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A MIMETIC DISCRETIZATION OF

ELLIPTIC OBSTACLE PROBLEMS

PAOLA F. ANTONIETTI, LOURENCO BEIRÃO DA VEIGA, AND MARCO VERANI

Abstract. We develop a Finite Element Method (FEM) which can adopt very
general meshes with polygonal elements for the numerical approximation of
elliptic obstacle problems. These kinds of methods are also known as mimetic
discretization schemes, which stem from the Mimetic Finite Difference (MFD)
method. The first-order convergence estimate in a suitable (mesh-dependent)
energy norm is established. Numerical experiments confirming the theoretical
results are also presented.

1. Introduction

Elliptic obstacle problems refer to find the equilibrium position of an elastic
membrane whose boundary is held fixed, and which is constrained to lie above a
given obstacle. It can be considered as a model problem for variational inequalities
(see, e.g, [20]), and it has found applications in a number of different fields such as
elasticity and fluid dynamics. For example, applications include fluid filtration in
porous media, optimal control, and financial mathematics [23, 22].

In the present paper we develop, for the obstacle problem, a low order Finite El-
ement Method (FEM) which can adopt very general meshes. These kinds of meshes
are made of (possibly nonconvex) polygons of a variable number of edges, and do
not have to fulfill matching conditions. These types of schemes, which stem from
the Mimetic Finite Difference (MFD) method, are today known as mimetic dis-
cretization methods. The first papers introducing an interpretation of the Mimetic
Finite Difference method as a generalization of the Finite Element Method are very
recent [11, 13]. Lately, this generalization of FEM has been applied to a wide range
of problems, a very short list including [9, 12, 4, 14, 3, 25, 5, 2, 24].

The rest of the paper is organized as follows. In Section 2 we introduce the model
problem, and fix some notation. The proposed method is introduced in Section 3,
and the convergence analysis is provided in Section 4. Finally, in Section 5 we
discuss some implementation issues, and in Section 6 we show some numerical
results.
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2. The obstacle problem

Throughout the paper we will use standard notation for Sobolev spaces, norms
and seminorms. For a bounded domain D in R

2, we denote by Hs(D) the standard
Sobolev space of order s ≥ 0, and by ‖ ·‖Hs(D) and |·|Hs(D) the usual Sobolev norm

and seminorm, respectively. For s = 0, we write L2(D) in lieu of H0(D). H1
0 (D) is

the subspace of H1(D) of functions with zero trace on ∂D.
Let Ω be an open, bounded, convex set of R

2, with either a polygonal or a
C2-smooth boundary Γ := ∂Ω. Let g := g̃|Γ , with g̃ ∈ H2(Ω) and we set

V g := {v ∈ H1(Ω) : v = g on Γ}.
Let us introduce the bilinear form a(u, v) : H1(Ω)×H1(Ω) −→ R defined by

a(u, v) :=

∫

Ω

∇u · ∇v dx,

and the linear functional F (v) : H1(Ω) −→ R with

F (v) :=

∫

Ω

f v dx,

where we assume f ∈ L2(Ω). Let us introduce the function ψ ∈ H2(Ω) with ψ ≤ g
on Γ and the convex space

K := {v ∈ V g : v ≥ ψ a.e. in Ω}.
We are interested in solving the following variational inequality:

(2.1)

{
Find u ∈ K such that

a(u, v − u) ≥ F (v − u) ∀v ∈ K.

It is well known (see e.g. [8] and [27, Corollary 5:2.3] ) that under the above data
regularity assumption, the elliptic obstacle problem (2.1) admits a unique solution
u ∈ H2(Ω).

3. A mimetic discretization

In this section we present a mimetic discretization method for the obstacle prob-
lem (2.1). This method is the direct extension of the scheme presented in [9] for
the problem without obstacle.

3.1. Mesh notation and assumptions. Let Ωh ⊂ Ω be a polygonal approxima-
tion of Ω, in such a way that all vertices of Ωh which are on the boundary of Ωh are
also on the boundary of Ω. The polygonal domain Ωh represents the computational
domain for the method. With a little abuse of notation, we also denote by Ωh a
partition of the above introduced computational domain into polygons E. We as-
sume that this partition is conformal, i.e., an intersection of two different elements
E1 and E2 is either a few mesh points, or a few mesh edges (two adjacent elements
may share more than one edge) or empty. We allow Ωh to contain nonconvex el-
ements. Note, moreover, that, differently from conforming finite element meshes,
T-junctions are now allowed in the mesh; indeed, this are included in the above
conditions simply by splitting single edges into two new (aligned) edges. For each
polygon E, kE denotes its number of vertexes, |E| denotes its area, hE denotes its
diameter and

h := max
E∈Ωh

hE .
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We denote the set of mesh vertices and edges by Nh and Eh, the set of internal
vertices and edges by N 0

h and E0
h, the set of boundary vertices and edges by N ∂

h

and E∂
h . The set of vertices and edges of a particular element E are denoted by NE

h

and EE
h , respectively. Moreover, we denote a generic mesh vertex by v, a generic

edge by e and its length both by he and |e|. A fixed orientation is also set for the
mesh Ωh, which is reflected by a unit normal vector ne, e ∈ Eh, fixed once for all.
For every polygon E and edge e ∈ EE

h , we define a unit normal vector ne

E that
points outside E.

The mesh is assumed to satisfy the following shape regularity properties, which
have already been used in [9]. There exist

- an integer number Ns independent of h;
- a real positive number ρ independent of h;
- a compatible sub-decomposition Th of every Ωh into shape-regular triangles,

such that

(H1) any polygon E ∈ Ωh admits a decomposition Th|E formed by less than Ns

triangles;
(H2) any triangle T ∈ Th is shape-regular in the sense that the ratio between the

radius rT of the inscribed ball and the diameter hT of T is bounded from
below by ρ:

0 < ρ ≤ rT
hT

.

From (H1), (H2) there can be easily derived the following useful properties that we
list below.

(M1) The number of vertexes and edges of every polygon E of Ωh are uniformly

bounded from above by two integer numbers Nv and Ne, which only depend
on Ns.

(M2) There exists a real positive number σs, which only depends on Ns and ρ,
such that

he ≥ σshE and |E| ≥ σsh
2
E ,

for every polygon E of every decomposition Ωh, and for every edge e of E.
(M3) There exists a constant Ca, only dependent on ρ and Ns, such that for

every polygon E, for every edge e of E and for every function ψ ∈ H1(E)
the following trace inequality holds:

(3.1) ‖ψ‖2L2(e) ≤ Ca

(
h−1
E ‖ψ‖2L2(E) + hE |ψ|2H1(E)

)
.

(M4) There exists a constant Capp, which is independent of h, such that the
following holds. For every E and for every function ψ ∈ Hm(E), m ∈ N,
there exists a polynomial ψk of degree k living on E such that

|ψ − ψk|Hl(E) ≤ Capph
m−l
E |ψ|Hm(E)

for all integers 0 ≤ l ≤ m ≤ k + 1.

Since the polygons E may be nonstar-shaped, we show for completeness the proof
of (M4) in the Appendix.
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3.2. Degrees of freedom and interpolation operators. The discretization of
problem (2.1) requires to discretize a scalar field in H1(Ω). In order to do so, we
start introducing the degrees of freedom for the discrete approximation space. The
discrete space Vh is defined as follows: a vector vh ∈ Vh consists of a collection of
degrees of freedom

vh := {vv}v∈Nh
,

one per mesh vertex, e.g., to every vertex v ∈ Nh, we associate a real number vv.
The scalar vv represents the nodal value of the underlying discrete scalar field of
displacement. The number of unknowns is equal to the number of vertices of the
mesh. We also define the discrete space V g

h ⊂ Vh of functions which satisfy the
Dirichlet boundary conditions

V g
h := {vh ∈ Vh : vvh = g(v) ∀v ∈ N ∂

h } .

Accordingly, V 0
h represents the space of discrete functions which vanish at the

boundary nodes.
We define the following interpolation operator from the spaces of smooth enough

functions to the discrete space Vh. For every function v ∈ C0(Ω̄)∩H1(Ω), we define
vI ∈ Vh by

vvI := v(v) ∀v ∈ Nh.

Moreover, we analogously define the local interpolation operator from C0(Ē) ∩
H1(E) into Vh|E given by

vvI := v(v) ∀v ∈ NE
h .

3.3. Discrete norms and bilinear forms. We endow the space Vh with the
discrete seminorm

(3.2) ‖vh‖21,h :=
∑

E∈Ωh

‖vh‖21,h,E =
∑

E∈Ωh

|E|
∑

e∈EE

h

[
1

|e| (v
v2 − vv1)

]2
,

where v1 and v2 are the two vertexes of e. The quantity ‖ · ‖1,h is a H1(Ω)-
type discrete seminorm, which becomes a norm on V 0

h . Indeed, the differences
1
|e| (v

v2 − vv1) represent gradients on edges and the scalings with respect to hE and

he are the correct ones to mimic an H1(E) local seminorm. In the numerical tests
we will also consider the following L2(Ω)- and L∞(Ω)-type discrete norms

‖vh‖20,h :=
∑

E∈Ωh

|E|
∑

v∈NE

h

(vv)2 ,

‖vh‖∞,h := max
v∈Nh

|vv|.
(3.3)

We denote by ah(·, ·) : Vh×Vh → R the discretization of the bilinear form a(·, ·),
defined as

(3.4) ah(vh, wh) :=
∑

E∈Ωh

aEh (vh, wh) ∀vh, wh ∈ Vh,

where aEh (·, ·) is a symmetric bilinear form on each element E. The local forms
mimick

aEh (vh, wh) ∼
∫

E

∇ṽh · ∇w̃h dx,

where, roughly speaking, ṽh, w̃h denote regular functions living on E which “extend
the data” vh, wh inside the element.
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We introduce two fundamental assumptions for the local bilinear form aEh (·, ·).
The first one represents the coercivity (up to the kernel) and the correct scaling
with respect to the element size.

(S1) There exist two positive constants c1 and c2 independent of h such that,
for every uh, vh ∈ Vh and each E ∈ Ωh, we have

c1‖vh‖21,h,E ≤ aEh (vh, vh), aEh (uh, vh) ≤ c2‖uh‖1,h,E‖vh‖1,h,E .
In order to introduce the second assumption, we observe beforehand that, using an
integration by parts,∫

E

∇v · ∇p1 dx =−
∫

E

(∆p1)v dx+
∑

e∈EE

h

∫

e

(∇p1 · ne

E)v ds

=
∑

e∈EE

h

∇p1 · ne

E

∫

e

v ds

(3.5)

for all E ∈ Ωh, for all v ∈ [H1(E)]2 and for all linear functions p1. By substituting
the integral in the last term of (3.5) with a trapezium integration rule gives our
second condition.

(S2) For every element E, every linear vector function p1 on E, and every vh ∈
Vh, it holds that

aEh (vh, (p
1)I) =

∑

e∈EE

h

(∇p1 · ne

E)
|e|
2

(
vv1h + vv2h

)
,(3.6)

where v1 and v2 are the two vertices of e ∈ ne

E .

The meaning of the above consistency condition (S2) is therefore that the discrete
bilinear form respects integration by parts when tested with linear functions.

Remark 3.1. The scalar product and the bilinear form shown in this section can
be easily built element by element in a simple algebraic way. A brief description of
such construction can be found in Section 5.

3.4. The discrete method. Finally, we are able to define the proposed mimetic
discrete method for the obstacle problem. Let the loading term

(3.7) (f, vh)h :=
∑

E∈Ωh

f̄ |E
kE∑

i=1

vviωi
E ,

where v1, . . . , vkE
are the vertices of E, f̄ |E := 1

|E|

∫
E
f dx, and ω1

E , . . . , ω
kE

E are

positive weights such that
∑kE

i=1 ω
i
E = |E|. The above loading term is an approxi-

mation of

(f, vh)h ∼
∫

Ω

fṽh dx,

which is exact for constant functions.
Let us introduce the convex space

Kh := {vh ∈ V g
h : vvh ≥ ψ(v) ∀v ∈ Nh}.

Then, the mimetic discretization of problem (2.1) reads:

(3.8)

{
Find uh ∈ Kh such that

ah(uh, vh − uh) ≥ (f, vh − uh)h ∀vh ∈ Kh.
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Due to property (S1) it is immediate to check that the bilinear form ah(·, ·) is
coercive on Vh/R. As a consequence, recalling again that Kh ⊂ Vh is convex and
closed, standard results [15] give the existence and uniqueness of a solution for the
discrete problem (3.8). The uniform stability of the problem with respect to h will
be left as an implicit consequence of the analysis that follows.

4. Convergence of the method

In this section we prove the linear convergence of the proposed discrete method.
In the following, we will use the symbols ≃, �, � to represent equivalences and
bounds which hold up to a constant independent of the mesh-size.

4.1. A lifting operator. In this section we show that, for all E ∈ Ωh, there exists
a suitable lifting operator

RE
h : Vh|E −→ H1(E) ∩ C0(Ē),

which satisfies the following properties.

(L1) (RE
h vh)(v) = vvh ∀v ∈ NE

h and ∀vh ∈ Vh|E ;
(L2) RE

h vh|e is a linear function ∀e ∈ EE
h and ∀vh ∈ Vh|E ;

(L3) RE
h (p

1)I = p1 for all linear functions p1 on E;
(L4) |RE

h vh|2H1(E) � ‖vh‖21,h,E ∀vh ∈ Vh|E ;
(L5) ‖RE

h vI‖2L2(E) �
∑2

k=0 h
2k
E |v|2

Hk(E) ∀v ∈ H2(E);

(L6) The following maximum principle holds: for all vh ∈ Vh|E , if vvh ≥ 0 ∀v ∈
NE

h , then the lifting operator satisfies RE
h vh ≥ 0 in E.

Note that, due to properties (L1) and (L2), the global lifting operator

Rh : Vh −→ H1(Ωh) ∩ C0(Ω̄h) ,

Rh(vh)|E := RE
h (vh|E) ∀vh ∈ Vh, E ∈ Ωh,

is well defined.
The local lifting operator is built as in [6], which in turn is an improved version

of that presented in [9]. Note that we cannot directly use the lifting operator of [9]
since it does not preserve linear functions. Let E ∈ Ωh, for a given vh ∈ Vh|E , the
function RE

h vh is globally continuous and piecewise linear on the sub-triangulation
Th and it is defined in the following way. On the vertices v ∈ NE

h we set RE
h vh(v) =

vvh. On the remaining nodes of Th that lie on the boundary, RE
h vh is defined by

linear interpolation of the two vertex values of the edge. On the internal nodes of
E, we do instead the following construction. Given any internal node v of Th, we
call Ξv the set of nodes which share an edge with v and are different from v. Then,
it is easy to check that v, which lies in the convex hull determined by the nodes
{v̄}v̄∈Ξv

, can be expressed (in a nonunique way) as a weighted sum

(4.1) v =
∑

v̄∈Ξv

wv

v̄
v̄,

with wv

v̄
nonnegative real numbers such that

∑
v̄∈Ξv

wv

v̄
= 1. For each internal node

v, we then enforce the condition

(4.2) RE
h vh(v)−

∑

v̄∈Ξv

wv

v̄
RE

h vh(v̄) = 0 .

This set of conditions provides a square linear system which determines the value
of RE

h vh in the internal nodes. Indeed, it is immediate to verify that the associated
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matrix is an M-matrix, which in particular implies the existence of a unique solution
and a discrete maximum principle. Therefore, assumption (L6) is satisfied.

Properties (L1) and (L2) are clearly satisfied by construction. Furthermore,
following the same argument as in [9], from the maximum principle it follows that
the operator RE

h satisfies also the stability condition (L4). We now check property
(L3). Let p1 be a linear function on E. Since the solution of the linear system
introduced above is unique, in order to show RE

h (p
1)I = p1 it is sufficient to prove

that p1 satisfies (4.2) for any v internal node of E. Using (4.1) and recalling that
p1 is linear, it holds that

p1(v) = p1(
∑

v̄∈Ξv

wv

v̄
v̄) =

∑

v̄∈Ξv

wv

v̄
p1(v̄)

for all the internal nodes v of E, which is exactly (4.2) for the function p1.
We are left to show property (L5). We start observing that, due to the maximum

principle,

(4.3) ‖RE
h vI‖L∞(E) ≤ max

v∈NE

h

|vvI | = max
v∈NE

h

|v(v)| ≤ ‖v‖L∞(E).

Moreover, due to (H1) and (H2) it is easy to check that

(4.4) hE � hT ≤ hE ∀T ∈ Th|E .

Using (4.3), a scaling argument on each triangle of T ∈ Th|E , and finally (4.4), we
get

‖RE
h vI‖2L2(E) ≤ |E|‖v‖2L∞(E) = |E| max

T∈Th

‖v‖2L∞(T )

≤ |E|max
T∈Th

2∑

k=0

h2k−2
T |v|2Hk(T ) � |E|

2∑

k=0

h2k−2
E |v|2Hk(E) .

(4.5)

Property (L5) follows from the above bound and |E| ≤ h2
E . This completes the

proof of properties (L1)–(L6).
Finally, we make the following two observations. Given any E ∈ Ωh and v ∈

H2(E), let v1 be its linear approximation introduced in (M4) setting k = 1. Then,
using (L3) and (L5), and finally the approximation property (M4) we get

‖v −RE
h vI‖2L2(E) � ‖v − v1‖2L2(E) + ‖RE

h (v1 − v)I‖2L2(E)

�

2∑

k=0

h2k
E |v − v1|2Hk(E) � h4

E |v|2H2(E)

(4.6)

for all E ∈ Ωh. Furthermore, due to the maximum principle property (L6) and the
definition (3.2) of discrete H1-norm it follows that

‖RE
h vh − vvh‖L∞(E) ≤ max

v
′∈NE

h

|vv′h − vvh| � ‖vh‖1,h ,

which also gives immediately

(4.7) ‖RE
h vh − vvh‖L2(E) � hE‖vh‖1,h .
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4.2. A convergence result. In this section, we prove a convergence result for
the mimetic discretization method applied to the variational inequality (2.1). The
proof takes the steps from [10] (see also Remark 4.2 below).

Theorem 4.1. Let u ∈ K∩H2(Ω) be the solution to the continuous problem (2.1),
and uh ∈ Kh the corresponding mimetic approximation, obtained by solving the

discrete problem (3.8). Then, it holds that

‖uh − uI‖1,h ≤ Ch,

where the constant C is independent of the mesh-size h.

Proof. We set eh := uh − uI. Let u
1 be the piecewise discontinuous linear function

defined on Ωh as follows: for every E ∈ Ωh, u1
|E is the L2(E)-projection of u

over the space of polynomials of degree ≤ 1. With a little abuse of notation, in
the following we indicate with (u1)I a collection of nodal values such that for all
elements E the restriction (u1)I|E is given by the local interpolation (u1|E)I. Note
that both the || · ||1,h norm and the bilinear form ah can be immediately extended
to (u1)I, since both operators are a sum of local terms. We observe that, due to
(L2), it holds that

|e|
2

(
ev1h + ev2h

)
=

∫

e

RE
h eh dx ∀E ∈ Ωh, e ∈ EE

h .

By using (S1)–(S2), the discrete problem (3.8), and the above observation we get

c1‖eh‖21,h ≤ah(eh, eh)

≤(f, eh)h − ah(uI, eh)

=(f, eh)h − ah(uI − (u1)I, eh)− ah((u
1)I, eh)

≤(f, eh)h + c2‖uI − (u1)I‖1,h‖eh‖1,h −
∑

E∈Ωh

∑

e∈EE

h

∂u1

∂ne

E

∫

e

RE
h eh dx .

(4.8)

From (4.8), using twice an integration by parts and that Rheh vanishes on the
boundary of Ωh, it follows that

c1‖eh‖21,h ≤ (f, eh)h + c2‖uI − (u1)I‖1,h‖eh‖1,h −
∑

E∈Ωh

∫

E

∇RE
h eh · ∇u1 dx

= (f, eh)h + c2‖uI − (u1)I‖1,h‖eh‖1,h +
∑

E∈Ωh

∫

E

∇RE
h eh · ∇(u− u1) dx

−
∑

E∈Ωh

∫

E

∇RE
h eh · ∇u dx

= (f, eh)h + c2‖uI − (u1)I‖1,h‖eh‖1,h +
∑

E∈Ωh

∫

E

∇RE
h eh · ∇(u− u1) dx

+

∫

Ωh

∆u RE
h eh dx.

(4.9)

Let us first estimate the term ‖uI − (u1)I‖1,h ≡ ‖(u − u1)I‖1,h. For simplicity, we
set v = u− u1. Using definition (3.2) of the norm ‖ · ‖1,h and the Cauchy-Schwarz
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inequality, we get

‖vI‖21,h =
∑

E∈Ωh

|E|
∑

e∈EE

h

[
1

|e| (v
v2 − vv1)

]2
=

∑

E∈Ωh

|E|
∑

e∈EE

h

[
1

|e|

∫

e

v′ ds

]2

≤
∑

E∈Ωh

|E|
∑

e∈EE

h

[
1

|e| ‖∇v‖2L2(e)

]
.

Applying the trace inequality (3.1) to ∇v and employing a standard interpolation
error estimate yield

(4.10) ‖(u− u1)I‖21,h �
∑

E∈Ωh

[
‖∇(u− u1)‖2L2(E) + h2

E |u|2H2(E)

]
� h2 |u|2H2(Ω) .

From (4.9), by employing the Young inequality combined with (4.10) and introduc-
ing w = ∆u+ f , we get

‖eh‖21,h �

{
(f, eh)h −

∫

Ωh

f Rheh dx

}
+ h2 |u|2H2(Ω)(4.11)

+
∑

E∈Ωh

∫

E

∇RE
h eh · ∇(u− u1) dx+

∫

Ωh

w RE
h eh dx.(4.12)

As shown in [7], it holds that

(4.13) w ≤ 0 and w(ψ − u) = 0 a.e. in Ωh.

Simply adding and subtracting terms, we obtain
∫

Ωh

wRE
h eh dx = −

∫

Ωh

w(RE
h uI − u) dx+

∫

Ωh

w(ψ − u) dx

+

∫

Ωh

w(RE
h uh −RE

h ψI) dx+

∫

Ωh

w(RE
h ψI − ψ) dx.

(4.14)

The second term in the right-hand side of (4.14) vanishes due to (4.13). Moreover,
as for every v ∈ Nh there holds uh(v) ≥ ψI(v), employing assumption (L6), yields

RE
h uh −RE

h ψI ≥ 0 in Ωh,

which recalling (4.13) gives
∫
Ωh

w(RE
h uh −RE

h ψI) dx ≤ 0. Hence, combining these

last two observations with (4.14), we get
∫

Ωh

wRE
h eh dx ≤

∫

Ωh

w(u−RE
h uI) dx+

∫

Ωh

w(RE
h ψI − ψ) dx.

The above bound, using the Cauchy-Schwarz inequality, (4.6), and recalling that
w = ∆u+ f , yields

(4.15)

∫

Ωh

wRE
h eh dx � h2‖w‖L2(Ωh)

(
|ψ|H2(Ωh) + |u|H2(Ωh)

)
� h2.

We now estimate the remaining pieces in (4.11). By using (4.7) and proceeding as
in the estimate of the First Piece in [9], it is easy to check that the following holds:

(4.16)
∣∣(f, eh)h − (f,RE

h eh)
∣∣ � h‖f‖L2(Ω)‖eh‖1,h � h‖eh‖1,h.
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Using the Cauchy-Schwarz inequality, assumption (L4), and a standard interpola-
tion error estimate, yields

∑

E∈Ωh

∫

E

∇RE
h eh · ∇(u− u1) dx ≤ ‖∇RE

h eh‖L2(Ωh)‖∇(u− u1)‖L2(Ωh)

� h‖eh‖1,h |u|H2 � h‖eh‖1,h .

(4.17)

Combining (4.11) with (4.15), (4.16) and (4.17) finally gives

‖eh‖21,h � h‖eh‖1,h + h2,

which immediately gives the result. �

Remark 4.2. We remark that the standard finite element techniques employed in
[10] to prove a similar result cannot be directly applied in our context. Indeed,
in the MFD framework the continuous and the discrete solutions are of a different
nature: the continuous solution is a function, whereas the discrete approximation
is a vector. As a consequence, the continuous and the discrete problems cannot be
simply summed up to obtain Céa-like results, as in Theorem 2.1 in [10], which is a
crucial step to derive the convergence result in the finite element context.

Remark 4.3. The convexity condition on Ω can be relaxed to include a more general
class of domains, provided that the solution u still belongs to H2(Ω), and Ωh can be
inscribed in Ω for every h (e.g., nonconvex polygonal domains). Indeed, following
the same argument as in [10], which is based on a suitable extension of the mesh
and solution, the convergence result can be easily extended.

Remark 4.4. Whenever V g coincide with H1
0 (Ω), i.e., homogeneous boundary con-

ditions are imposed on the domain boundary, Theorem 4.1 can be proved also in a
different way, following the idea proposed in [19]. We refer to [1, Appendix A] for
the details.

5. Implementation issues

In this section we show briefly how the local scalar product appearing in (3.4)
is built in practice. Let E be a general element of Ωh, with kE ≥ 3 vertices. Then,
we need to build an kE × kE symmetric matrix M which represents the local scalar
product

aEh (vh, wh) = vThM wh ∀ vh, wh ∈ R
kE .

Let the functions ρ1 := 1, ρ2 := x− x̄, ρ3 := y− ȳ represent a basis for the space of
the linear polynomials on E, with x, y cartesian coordinates in the plane and (x̄, ȳ)
representing the position of the center of mass of E. Then, we introduce the kE ×3
matrix N given by

N(i, j) := ρj(vi) i = 1, . . . , kE , j = 1, 2, 3 ,

where v1 = (x1, y1), . . . , vkE
= (xkE

, ykE
) are the kE vertices of the polygon E, i.e.,

(5.1) N :=

⎛
⎜⎜⎜⎜⎜⎝

1 x1 − x̄ y1 − ȳ
1 x2 − x̄ y2 − ȳ
1 x3 − x̄ y3 − ȳ
...

...
1 xkE

− x̄ ykE
− ȳ

⎞
⎟⎟⎟⎟⎟⎠

.
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Then, it is easy to check that the consistency condition (S2) can be expressed as

vThMN = vTh R ∀vh ∈ R
kE ,

where the kE × 3 matrix R with columns R|j , j = 1, 2, 3, is the unique matrix that
represents the right-hand side of (S2)

vTh R|j =
∑

e∈EE

h

(∇ρj · ne

E)
|e|
2

(
vv1h + vv2h

)
∀vh ∈ R

kE .

More precisely, for i = 1, . . . , kE , let ei be the edge connecting the vertexes vi =
(xi, yi) and vi+1 = (xi+1, yi+1) (with the convention that vkE+1 ≡ v1), and let
nei

E ∈ R1×2 be the corresponding outward normal vector. Clearly, |ei|nei

E = (yi+1−
yi, xi − xi+1). Therefore, the matrix R has the following form:

(5.2)

R =

⎛
⎜⎜⎜⎜⎜⎝

0 (|ekE
|nekE

E + |e1|ne1

E )/2
0 (|e1|ne1

E + |e2|ne2

E )/2
0 (|e2|ne2

E + |e3|ne3

E )/2
...

...

0 (|ekE−1|nekE−1

E + |ekE
|nekE

E )/2

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 (y2 − ykE
)/2 (xkE

− x2)/2
0 (y3 − y1)/2 (x1 − x3)/2
0 (y4 − y2)/2 (x2 − x4)/2
...

...
...

0 (y1 − ykE−1)/2 (xkE−1 − x1)/2

⎞
⎟⎟⎟⎟⎟⎠

.

Due to the above construction the consistency condition can be written as

(5.3) MN = R ,

where the matrices N,R are given in (5.1) and (5.2), respectively. Moreover, it is
easy to check that

(5.4) (RT
N)(i, j) = (NT

MN)(i, j) =

∫

E

∇ρi · ∇ρj dx =: K(i, j) i, j = 1, 2, 3 ,

with K(i, j) clearly equal to |E| if i = j = 2 or i = j = 3 and zero otherwise, that
is,

(5.5) R
T
N =

⎛
⎝
0 0 0
0 |E| 0
0 0 |E|

⎞
⎠ .

Equivalence (5.5) can be checked also taking into account the algebraic expressions
of N,R given in (5.1) and (5.2), respectively. Indeed, we have

R
T
N =

⎛
⎝
0 0 0

0 1
2

∑kE

i=1(xiyi+1 − xi+1yi) 0

0 0 1
2

∑kE

i=1(xiyi+1 − xi+1yi)

⎞
⎠ ,
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which is indeed (5.5), taking into account the shoelace formula, according to which
the area of the polygon E (with sign) is given by

1

2

kE∑

i=1

(xiyi+1 − xi+1yi).

Finally, the matrix M is built as follows. Let

P = I− N(NT
N)−1

N
T ,

with I the kE × kE identity matrix. The matrix P is the projection matrix on the
space orthogonal to the columns of N. Then, we set

(5.6) M =
1

|E|RR
T + s P ,

with s = trace( 1
|E|RR

T ) > 0 a scaling factor. Recalling (5.4) and the definition of P,

it is easy to check that the above matrix M satisfies the consistency condition (5.3).
Moreover, also the stability property (S2) can be proved; see for instance [9, 3].

We remark that, whenever the mesh is made of triangles, the matrix M coincides
with the (elemental) finite element stiffness matrix, i.e., on triangular elements the
MFD method and FEM are the same. Indeed, on the one hand, the projection
matrix P turns out to be the null matrix, and the matrix M becomes:

M =
1

|E|RR
T =

1

4|E|

⎛
⎝
m11 m12 m13

m21 m22 m23

m31 m32 m33

⎞
⎠ ,

where

m11 = (x2 − x3)
2 + (y2 − y3)

2,

m12 = m21 = −(x1 − x3)(x2 − x3)− (y1 − y3)(y2 − y3),

m13 = m31 = (x1 − x2)(x2 − x3) + (y1 − y2)(y2 − y3),

m22 = (x1 − x3)
2 + (y1 − y3)

2,

m23 = r32 = −(x1 − x2)(x1 − x3)− (y1 − y2)(y1 − y3),

m33 = (x1 − x2)
2 + (y1 − y2)

2.

On the other hand, we recall that the Lagrangian finite element shape functions
ϕi(x, y), i = 1, 2, 3, can be written as

ϕ1(x, y) =
1

2|E| [(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y] ,

ϕ2(x, y) =
1

2|E| [(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y] ,

ϕ3(x, y) =
1

2|E| [(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y] ,
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and therefore

∇ϕ1(x, y) =
1

2|E| (y2 − y3, x3 − x2) ,

∇ϕ2(x, y) =
1

2|E| (y3 − y1, x1 − x3) ,

∇ϕ3(x, y) =
1

2|E| (y1 − y2, x2 − x1) .

Therefore, a straightforward calculation shows that the stiffness matrix V associated
to the Lagrangian finite element shape functions has components

V(i, j) :=

∫

E

∇ϕj · ∇ϕi dx = |E|(∇ϕi)
T · (∇ϕj) = M(i, j), i, j = 1, 2, 3.

6. Numerical results

This section is devoted to present some numerical computations to confirm the
theoretical results of the previous sections.

We consider the domain Ω =]− 1, 1[2. For a parameter 0 < r < 1, we define the
(continuous) load

(6.1) f(x, y) :=

{
− 8(2x2 + 2y2 − r2) if

√
x2 + y2 > r,

− 8r2(1− x2 − y2 + r2) if
√
x2 + y2 ≤ r,

and the Dirichlet boundary data g(x, y) := (x2+ y2 − r2)2. We consider a constant
obstacle ψ(x, y) := 0, so that the exact minimizer of model problem (2.1) is given
by

(6.2) u(x, y) := (max{x2 + y2 − r2, 0})2;

cf. [26]. Figure 1 (left) depicts the minimizer u together with the obstacle ψ in
the case r = 0.7. The obstacle problem has been solved numerically by the Pro-
jected Successive Over Relaxation (PSOR) method [16, 18, 21]. More precisely,
we discretized the corresponding unconstrained problem (that is, the Poisson equa-
tion) by means of MFD method which reads in matrix form as Aũh = f. Then, A
is decomposed as A = D + L + U for the projected Gauss-Seidel successive over-
relaxation iteration (with over-relaxation parameter ω), and the minimizer uh is
found by constrained iteration up to a user-defined tolerance TOL. The initial guess
is max{ũh, ψ} where ũh is the solution to the unconstrained problem Aũh = f.
We refer to [18, 21] for more details. Throughout the section, the over-relaxation
parameter ω has been chosen as ω = 1.75, and the tolerance TOL in the iterative
scheme is fixed equal to 10−9.

We tested four different sequences of decompositions, that we denote by triangu-

lar, quadrilateral, median-type 1 and median-type 2. An example of two consecutive
levels of all the considered decomposition is shown in Figure 2. An example of
MFD minimizer together with the obstacle ψ on a median-type 1 polygonal mesh
is shown in Figure 1 (right).
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Figure 1. Left: exact minimizer u with the obstacle ψ (r = 0.7).
Right: MFD minimizer uh with the obstacle ψ (r = 0.7).

Figure 2. Two samples of the considered decompositions of Ω =
] − 1, 1[2: one coarser (top) and one finer (bottom). From left
to right: triangular mesh, quadrilateral mesh and median-type 1,
median-type 2 polygonal meshes.

In Table 1 we report the computed (relative) errors εr1,h(u
I , uh) in the discrete

energy norm defined in (3.2), i.e.,

εr1,h(u
I , uh) =

‖uI − uh‖1,h
‖uI‖1,h

,

for the sequence of triangular and quadrilateral decompositions. Here and in the
following, nP denotes the number of polygons of the decomposition. In the last row
of Table 1 we also report the computed convergence rates obtained by the linear
regression algorithm. We can observe that on quadrilateral meshes the computed
convergence rate is linear as predicted by Theorem 4.1, whereas on triangular de-
composition convergence is achieved slightly better than expected; such a behaviour
has been already observed in [3]. The analogous results obtained on median-type

1 and median-type 2 decompositions are shown in Figure 3 (loglog scale), and are
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Table 1. Computed relative errors εr1,h(u
I , uh) on the sequence

of triangular and quadrilateral meshes.

triangular meshes quadrilateral meshes

nP εr1,h(u
I , uh) nP εr1,h(u

I , uh)

128 3.7452e-02 64 6.4114e-02

512 1.1865e-02 256 2.5172e-02

2048 3.4448e-03 1024 1.2802e-02

8192 9.5227e-04 4096 6.7499e-03

32768 2.7586e-04 16384 3.4652e-03

rate 1.7809 1.0318

10
1

10
−2

10
−1

ε
r 1,
h
(u

I
,u

h
)

√
nP

1

median-type 1 mesh
median-type 2 mesh

Figure 3. Computed relative errors εr1,h(u
I , uh) versus the square

root of the number of cells (loglog scale): median-type 1 and
median-type 2 meshes.

indeed in agreement with our theoretical estimates. Next, we also investigate the
(relative) error behaviour in the discrete L2- and L∞-type norms defined in (3.3).
To this aim, we set

εr0,h(u
I , uh) :=

‖uI − uh‖0,h
‖uI‖0,h

, εr∞,h(u
I , uh) :=

‖uI − uh‖∞,h

‖uI‖∞,h

.

The computed errors εr0,h(u
I , uh) and εr∞,h(u

I , uh) versus the square root of the

number of cells are reported in Figure 4 (loglog scale). Results reported in Fig-
ure 4(a) refer to triangular and quadrilateral meshes, whereas results obtained on
median-type 1 and median-type 2 decompositions are shown in Figure 4(b). A
quadratic convergence rate is clearly observed.

Next, we compare the performance of MFD (restricted to triangular meshes) and
FEM, and we investigate the effects of employing the discrete norms (3.2) and (3.3)
instead of their continuous counterparts (that is, the H1(Ω) and L2(Ω) norms).
First, we employ the FEM to approximate the model problem under consideration
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(a) Triangular and quadrilateral meshes.
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(b) Median meshes.
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Figure 4. Computed relative errors εr0,h(u
I , uh) (left) and

εr∞,h(u
I , uh) (right) versus the square root of the number of cells

(loglog scale).

on a sequence of triangular decompositions, and compute the (relative) errors both
in the H1(Ω) seminorm and in the L2(Ω) norm

(6.3) εr1(u
I , uh) :=

∣∣uI − uh

∣∣
H1(Ω)

|uI |H1(Ω)

, εr0(u
I , uh) :=

‖uI − uh‖L2(Ω)

‖uI‖L2(Ω)
.

To compute the right-hand side of the finite element variational formulation, we
have employed the barycenter quadrature formula, which is exact for linear polyno-
mials, and therefore it is consistent with the quadrature formula (3.7). Note that
the right-hand side is the only difference between FEM and MFD in the triangular
case, since the stiffness matrix comes out to be always the same. In Table 2 we
compare the finite element relative errors computed as in (6.3) with their discrete
counterpart, namely εr1,h(u

I , uh) and εr0,h(u
I , uh). We clearly observe that, for both

s = 0 and s = 1, the relative error εrs,h(u
I , uh) (which only employs nodal values)

is systematically smaller than εrs(u
I , uh). This phenomenon is probably related to

an improved accuracy in the nodal value approximation. Next, we compare results
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obtained by MFD and FEM. In Figure 5 we plot the computed errors εrs,h(u
I , uh),

s = 0, 1, versus the square root of the number of cells.

Table 2. Finite element approximation: comparison between dis-
crete and continuous norms, namely εrs,h(u

I , uh) and εrs(u
I , uh),

s = 0, 1.

nP εr1(u
I , uh) εr1,h(u

I , uh) εr0(u
I , uh) εr0,h(u

I , uh)

128 2.4692e-01 1.7761e-02 2.0321e-01 1.1906e-02

512 1.2123e-01 7.8972e-03 4.8759e-02 4.6443e-03

2048 6.0299e-02 2.3997e-03 1.2071e-02 1.2427e-03

8192 3.0113e-02 7.3530e-04 3.0086e-03 3.1091e-04

32768 1.5052e-02 2.3510e-04 7.5225e-04 7.7263e-05

rate 1.0081 1.5903 2.0174 1.8436

(a) εr1,h(u
I , uh)
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(b) εr0,h(u
I , uh)
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Figure 5. Comparison between FEM and MFD: computed rel-
ative errors εrs,h(u

I , uh), s = 0, 1, versus the square root of the

number of cells (loglog scale).

We observe that both MFD and FEM achieve asymptotic convergence at a mod-
erately better rate than predicted by our theoretical estimates, and that MFD
produces a slightly larger error.

Finally, we present some numerical computations to confirm that the theoreti-
cal results of the previous sections are valid also on nonconvex domains (cf. Re-
mark 4.3). To this aim we choose the L-shaped domain Ω =] − 1, 1[2\[0, 1]2, and
we consider the same test problem as before. Figure 6 (right) shows a plot of the
MFD minimizer uh together with the obstacle ψ (r = 0.7). We tested the MFD
method on a sequence of quadrilateral meshes: a sample is shown in Figure 6 (left).
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The computed relative errors εr1,h(u
I , uh) and εr0,h(u

I , uh) are reported in Fig-

ure 7 (loglog scale): as predicted by Theorem 4.1, we observe a linear convergence
rate in the discrete energy norm. We also observe that the relative error in the
discrete L2 norm tends to zero quadratically as the mesh is refined.

Figure 6. L-shaped domain: a sample of the quadrilateral decom-
position (left), and the corresponding MFD minimizer uh together
with the obstacle ψ (right).

10
1
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2

10
−3

10
−2

√
nP

1

2

εr1,h(u
I , uh)

εr0,h(u
I , uh)

Figure 7. L-shaped domain: computed relative errors εr1,h(u
I,uh)

and εr0,h(u
I , uh) versus the square root of the number of cells

(loglog scale).

Appendix A. Proof of M4

Accordingly to (H1)–(H2), the polyhedron E may be nonstar-shaped. Therefore
the approximation bound in (M4) must rely on the more general results in [17]. In
order to show that, given our assumptions (H1)–(H2), the constant appearing in
(M4) is uniformly bounded, we derive here explicitly the proof. In the following
steps we will use the symbol H0 for the L2 space. Moreover, for simplicity of
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α1

α2

α3

α4

A

D

B C

Z

Figure 8. The region Z indicates the intersection of the two cones
built by prolungating the edges of the triangles ABC and DBC.

notation, we will indicate with the symbol A ∪B the internal part of the union of
the closures of any open sets A and B.

We start with the following result.

Lemma A.1. Let k and m be nonnegative integer numbers. Let ωh be a conforming

connected mesh of N shape regular triangles satisfying the regularity condition (H2)
and ω =

⋃
T∈ωh

T . Then, there exists a constant C ′ = C ′(ρ,N,m, k) such that for

all polynomials v(m) of degree at most m on ω,

(A.1)
∣∣v(m)

∣∣
Hk(ω)

≤ C ′
∣∣v(m)

∣∣
Hk(T )

∀T ∈ ωh.

Proof. We only sketch the proof. Given N , there exist a finite number of possible
connectivity configurations of the triangles in ωh. Thus, there exist a finite number
of reference meshes ω̂h such that each admissible mesh ωh can be mapped into a
reference mesh. We now note that the two norms appearing in (A.1) have the same
kernel. Therefore, since the space of polynomials of degree m is finite dimensional,
there exists a constant C ′′ = C ′′(N,m, k) such that the lemma is true on all refer-
ence meshes. Finally, the proof of the lemma follows easily from a standard scaling
argument, also observing that all the involved maps have bounded norms due to
the mesh regularity of ωh. �

We are now able to show the proof of (M4). Given k,m ∈ N nonnegative integers
and s ∈ R, 0 ≤ s ≤ m, we consider any element E ∈ Ωh. We will prove property
(M4) by induction on the number N of triangles in Th|E . We observe that such
number N is bounded by Ns of Assumption (H1).

We start observing that, if T1 and T2 are two triangles (of a shape regular family
of meshes) which share one edge, then the union U = T1 ∪ T2 is star shaped with
respect to a ball. Moreover, the ratio of the radius of such ball divided by the
diameter of U is uniformly bounded from below. Indeed, the following simple proof
applies. Given any two triangles ABC and DBC as in Figure 8, let Z indicate the
quadrilateral obtained by the intersection of the two cones built by edge prolunga-
tion, i.e., the shaded region in Figure 8. Clearly, the region U given by the union
of the two triangles is star shaped with respect to Z. Moreover, due to the shape
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regularity of the mesh, all the angles α1, ..., α4 in Figure 8 are uniformly bounded
from below. Therefore, it is easy to check that there exists a ball in Z with radius
R ≥ θ|BC|, with |BC| length of the edge BC and the real θ > 0 uniformly bounded
from below. This proves the assertion.

As a consequence of the above result, for any U = T1∪T2 we can apply the well-
known polynomial approximation bound on star-shaped domains; see for instance
[17]. For all v ∈ Hs+1(U), there exists a polynomial of degree m, denoted by v(m),
such that

(A.2) hk
U

∣∣v − v(m)
∣∣
Hk(U)

≤ CUh
s+1
U

∣∣v
∣∣
Hs+1(U)

,

with CU = CU (k,m, s, ρ) and where ρ is the shape regularity constant appearing in
(H2). Furthermore, the same result obviously applies if U is a single triangle. Thus
we obtained that, if N = 1 or 2, the bound in (M4) is proved with Capp = CU .

We now assume that such a bound holds true for any mesh of up to N triangles
(with a constant C depending only on k,m, s, ρ, and N). We want to show that it
holds also for any mesh Th|E composed of N +1 triangles. Therefore, let T1 be any
triangle from Th|E and let T2 be any other triangle from Th|E which has a common
face with T1. We introduce the following two subsets of E:

A = T1 ∪ T2 and B = {
⋃

T : T ∈ Th|E , T �= T1}.
Clearly, there hold A ∪ B = E and A ∩ B = T2. Due to the induction hypothesis,
the interpolation bound in (M4) is satisfied for both sets A and B. Given any

v ∈ Hs+1(E), we denote with v
(m)
A and v

(m)
B the interpolation polynomials (of

degree m) for v on the two subsets A and B, respectively. We thus have

(A.3)
hk
A

∣∣v − v
(m)
A

∣∣
Hk(A)

≤ CAh
s+1
A

∣∣v
∣∣
Hs+1(A)

,

hk
B

∣∣v − v
(m)
B

∣∣
Hk(B)

≤ CBh
s+1
B

∣∣v
∣∣
Hs+1(B)

.

Making use of property (M2), we easily obtain from the bounds in (A.3)

(A.4)
hk
E

∣∣v − v
(m)
A

∣∣
Hk(A)

≤ CAh
s+1
E

∣∣v
∣∣
Hs+1(A)

,

hk
E

∣∣v − v
(m)
B

∣∣
Hk(B)

≤ CBh
s+1
E

∣∣v
∣∣
Hs+1(B)

with different constants CA and CB, but still depending only on k,m, s, ρ, and Ns.
Now the triangle inequality yields

(A.5)
∣∣v − v

(m)
A

∣∣
Hk(E)

≤
∣∣v − v

(m)
A

∣∣
Hk(A)

+
∣∣v − v

(m)
B

∣∣
Hk(B)

+
∣∣v(m)

A − v
(m)
B

∣∣
Hk(B)

.

For the last term in the above equation, we apply Lemma A.1 (with ω = B and
T = T2) and the triangle inequality to derive

(A.6)

∣∣v(m)
A − v

(m)
B

∣∣
Hk(B)

≤ C ′
∣∣v(m)

A − v
(m)
B

∣∣
Hk(T2)

≤ C ′
(∣∣v(m)

A − v
∣∣
Hk(T2)

+
∣∣v − v

(m)
B

∣∣
Hk(T2)

)

≤ C ′
(∣∣v(m)

A − v
∣∣
Hk(A)

+
∣∣v − v

(m)
B

∣∣
Hk(B)

)
.

We finally combine (A.5), (A.6) and the interpolation bounds (A.4). This yields

hk
E

∣∣v − v
(m)
A

∣∣
Hk(E)

≤
√
2(1 + C ′) max{CA, CB}hs+1

E

∣∣v
∣∣
Hs+1(E)

.

Therefore property (M4) is proved.
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