ( i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# i )  
(3.13) C O V ( + ~ ( ~ ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+j(n)l!(o)) 

= - (m + (m + ( n - l ) ) <  - (m2 +(n-2) )i + . . .) - - 
x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( + j ( n )  - (m +(n-1) ) j  + (m + + l ) ) j  - (m2 +(n-z))j + . . . ) I  _. e ( ' ) ]  - - - 

n 

r=l 
= z Cov[(mn-r+(r))i, (mn-r+(r)) j [O(r- l) ]  . 

The Cov(+z l ( r ) ,  +12(7) lcb(r-1))  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 for all I, # I, and for all r, since gene frequency 
samples in the different colonies are independent, so that equation (3.13) reduces, 
after some rearrangement, to 

(3.14) C O V ( ~ , ( ~ ) ,  f I j ( " ) l O ( O ) )  = 1/8 Z l/Ni Z (mil(") m jZ( " ) ) ,  for all i, j (i # j ) .  
Estimates of gene frequencies in the different colonies will, usually, be independ- 
ent, so that the covariance given by equation (3.14) is not affected by the sub- 
stitution of estimates of the gene frequencies for the realized gene frequencies. 

Since any set of observations of gene frequencies corresponds only to a single 
realization of the stocliastic model, the only observation that can generally be 
made is that of the variance in the gene frequencies between colonies at any 
given time, while equation (3.11) gives the expected variance for any given 
colony based on repeated realizations of the stochastic process implied by the 
model. 

The expected weighted variance in the gene frequencies between colonies in 
the nth generation is given by 

k n-1 

- 2=1 r=l 

(3.15) 

k k 

i = 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2=1 
where N = Z Ni,'$(n) = 1/N Ni eicn) and E refers to expectations given 

- 0 (O), the initial frequencies. We have, therefore, 
- k 

= 1/N ,Z  (3.16) Ni (V(Oi(n) - 8(n) ) + (E(O,(") - 
a=1 

k k 

= I/N .Z  v(ep)  + v(iW) - 2 / ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,x cOV(ep, W )  
a = 1  

k 

+ 1/N 2=1 .E Ni{E(Oi( " ) )  - E ( B ( " ) )  1' 
Here V and Cov refer to variances and covariances given e(o). 

- 
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The first term of equation (3.16) is simply the weighted mean 01 the individual 
variances within colonies, as given by equation (3.11). The second and third 
terms can be readily evaluated using equations (3.11) and (3.14). They will, 
however, in general be much smaller than the first term, especially for large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. The last term of equation (3.16) is the weighted variance of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexpected 
angular transforms in the nth generation. From equations (3.5) and (3.7), and 
the fact that the dominant eigenvalce of m must be less than unity (if ai are 
not all zero), 

z q e i ( n q e ( 0 ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy6 a s n +  CO 

where, as before, yi  is the ith component of the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA((Z - m)-l and [ is the 
vector ai v i  (see equation (3.5)). For large n, therefore, the variance-of the 
expected angular transforms in the nth generation will not be far from that of 

the limiting expected angles, namely 1/N { ,E  Ni y i2 - 1/N { , E  Ni ~ i } ~ } .  

It can easily be shown that (when xi = x for all i ,  p i  = l/k for all i is an equilib- 
rium solution of equation (3.1), provided x = l/k, in which case the yi are all 
equal and this last variance term is zero. Thus, for large n, the between colony 
variance is approximately the sum of the weighted mean of the individual colony 
variances and the weighted variances of the limiting angular transforms of the 
colony frequencies, which latter is zero if the xi are all equal. When n is not 
large, the last term of equation (3.16) may make a significant contribution to 
VB(n) even when the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi are all equal, if the B i ( O )  are unequal. 

The combined results of equations (3.11), (3.12), (3.14) and (3.16) provide 
the basis for relating observed variances and covariances in the ge11e frequencies 
of a series of colonies to their expectations based on the model implied by equa- 
tions (3.1) and (3.2). This in turn provides the basis, subject to the limitations 
of the model, for assessing the effects of various migration and linear selection 
patterns, both observed and hypothetical, on observed and expected variation 
and covariation in gene frequencies. In the remainder of this paper we analyze, 
numerically and analytically, the consequences of the model for a variety of 
specific migration patterns. 

3.3. The "total population variance": The variance of the weighted mean 
frequency g("), which we call the "total population variance," is given by 

- 

k k 

2=1 2=1 

I c k  

(3.17) V(C(")) =- N2 { i=1 Ni2v(ei(nq ,+ %=I ,x 3=1 ,z  NiNjcov(ei(n),ej(nj) 
i # i  

on substituting from equations (3.11) and (3.14). If ai = a  for all i and the 
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population sizes are at the equilibrium values given by repeated iteration of the 
forward migration maltrix (see Section 2) then 

(3.18) for all 1. 
Thus the total population variance becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn-1 1 l - ( l - a > 2 A  

v(ecn)) =- (N  + Z N(1-U)'') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r=l 8N l-(l-a)' 

(3.19) 
8N2 

which is independent of the form of the migration matrix. M , ] .  If all the N ,  are 
equal, equation (3.18:) holds without further restrictions. 

This result (3.19) states that the variation in the total gene frequencies of sets 
of colonies connected by some migration pattern is independent of this pattern, 
and depends only on !V, the total population size and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa the rate of immigration 
from the outside. Equation (3.19) is in fact essentially equivalent to the result 
obtained by WRIGHT (1943 and later) for his island model provided Na is not 
small (see Section 3.5). As an example, suppose that each colony has a social 
structure with a defined pattern of migration. between social levels within the 
colony. Then (3.19) implies that, provided the migration between social levels 
within a colony is independent of the migration between colonies, the social 
structure has no effect on the variation in gene frequencies between the colonies. 

3.4. Convergence of gene frequency variances for large n: It can be proved 
that the sequence oi variances given by equation (3.1 1) converges as n+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO, 

though, in general, nlo simple explicit form for the limiting variances can be 

obtained. From the definition of mij, m . .  = l-a$ < 1, so that the largest 

eigenvalue of the matrix m, A say, must be such that h < 1. Let the matrix p be 
the normalized product of the left and right hand eigenvectors corresponding to 

so that, for large n, inn - An p.  Then for large nl and n2 (n ,  > n,) , from equa- 
tion (3.11) we have 

k 

z 
j=1 1.3 

- 
(3.20) V ( 16' ( O ) )  - V( 8% (nJ  

where A, is the second largest eigenvalue of the matrix m. Thus, to this order of 
magnitude, 

which, since < 1, converges as n, -+ CO, and so the variance given by equation 
(3.11) also converges. This result is, of course, limited to the conditions under 
which the angular transformation remains valid throughout the whole process. 
When a, = a. for all i, m = (1-a) M, so that h = 1-a, and the ultimate rate of 
convergence depends diirectly on the proportion of immigrants from the general 
population, 01' the "stabilizing linear pressure". 

It is clear that for convergence of the variances at least one of the ai must be 
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non-zero. Without the balancing effect of the "stabilizing pressure" the variances 
would diverge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuntil all loci were fixed, as they do in a single closed finite popula- 
tion. It is readily seen that the limiting behavior of the covariances will be closely 
analogous to that of the variances. 

3.5. Application to Wright's "island" model and to migration around a circle. 
The migration matrix for Wright's island model takes the form Mii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1,  all i 

and M,j = O  all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj .  Thus mii(") = (1-a)' all i and mij(") = 0, 5 # i and so, 
from equation (3.11) 

which is essentially the same as (3.19). As n+ CO 

if a, is sufficiently small. This gives 

which differs only slightly from WRIGHT'S solution, 1/(4N,a,SI) ,  so long as 
4N,a, is appreciably larger than 1. It is clear from equation (3.14) that all the 
covariances are zero. 

The circular migration matrix takes the general form shown in Table 2, namely 

lim V(Bi(n)/O(o)) -+ 1/8N,[1-(1-a,)2] + 1/16N,a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n - i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw - 

V(pz)/pz(l-p,) = 1/4N,a, 

M,, = I-m, i = 1 . . .  = k, M,,  = m/2 = M,,-,, i 2 . .  . k-1 
Mlk = M I ,  = Mk, = Mkbl = m / 2  and M,, = 0 otherwise. 

As k becomes large, this model tends to the linear "stepping stone" model ana- 
lyzed by KIMURA and WEISS, and by G. MAL~COT. 

The derivation of the general form for the variances and covariances is given 
in the Appendix. From equations (A.6)' (A.8), (A.11) and (A. 12), we have 

1 k-1 

8Nk l = O  

+- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI: 1 / ( 1  - ( 1 - c ~ ) ~  ( 1 - m f m  cos(%l/k)) ')  

as n+ 00, 

and for all i, j such that i-i = t, 
(3.24) C O ~ ( O , ( ~ ) ,  e ( n ) l e ( o ) )  - 

1 k-1 n-1 

r=1 
- -- I: cos ( 2 ~ 1 t / k )  z ( 1 -a) *' ( 1 -m+m cos (%l/k) ) 2T 

8Nk l = O  

TABLE 2 

Genoral form of the circular migration matrix (k x k) 

1-m m/2 0 . . .  . . . . . . . . . . . . . .  0 m/2 
m/2 I-m m/2 (4 . . . . . . . . . . . . . . . . . . . . . . . . .  0 0 

0 m/2 1-m m/2 0 . . . . . . . . . . . . . . . .  0 0 

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 m/2 I-m m/2 
m / 2  0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 m/2 1-m 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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1 k-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+- z ~0~(2xZt /k) / ( l -  (l-a)z (l-m+m C O S ( ~ T Z / ~ ) ) ~ )  
8Nk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL:=O 

a s n j o o  
It can be shown (see A,ppendix) that when k + CO, the solutions given by equa- 
tions (3.23) and (3.24) tend to the solutions given by KIMURA and WEISS (1964) 
except that, in our notation, m is replaced by m(1-a). This difference relates 
to a slight difference in the formulation of the migration models. The corres- 
pondence, in this case, of our solutions with those of KIMURA and WEISS (1964) 
confirms that the stochastic approximations made by them are essentially equiva- 
lent to the assumptions inherent in the use of the angular transformation. Nu- 
merical analysis of these models, discussed in the next section, shows that the 
infinite limit differs little from the finite models even for quite small values of k. 
Any differences are, of course, due to the edge effects associated with migration 
on a circle as opposed 1.0 migration along a line. The qualitative results of the 
circular migration model are then essentially the same as those of the linear 
stepping stone model as presented by KIMURA and WEISS (1964). Their main 
emphasis was placed on the approximately exponential decay of die co-variance, 
and therefore of the correlation, as a function of distance. Some numerical results 
showing the kinetics of approach to the equilibrium state and the dependence of 
the variance, and the exponent of decay of the correlation with distance, on m 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALY will be discussed in the next section. 

NUMERICAL ANALYSIS 

In this section we discuss some numerical investigations using theoretical 
matrices which are of interest particularly for showing the relationship of our 
model with other models and methods. 

If the population is distributed at regular intervals on a line, it can be repre- 
sented by a very simple migration matrix. This has elements l--m on the princi- 
pal diagonal, m/2 for ]positions with index i and i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1, and zero in all other 
positions. In order to avoid edge effects, it is convenient to close the line to form 
a circle (see Figure 1) rnade up of k colonies. In this case, elements M,k and Mk, 

are also equal to m/2 (see Table 2).  All elements of the matrix are multiplied by 
(1-a) to take account of “migration from the outside” (see Equation (3.1) ) . 
Other symmetrical models can be built in order to simulate non-linear population 
distributions. Complete symmetry is only achieved by considering migration 
between colonies situated at the vertices of the regular solids, of which there are 
just five. We have used as an example for numerical analysis the icosahedron 
(see Figure 2) in which each of the 12 vertices, corresponding to one of the 12 
colonies, is connected with five other vertices. This perhaps describes a situation 
intermediate between that of a two-dimensional or square lattice where each node 
(colony) is connected to the four neighboring nodes (as in the two-dimensional 
stepping stone model), and that of a three-dimensional or cube lattice in which 
each node is connected with six other nodes. 

A finite two-dimensional lattice without edge effects was simulated by analogy 
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G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIGURE 1.-An example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a circular pattern of colonies used as an approximation to the 

FIGURE 2.-The icosahedral colony pattern (see text). 
infinite linear stepping stone model. 

with the circular representation of an infinite line, by connecting the left and 
right sides of a finite square lattice, in addition to the upper and lower sides. This 
generates a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtorus. As a visual aid to the reconstruction of the connections in such 
a square lattice, it is convenient to repeat the first line of the lattice of colonies 
at the bottom and the first column at the right. Thus, for a 6 x 6 lattice, there 
are 36 colonies arranged as follows: 

1 2 3 4 5 6 1 
7 8 9 10 11 12 7 

13 14 15 16 17 18 13 
19 20 21 22 23 24 19 
25 26 27 28 29 30 25 
31 32 33 34 35 36 31 
1 2 3 4 5 6 1 

The migration matrix has 1 -m on the diagonal and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm/4 in the positions on each 
row corresponding to the immediate neighbors in the above arrangement. Thus 
for the first row m/4 occurs in columns 2, 6, 7 and 31, for the second row in 
columns 1,3, 8 and 32 and for the 14th in 8,20, 13, and 15 and so on. 

The choice of m and (Y values deserves some comment. There is very limited 
information on migration in real populations. Human populations probably lend 
themselves best to this type of investigation. Naturally, there may be some un- 
certainty as to what should be chosen as the unit corresponding to the colony. In 
humans the clustering is often sufficiently accentuated so that the choice of colony 
unit is quite clear cut. Some of the data in existence in the literature are worth 
discussing as an indication of the possible ranges for m and (II in human popula- 
tions. MODIANO et al. (1965) found for different villages in the province of Lecce, 
Italy, m values ranging between .23 and .08 for the father-offspring migration 
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matrix, and between .31 and . l o  for the mother-offspring matrix. In the villages 
of the Parma valley, CAVALLI-SFORZA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1958) found “endogamy” values ranging 
from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA34 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77%. “Endogamy” was defined as the percentage of husband-wife 
pairs born in the same village. Such a value is likely to be somewhat higher than 
the product of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,, values from the father-offspring and mother-offspring 
matrices. This difference is due to the fact that further migration may take place 
after marriage and before birth of the progeny. Influences such as correlations 
in migratory potential between mates may further alter this relationship. 
Observations suggest, however, that m may be taken as approximately equal to 
1 - vendogamy/lOO, which lies between .4 and .13 for the Parma data. These 
data, thus, indicate rough limits for the range of m. 

The range for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ is more difficult to define. In a theoretical model which takes 
account only of mutation, (Y may be of the order of or less. In a theoretical 
model which also includes some form of linear stabilizing selection, Q may take 
on almost any value. A possible range of values might be between .0001 (nothing 
less would conceivably be measurable) and around .05. In any real population, 
however, it is almost always impossible, or at least very difficult, to exclude 
migration from outside the area being investigated and this may give rise to rela- 
tively high Q values, of order m, for some of the colonies. Colonies at the periphery 
of a species distribution may tend to have lower Q values (see MAYR (1 965) ) . 
Inability to study an area completely may, at least in part, be compensated for 
by including in Q the proportion of immigrants who come from parts of the area 
which have not been ii~cluded in the analysis. Finally, the model may also be 
used to include local differences in selection, should data be available on this, by 
simulating with different zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2% and Q, values. The above considerations justify the 
fairly wide range of m and Q values which has been chosen for the numerical 
analysis. 

The kinetics of change of the gene frequency variances in the colonies as a 
function of time, starting with an initially homogeneous population, was calcu- 
lated for various Q ancl m values and both the linear and icosahedral models, 
using Equation (3.1 1 ) , with the results shown in Figure 3. The variance increases 
rapidly with time and is usually at some 90% of its asymptotic value after a 
period of time which is of the order of l/a. The comparison of the linear and 
icosahedral models shows the effect of dimensionality. This is not pronounced 
unless m is large and even then it is not very striking. 

The effect of m and t~ on the asymptotic value of the variance for the infinite 
linear model, calculated from Equation (A.15), is shown in Figure 4. The limit- 
ing variance decreases rapidly as both Q and m increase. It should be noted that 
the values obtained frorn the circular model show very little effect of the number 
of colonies. Thus, values from small circular models are very close to those for 
an infinite line. The deviations from the approximation given by KIMURA and 
WEISS (1964) for a/m small, are equivalent to the deviations from linearity in 
the right lower part of the graph. The linear portions of the lines all have a slope 
of approximately -1/2, as expected if the variance is proportional to l /dzfor 
any given value of m. 
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FIGURE 3.-The kinetics of the change in the variance between the gene frequencies as a 
function of time for 12 colonies arranged in a circular and an icosahedral pattern, for various 
values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm and a. Population size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN is kept at a 100 in all cases. 

A favorite way of studying the effect of distance is to follow the change in the 
correlation between the gene frequencies of different colonies as a function of 
their distance apart. The decrease of correlation with distance is expected to be 
a simple exponential (KIMURA and WEISS (1964,1965), MALBCOT (1962) after 
equilibrium has been reached, provided a," is small. 

The kinetics of the relationship between the correlation coefficient and the 
distance between colonies is shown in Figure 5 for the linear model with 24 
colonies and a = m = 0.1 (using equations 3.11 and 3.14). The relationship only 
becomes exponential at equilibrium and the intersection of the ultimate straight 
line with the ordinate is never at zero. 

The asymptotic slopes for the infinite linear model with various m values are 
plotted as a function of (Y (using Equation (A.17) ) in Figure 6. The slopes rapidly 
get steeper, corresponding to a rapid decline in the correlation with distance, as 
(Y and m increase. The deviations from linearity for  given m are quite small even 
for relatively high a values. The slopes of these lines correspond to a dependance 
on VTfor given m, as predicted by KIMURA and WEISS (1964) for small Jm. 
There is, however, a significant non-linearity for the correlation over short 
distances, which is the range over which correlations are higher and easier to 
measure. As the relationship is not strictly exponential and the cut-off is not at 
zero, the value of the first correlation coefficient (at distance one) is plotted 
separately in Figure 7 (calculated from Equation (A.16) ) . There is a very large 
non-linear effect of a on this correlation. 
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FIGURE 4.-Asymptotic values of the variance between gene frequencies for the infinite linear 
model. as a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm and a. 

The effect of dimensionality, shown in Figure 3, was further studied by calcu- 
lating the dependence of the correlation coefficient on distance using the square 
lattice (Figure 8). The relationship is far from exponential. It should, however, 
be noted that a square lattice is a rather artificial model. The distance between 
two colonies is not usua1l.y uniquely determined except in limiting cases. There 
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FIGURE 5.-The correlation coefficient between gene frequencies of colonies situated at the 

distance given in the abscissa, as a function of time : m = 0.1, a = 0.1 and k = 24. 

are colonies at a distance greater than one which are connected by a straight path 
while others are connected by a zigzag path. The covariances in these two types of 
cases are not identical even though the distance is apparently the same. The 
graph in Figure 8 was obtained by taking a weighted average of the probabilities 
for such cases. 
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FIGURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.-The asymptot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC slope of the exponential relationship between the correlation 
coefficient of gene frequencies in different colonies and the distance between them for the infinite 
linear model for various zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa values. 
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FIGURE 7.-The correlation coefficient between colonies at distance 1, for the infinite linear 
model, as a function of m and a. 
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a 6 x 6 square lattice with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = 0.1. 

Interesting results can be obtained by varying values between colonies. 
Figure 9 presents an extreme case in {which only one of the ten colonies arranged 
in a circle receives immigration from the outside. This case is compared with that 
in which the same total amount of immigration is distributed equally between 
all the ten colonies (“isotropic immigration”). 

Colony A receiving all the immigrants is expected to have a lower uariance 
than all the other colonies. The more distant colonies will have progressively 
higher variances (see Figure 9b). Thus a “cline” in the variance of gene frequen- 
cies is produced. There will not, in this case, be a cline in the expected gene 
frequencies. However, in reality, a gene frequency cline may well also be present, 
thus altering the correlation pattern and increasing, on the average, all the corre- 
lations. The relationship between the correlation coefficients and distance will 
then be different for every colony, and the correlations will in general be higher 
than those of the isotropic model because of the existence of a cline. This situation 
thus represents a potential pitfall for analysis based entirely on correlation 
coefficients. 

Further numerical work was done with a view to testing the validity of the 
angular transformation. Random sampling experiments, using computer gener- 
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FIGURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9.-A model of non-isotropic immigration from the outside, in comparison with the 
corresponding isotropic model. This gives rise to a cline of drift as shown in Figure 9b. The effects 
on the relationship between correlation and distance are shown in Figure 9c. 

ated pseudorandom nunnbers #were carried out foIlowing the requirements of the 
model (Equations (3.1) and (3.2)). At every generation, the expected gene fre- 
quency of each colony was computed as the weighted average of the gene 
frequencies of each colony in the preceding generation, using as weights the 
elements of the migration matrix corresponding to the colony to which migration 
takes place. A random sample of genes for that colony was then obtained. Twenty 
independent sampling experiments were done for each case corresponding to a 
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FIGURE 10.-Monte Carlo experiments to test the validity of the angular transformation (see 

text for further explanation). 

single point on the curves shown in Figure 10. These points represent the mean 
variances of the angular values corresponding to the gene frequencies of each 
colony. Because of the nature of the experiment, there is a strong autocorrelation 
between successive values, which should be kept in mind when interpreting the 
slight divergence between the expected (solid lines) and observed (broken lines) 
mean variances. All experiments given in Figure 10 used a linear model with 12 
colonies and with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = .05. The frequencies for the genes coming in from the 
outside ( x L )  were put equal to the initial gene frequency. Thus, the mean gene 
frequency remains constant in each of these experiments. It can be seen that the 
approximation is quite satisfactory even for initial gene frequencies differing 
widely from 0.5 (for which the angular transformation is strictly valid) such as 
0.2 and 0.05. 

Some other possible factors of importance were also investigated, mainly the 
effects of variable colony size and of additional factors of diversification within 
the colonies. Variable colony size has little effect on the outcome. It is interesting, 
however, to consider the effect of additional isolation within the colonies such as 
could be due, for instance in human populations, to social stratification within a 
colony. As already discussed in the previous section, if the isolation thus gener- 
ated is completely orthogonal to that due to distance, the variation between geo- 
graphicaIly isolated colonies is unaffected by the existence of social stratification. 
This was also observed in a Monte Carlo experiment with an artificial population 
(CAVALLI-SFORZA ( 1967) ) . An important factor requiring further investigation 
is the stratification of populations by age. 

DISCUSSION 

The main aim of our analysis has been to extend the earlier work of WRIGHT, 
MALBCOT and KIMURA and WEISS to a model that can more readily make use of 
observed data on patterns of migration, which are generally quite irregular and 
involve a finite number of colonies. In so doing we have also attempted to test, 

IO 2c 
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numerically, the robustness of KIMURA and WEISS’S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1964, 1965) conclusions for 
the linear stepping stone with respect to more complex migration patterns and 
the validity range of the simple approximations for their equilibrium results. 
Their overall conclusioins on the rate of decline of the variance with increasing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y and on the approximately exponential rate of decline of the correlation 
in gene frequencies with distance seem to apply over a fairly wide range of (Y 

and m values. When (Y is comparable in magnitude to m, lwhich may often be 
the case in real situations, correlations over short distances and gene frequency 
variances may show significant departures from the approximations based on 
assuming a/m is small. The rate of approach to the equilibrium conditions 
depends principally on l / ( ~ .  The difference between the infinite linear stepping 
stone and the finite circular migration models is, in all respects, quite small even 
for relatively few coloniies. Non-linear symmetric migration patterns do not seem 
to have marked effects on the rate at which variances approach equilibrium or 
on their equilibrium values, though the correlations with distance may be far 
from exponential. Nonisotropic migration from the outside can clearly be a major 
disturbing factor to the simple conclusions derivable from the stepping stone 
model. 

The angular transformation does not seem to be a major factor limiting the 
validity of our model so long as gene frequencies are not very near 0 or  1.  It is 
possible to obtain exact variances and co-variances of the gene frequencies in 
terms of the elements alf the square of the migration matrix (KARLIN, personal 
communication). The length of time needed for computation of these results 
would, however, increase very rapidly with increasing numbers of colonies. Un- 
doubtedly explicit formulae for the variances and co-variances can be obtained 
with more complicated regular migration matrices than the circular matrix. In 
particular, any matrix whose rows are cyclic permutations of each other should 
be amenable to analysis. 

There are, of course, a number of major factors which we have not taken into 
account, mainly because of their complexity, and which may seriously limit the 
extent to which the model we have proposed can account for observed variations 
in gene frequency. Two especially important limitations are the lack of a random 
element to migration and the ignoring of the population’s age structure. The 
latter can, to some extent, be taken into account by the use of effective popula- 
tion sizes calculated according to KIMURA and CROW (1963). Further work is, 
of course, needed to assess the significance of these factors in the matching of 
theory and observation. Our model can, however, at least provide a theoretical 
framework for assessing the effects of a variety of migration patterns on random 
genetic drift. 
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manuscript and his help in interpreting the approximations implied by the angular trans- 
formation. 

SUMMARY 

Migration between a finite set of discrete colonies can be specified in terms of 
a matrix. Assuming segregation for two alleles at a single locus, random mating 
within colonies and finite colony size, a stochastic model to describe gene fre- 
quency variation can be constructed with the use of the migration matrix. An 
important parameter of the model is the rate of immigration from an external 
gene pool representing a combination of linear stabilizing pressures which coun- 
teract the trend toward fixation due to random genetic drift. By use of the angular 
transformation, explicit expressions for gene frequency variances and co-vari- 
ances aIter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn generations of change can be obtained in terms of the initial gene 
frequencies, the migration pattern and the colony sizes. 

The angular transformation is only strictly valid for gene frequencies not too 
far from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi /z ,  though numerical calculations show that, in practice, it works well 
so long as the frequencies are not too near zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 or 1. The use of the angular trans- 
formation is critical to an analytical solution of the model. Further limitations to 
the model are that it does not take account of any random element in migration 
and ignores the population’s age structure. All of these assumptions are, however, 
inherent in previous treatments of this problem. Subject to these limitations the 
gene frequency variances and co-variances at any given time can be obtained 
for an arbitrary migration pattern among a finite set of discrete colonies (see 
equations (3.11) and (3.14)). These results allow a systematic approach to the 
determination of an equilibrium state and the conditions for its existence. which 
are that at least one colony should be subject to migration from an outside source 
i.e. have a non-zero a. It is shown that internal subdivision of colonies which is 
independent of the migration pattern between the colonies, does not affect the 
results of the model. A complete explicit analytical solution can be obtained for 
migration between neighboring colonies on a circle. I t  can be shown that as the 
number of colonies in the circle tends to infinity, the analytical results become 
essentially equivalent to the equilibrium results given by KIMURA and WEISS 
(1964, 1965) for the stepping stone model. Numerical calculations indicate that 
circular migration models correspond closely to the infinite linear model even 
for a small number of colonies. These calculations further indicate that the ap- 
proximate formulae based upon assuming a/m is small provided an adequate 
description of the linear stepping stone model for a fairly wide range of values 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALY and m. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA major aim of the model is to evaluate the effects of more complex 
migration patterns on the variances and co-variances in gene frequency. Nu- 
merical results for icosahedral as opposed to circular migration models suggest 
that increasing dimensionality of the migration pattern does not markedly affect 
the results. The limiting variances generally decrease rapidly as both a and m in- 
crease. A special model in which only one of a series of ten colonies arranged in 
a circle receives immigration from the outside, gave rise to a cline in the variance 
of gene frequencies. This type of non-symmetrical heterogeneity cannot readily 
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be interpreted in tenns of analyses based entirely on correlation coefficients 
between gene frequencies as a function of distance. 
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APPENDIX 

Explicit Formulae for the Angular Variances and Covariances for the General 
“#Circular” Migration Matrix ‘ 

In this appendix we evaluate the variances and covariances of the angular transforms of the 
gene frequencies for the general circular model, using equations (3.11) and (3.14). We assume 
that N ,  = N and ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a  for all i and that the migration matrix M for k colonies takes the 
general form: 

M . .  a a  = 1-m, i= l , . .  . , k  
i = 2,. . . , k-1 Mi,+, = m / 2  = Mi,-l, 

Mlk M,, = Mkl := Mkk-l = m/2 
M..=O 1.3 otherwise. 

In order to apply equations (3.11) and (3.14) we need to find an explicit form for the nth power 
of the matrix M. The evaluation of the n t h  power of the matrix 
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A = M -  (I-m) I 
which has Aii  = 0 all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, but is otherwise the same as M, is a classic problem of matrix algebra 
(see e.g. KARLIN (1966, pp. 119-121). Using simple orthogonal trigonometric functions, it can 
be shown that 

where, for Z=O, . . . , k-I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm cos 2irZ/k, are the eigenvalues and l/k exp(2?rZ(u-u) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi / k )  are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the terms of the normalized products of the left and right eigenvectors of the matrix A. From 
equation (A.l), it follows that the matrix M has eigenvalues (l-m+m COS 27rZ/k) with the 
same eigenvectors as A. Thus the terms of the nth power of the matrix 

are given by 
m =  (I-) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM 

In order to obtain the variance from equation (3.11) we need to evaluate the double sum 
k b l  

IC-1 k-1 

l # i J  

+ lzo l,zo (1-m+m COS(2irZ/k))~ (I--m+m cos(%TZ'/k))r 

x v=1 z exp(zn-(~+t') (u--U) i / k ) ] .  
k 

k 
Now Z exp(4?rl(u-u) i / k )  

v=1 

k 
= exp(hZui/k) Z exp (-4irZui/k) 

= exp(hZui/k) exp(&Zi/k) (1 -exp(&Zi))/(l -exp(&Zi/k)) 
= O  provided 1 # O  or k /2  
= k  if 1 = O  or k/2. 

v=1 

Similarly, for 2 # Z', 
6 

2 exp(2n(Z+Z') (U--U) i / k )  = 0 if Z+l I#k  
v=1 

= k  if Z+lI=k. 
Thus, since 

we have, for  all i, 
(A.5) cos(%(k-Z)/k) = C O S ( ~ T  - %TZ/k) = c0~(2rZ/k) 

Now 
la-i 

(A.7) n+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm r=l 
l im Z (1-a)Zr (l--m+m c o s ( 2 ~ Z / k ) ) ~ ~  

(l--a)Z (1--m+mcos(27rl/k))2 - 1 
- - 1  - - 

1 - (1-a)' (l--m+mcos(2al/k))~ 1 - ( l - U ) Z  (l--m+mcos(2al/k))2 
so that 

(A.8) 
1 IC-1 1 

lim V(eW e(o))=V=-- 
n+ w z -  8Nk ' = O  1 - (1-U)' ( I -WZ(~-COS(~TZ/~)) )~ 

The calculation of the covariance from equation (3.14) involves the double sum 
k n-1 

z Z (m(r)  m(T)) 
w = 1  r=1 uw vw (-4.9) 
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k-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l=0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ z ,z (l-m+m cos(2nl/k)) 1 (l-m+m cos(%?rl'/k) 

1fZ '  
k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

x z exp(2r i ( lu+~u- ( z + P ) w ) / ~ )  J . 
w=1 

Following similar arguments to those used in deriving equation (A.6), the first expression on the 
right of equation (A.9) is non-zero only if 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 or k/2 and the second expression only when 
Z'+Z=k. Now when Z$-Z'=k we have 

(A.lO) 
k 
2 exp (2ni ( !U + I'u - kw) /k) 

= exp(P.ai(lu + (k-Z)v)) exp(-%iw) 

= k exp(%i(Z(u-u) + ku)/k) = k exp(%ilt/k) 

w=1 

k 

w=1 

where u--u=t. Thus from equations (A.5) and (A.lO) the cozfficient of (l-m+m c o ~ ( 2 n Z / k ) ) ~ ~  
in the second expression of equation (A.9) is, for I # 0 or k / 2  

k [exp(2dt/k) + exp(2ri(k--l)t/k)] 
= k [exp(2riZt/k) + exp(-2rilt/k)] 
= 2k cos 2ntt/k . 

Since equation (A.lO) is also valid for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 0 and k/2, the expression for the covariance becomes, 
from equation (3.14) and i(A.9) 

for all U, u such that U-v = t < k. 
k-1 

1 =o 
Thus, from equation (A.7) and since 

(A.12) 

cos(2nZt/k) = 0, t # k 

lim Cov(e(un), er) e ( 0 ) )  
n+ m I -  

1 k-1 

=Cov(2) =- z cos(%Zt/k) / (1-(1--cu)2 (l-m+mcos(%Z/k))2. 
8Nk l=o 

Allowing k+ m, we obtain the linear "stepping stone" model analyzed by KIMURA and WFSS 

(1964, 1965) and by M A I ~ C O T  (1962). In this case the sums in equations (AB) and (A.12) 

become integrals in the variable e = h l / k  over the range 0 to 27, where de - %/k. The 
variance and covariance th,en take the farm 

- 1 21r 

1 6 N ~  
(A.13) V = -  J d e p -  ( 1 - 4 2  (l-m(l-Cos e ) ) 2  

and 

(A.14) COV ( t )  =-. J cos(te) de/l- (1--cu)2 ( l--m(l--cose))2 
1 2 8  - 

1 6 N ~  
The rzsult for the covariance is identical to that given by KIMURA and WEISS ( l W ,  equation 
(2.1)) except that in our notation m is replaced by m(1-a). The result for the variance differs, 
in addition by an extra 1 in the denominator (KIMURA and WEISS (1964., equation (1.10))). 
The replacement of m by m(l--a) seems to arise from a slight difference in the formulation of 
the model by KIMURA and WEIS (1964.). Where we have a factor (I-) (1-m) they (equation 
(1.1)) have a factor I-m-a. The evaluation of the integrals in equations (A.13) and (A.14) 
fdlows directly from WEIS.S and KIMURA (1965) to give 
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(A.15) 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= V(k -h (17 (~ ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( S a )  and R, = da(a+2m(l-a) 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - 
(A.16) 

1‘1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( k - m  ( 1 4 )  ) 2 %-a--m(l-CY) 
- 1 -  

As pointed out by them, the second term in this equation (A.16) soon becomes negligible as t 
increases, at which time the covariance decreases exponentially with respect to the distance t, at 
a rate given by 

(A.17) + ff 

The differences between the results for finite k, and k+w, reflect the edge effects due to the 
“circularization” of the migration matrix. The numerical results discussed in the body of the 
paper show that these effects are quite small even for fairly small values of k. 


