
α-min: A Compact Approximate Solver For Finite-Horizon POMDPs

Yann Dujardin

CSIRO

yann.dujardin@csiro.au

Tom Dietterich

School of EECS

Oregon State University

tgd@oregonstate.edu

Iadine Chadès

CSIRO

iadine.chades@csiro.au

Abstract

In many POMDP applications in computational
sustainability, it is important that the computed pol-
icy have a simple description, so that it can be easily
interpreted by stakeholders and decision makers.
One measure of simplicity for POMDP value func-
tions is the number of α-vectors required to repre-
sent the value function. Existing POMDP methods
seek to optimize the accuracy of the value func-
tion, which can require a very large number of
α-vectors. This paper studies methods that allow
the user to explore the tradeoff between the accu-
racy of the value function and the number of α-
vectors. Building on previous point-based POMDP
solvers, this paper introduces a new algorithm (α-
min) that formulates a Mixed Integer Linear Pro-
gram (MILP) to calculate approximate solutions for
finite-horizon POMDP problems with limited num-
bers of α-vectors. At each time-step, α-min cal-
culates α-vectors to greedily minimize the gap be-
tween current upper and lower bounds of the value
function. In doing so, good upper and lower bounds
are quickly reached allowing a good approximation
of the problem with few α-vectors. Experimental
results show that α-min provides good approximate
solutions given a fixed number of α-vectors on
small benchmark problems, on a larger randomly
generated problem, as well as on a computational
sustainability problem to best manage the endan-
gered Sumatran tiger.

1 Introduction

Most Partially Observable Markov Decision Process
(POMDP) algorithms focus on providing near optimal so-
lutions to infinite-horizon POMDP problems. Near-optimal
performance comes at the cost of providing solutions re-
quiring many alpha vectors even when solving small size
POMDP problems [Poupart et al., 2011]. In applied fields
such as conservation biology, POMDP solutions are often too
complex to be analyzed and communicated to managers to be
implemented [Tulloch et al., 2015]. Indeed, deriving simple
management rules has proven difficult when the POMDP
solution has a large number of alpha vectors [Nicol and

Chadès, 2012]. As a result, the solutions must be explored
by simulations in order to derive general rules of thumb
[Chadès et al., 2011]. In the best case, these rules are tested
via simulations and the loss of performance is reported. This
practice is time consuming and does not offer performance
guarantees. There is a need to provide an alternative for
POMDP users who require simple approximate solutions. To
tackle this issue, we develop α-min, a finite-horizon POMDP
solver that calculates a good policy given a limit on the
number of α-vectors.

Section 2 provides an overview of POMDPs. Section 3
introduces the principles of our approach that relies on calcu-
lating α-vectors that minimize the gap between a tight upper
bound and a current lower bound approximating the optimal
value function. In section 4, we provide a MILP formulation
of our approach and present the properties of a first algorithm
ǫ-min that finds approximate solutions given a fixed maxi-
mum gap. From ǫ-min, we then derive α-min that finds good
approximate solutions given a fixed number of α-vectors.
Section 5 assesses the performance of α-min on four small
benchmark problems, on a larger randomly generated prob-
lem, and on a novel computational sustainability problem that
seeks to best allocate resources to protect a meta-population
of threatened Sumatran tigers. Finally, we discuss the results
and future works in Section 6.

Table 3 contains the main notations of this paper. Proofs
and proof sketches are available as supplementary material1.

2 POMDP Overview

POMDPs are a convenient model for solving sequential
decision-making optimization problems when the decision-
maker does not have complete information about the cur-
rent state of the system [Sigaud and Buffet, 2013]. For-
mally, a discrete finite-horizon POMDP is specified as a tuple
{S,A,O, τa,Ωa, R,H}, where

• H = {0, ..., T − 1}, T ∈ N, is the time horizon. Ele-
ments of H are called time-steps and T is the number of
time-steps.

• S, ∀t ∈ H, st ∈ S is the state of the system at t.

• A, ∀t ∈ H, at ∈ A is the taken action at t.

• O, ∀t ∈ H, zt ∈ O is the observation at t.

1https://sites.google.com/site/ijcaialphamin/home

• τa is the transition matrix for action a. Elements are
τa (st, st+1).

• Ωa is the observation matrix for action a. Elements are
Ωa(st+1, zt+1).

• R is the reward matrix. Elements are R (at, st).

For sake of clarity, we define the following notation:

• For action a ∈ A and for observation z ∈ O, let
Ma,z be the matrix of dimension S × S such that
Ma,z(st+1, st) = Ωa(z, st+1)τa(st+1, st).

• For every a ∈ A, the vector ra = R(a, .) corresponds
to the row of the matrix R corresponding to the action a.

The optimal decision at time t may depend on the com-
plete history of past actions and observations. Because it is
neither practical nor tractable to use the history of the action-
observation trajectory to compute an optimal solution, belief
states (also called beliefs), i.e. probability distributions over
states, are used to summarize and overcome the difficulties of
imperfect detection [Åström, 1965]. A POMDP can be cast
into a fully observable Markov decision process defined over
the continuous belief state space, B.

Solving exactly a finite-horizon POMDP means finding an
optimal policy Π0 = ∪t∈Hπt, where πt : B → A maps belief
states at time t to actions. Π0 maximizes the expected sum
of rewards E[

∑
t∈H rat

· bt] over the time horizon H (· de-
notes the scalar product). For each time-step t, for a given
belief state bt and a given policy Πt = ∪t′∈{t,...,T−1}πt′

the expected sum E[
∑

t′∈{t,...,T−1} rat
· bt] is also referred

to as the value function Vt,Πt
(bt). A value function allows

us to rank strategies by assigning a real value to each belief
bt. An optimal policy Πt is a policy such that, ∀ bt ∈ B,
∀ Π′

t, Vt,Πt
(bt) ≥ Vt,Π′

t
(bt). Several strategies can be opti-

mal and share the same optimal value function Vt, which can
be computed using Bellman’s principle of optimality [Bell-
man, 1957]: ∀bt ∈ B,

Vt(bt) = max
at∈A

{rat
· bt +

∑

zt∈O

p(zt+1|at, bt)Vt+1(bt+1)}

(1)
where the belief bt+1 can be computed as follows :

∀st+1 ∈ S,

bt+1(st+1) =
Ωa(st+1, zt+1)

∑
st∈S τa(st, st+1)bt(st)∑

st,s
′

t+1
∈S Ωa(s′t+1, zt+1)τa(st, s′t+1)bt(st)

(2)
Equation 1 can be rewritten Vt = BL(Vt+1) where BL

is the Bellman operator [Shani et al., 2012], sometimes also
called backup operator [Pineau et al., 2006]. While various
algorithms from the operations research and artificial intel-
ligence literature have been developed over the past years,
exact resolution of POMDPs is intractable: finite-horizon
POMDPs are PSPACE-complete [Papadimitriou and Tsit-
siklis, 1987] and infinite-horizon POMDPs are undecidable
[Madani et al., 2003].

3 α-min principle

Equation 1 can be solved by directly manipulating α-vectors
[Smallwood and Sondik, 1973]. For every t ∈ H , there exists

a finite set Γt of vectors of dimension |S| (the so-called α-
vectors) which define entirely Vt such as |Γt| is minimal and:

∀t ∈ H, ∀bt ∈ B, Vt (bt) = max
αt∈Γt

αt · bt (3)

This formulation is equivalent to equation 1. Given that
ΓT−1 = {ra| a ∈ A, ra is not dominated}, one can in the-
ory build a set of α-vectors defining the value function Vt

from Γt+1 at any time-step t ∈ H ′ = {0, ..., T − 2}, because
every αt ∈ Γt can be written:

αt = [rat
+

∑

zt+1∈O

(α
at,zt+1

t+1)TMat,zt+1
]T (4)

where at ∈ A and α
at,zt+1

t+1 , zt+1 ∈ O are elements of
Γt+1.

The set of α-vectors P (Γt+1) given by Equation 4 is such
that Γt ⊆ P (Γt+1) (α-vectors of P (Γt+1) potentially belong
to Γt). In the case of exact resolution, for a given Γt+1, a nat-
ural way to compute Γt is first to compute P (Γt+1) entirely,
and then prune the dominated vectors that are not useful for
representing the value function. In practice, this approach
is computationally expensive [Sigaud and Buffet, 2013, sec-
tions 7.3 and 7.4].

Point-based algorithms are recent approximate approaches
to solve POMDPs [Shani et al., 2012]. Value functions are
updated according to a subset of beliefs B̃t ⊆ B sampled
to be as relevant as possible to get good approximations of

Γt at each time-step. Every alpha vector αbt

t of the current

approximation Γ̃t ⊆ Γt, corresponding to the belief bt ∈ B̃t,
is generated as follows:

αbt

t = argmax
αt∈P (Γ̃t+1)

αt · bt (5)

where Γ̃t+1 is an approximation of Γt+1.

Definition 1. We call α the vector-function such that for ev-
ery bt ∈ B, α(bt) = argmaxαt∈P (Γ̃t+1)

αt · bt. Note that

for every bt ∈ B, we have α(bt) · bt = BL(Ṽt+1)(bt).

Using the point-based approach on a finite-horizon, one
can build a lower approximation of the optimal value func-

tion at each time-step. We start by setting Γ̃T−1 = ΓT−1 and

for every t ∈ H ′, we build Γ̃t = {α(bt)|bt ∈ B̃t}. We

call Ṽt the corresponding value function (according to Equa-

tion 3 where Γt, Vt and B are respectively replaced by Γ̃t,

Ṽt and B̃t). We have Γ̃t ⊆ Γt, t ∈ H , thus every Ṽt is

potentially only a lower bound of Vt. If Γ̃t+1 = Γt+1 (i.e.

Ṽt+1 = Vt+1), then the maximal error on Vt is by defini-

tion gapt = maxbt∈B(BL(Ṽt+1)(bt) − Ṽt(bt)). By induc-

tion from ṼT−1 = VT−1, which does not have any error,

and according to Lemma 1, the maximal error on any Ṽt is∑
t′∈{t,...,T−1} gapt′ . Thus the maximal error on V0 at t = 0

is bounded by gap =
∑

t∈H gapt for any b0. This measure

of error is usual in approximation approaches [Hansen, 1998;
Hauskrecht, 2000].

Lemma 1. Let t ∈ H ′ and Ṽt+1 be an approximate lower

representation of Vt+1 such that: ∀ bt+1 ∈ B, Ṽt+1(bt+1) ≤

Vt+1(bt+1) ≤ Ṽt+1(bt+1) + ǫ. Then, ∀ bt ∈ B, Ṽt(bt) ≤

Vt(bt) ≤ Ṽt(bt) + ǫ, where Ṽt = BL(Ṽt+1) and Vt =
BL(Vt+1).

Typical point-based methods sample belief states by sim-
ulating interactions with the environment and then updating
the value function over a selection of those sampled belief
states [Pineau et al., 2006; Shani et al., 2006]. Our approach
consists, for every given time-step t, in searching iteratively

for belief states b∗t of Equation 6, in order to improve Ṽt.

b∗t = argmax
bt∈B

[BL(Ṽt+1)(bt)− Ṽt(bt)] (6)

The belief point set expansion consisting of adding b∗t to

B̃t and the improvement of Ṽt consisting of adding α(b∗t) to

Γ̃t aim to reduce the current gap as much as possible itera-
tively (Figure 1).

bt
4

gapt

BL(Vt+1) / Vt

bt
*

bt

bt
1 bt

2 bt
3

bt
5 bt

4

gapt

BL(Vt+1) / Vt

bt

bt
* bt

3

(a) (b)

Figure 1: Two successive iterations (a) and (b) of our method
for a given time-step t. In both figures, solid lines represent

Ṽt while dashed lines represent BL(Ṽt+1), and belief b∗t pro-

vides the current biggest gap between BL(Ṽt+1) and Ṽt. In

(a), b̃1t ,..., b̃4t constitute the current set B̃t. In these points,

BL(Ṽt+1) and Ṽt have the same values. In (b), the set B̃t

is now equal to b̃1t ,..., b̃5t . Adding b̃5t and its corresponding

α-vector has reduced the gap between BL(Ṽt+1) and Ṽt.

Several algorithms have been proposed to approximately
solve POMDPs. For example, Roy et al. [2005] aimed to
reduce the dimensionality of the belief space using princi-
pal components analysis, rather than minimize the size of
the solution itself. Poupart and Boutilier [2004] sought to
reduce the dimensionality of the belief space and to apply
the “bounded policy iteration” method [Poupart and Boutilier,
2003] based on bounded stochastic finite state controllers. In
both cases [Poupart and Boutilier, 2004; Roy et al., 2005],
the methods do not provide an intrinsic performance guar-
antee, i.e. no gap is provided between the approximate and
the optimal solutions. One must use an external algorithm to
compute this gap.

Unlike point-based sampling approaches [Shani et al.,
2012] or other approximation approaches [Hauskrecht, 2000;
Poupart and Boutilier, 2004; Roy et al., 2005], our method
generates iteratively new non-dominated α-vectors by solv-
ing Equation 6 directly.

4 A MILP approach

Given a time-step t ∈ H ′, solving Equation 6 exactly is an
NP-hard optimization problem. This is a direct consequence
of the NP-hardness of the exact backup operation [Littman
et al., 1995]. Indeed, otherwise we could use Equation 6 to
construct an exact representation of the optimal value func-
tion Vt given the exact value function Vt+1, in a time which
is a polynomial in the instance and the number of α-vectors
needed to describe Vt.

Equation 6 can be formulated as the following quadratic
program QP :

max gt
s.t. gt ≤ αt · bt − α̃t · bt, α̃t ∈ Γ̃t

bt · 1 = 1
bt ≥ 0

αt ∈ P (Γ̃t+1)

(QP)

where the variables are αt and bt. The first term αt · bt of
the first constraints corresponds to the α-vector formulation

of BL(Ṽt+1)(bt) and α̃t ·bt corresponds to the α-vector for-

mulation of Ṽt(bt). Note that α̃t are not variables but coeffi-

cients of the |Γ̃t| first constraints.the first type.
The problem QP is difficult to solve, not only because

it is a non-concave quadratic program, but mainly because

P (Γ̃t+1) is not known. In the remainder of the paper, we will
demonstrate how we can reformulate QP into a MILP that
can be solved efficiently.

Because the last constraint αt ∈ P (Γ̃t+1) is not expressed
as a set of linear inequalities, we have still to find a set of
such linear inequalities describing Convt, the convex hull of

P (Γ̃t+1). Since we are in a maximization case, we can fo-
cus on describing Ct, the polyhedron composed of hyper-
planes of Convt with positive normal vectors and hyper-
planes αt,s = 0, s ∈ S, where αt,s are the components of
αt. Note that extreme points of Ct with strictly positive coor-

dinates correspond to non-dominated α-vectors of P (Γ̃t+1),

while interior points of P (Γ̃t+1) correspond to dominated α-
vectors.

Let us describe Ct using an infinite number of constraints:

Ct = {αt ∈ R
|S| | αt · bt ≤ αt(bt) · bt, bt ∈ B,αt ≥

0}. We can approximate Ct with a finite number of con-

straints by considering the convex polyhedron C̃n
t = {αt ∈

R
|S| |αt · b̊

i
t ≤ αt(̊b

i
t) · b̊

i
t, i = 0, ..., n−1,αt ≥ 0} where

b̊0t , ..., b̊
n−1
t are n ≥ |S| beliefs of B. We have Ct ⊆ C̃n

t .
For a given Cn

t , instead of solving QP , we can now solve

the easier quadratic program QPn(̊b
1
t , ..., b̊

n−1
t), which can

provide an approximation of QP with guaranteed perfor-
mance (Proposition 2):

max gnt
s.t. gnt ≤ αn

t · bnt − α̃t · b
n
t , α̃t ∈ Γ̃t

bnt · 1 = 1
bnt ≥ 0

αn
t ∈ C̃n

t

(QPn)

Proposition 2. Let α̂n
t , ˆ̃αn

t , b̂nt , and ĝnt be an optimal solu-
tion of QPn.

At the optimum of QPn, we have

maxbt∈B(BL(Ṽt+1)(bt) − Ṽt(bt)) ≤ ĝnt ≤

maxbt∈B(BL(Ṽt+1)(bt) − Ṽt(bt)) + δnt , where

δnt = α̂n
t · b̂nt −α(b̂nt) · b̂nt .

This formulation allows us to decide whether to expand the

belief set by adding b̂nt to B̃t in the case where δnt is small
enough, or to construct, from the current solution of QPn, a

new relevant belief b̊nt defining a new constraint of C̃n
t , in

order to get a better approximation C̃n+1
t of Ct.

Our aim is then to find a good description of Ct, i.e. us-
ing few hyperplanes. It is well known in linear programming,
and particularly in polyhedral approaches, that the best possi-
ble hyperplanes describing a convex polyhedron correspond
to its so-called facets [Mahjoub, 2014]: the set of these facets
is indeed the minimal set of hyperplanes needed to describe a
convex polyhedron and is always finite. The problem of find-
ing relevant facets is known as separation problem [Mahjoub,
2014]. Grötschel et al. [1981] showed that the cost of opti-
mization on a given polyhedron does not depend on the num-
ber of constraints of the system describing the polyhedron,
but rather on the separation problem associated with this sys-
tem. In our case, optimizing over Ct means finding a new rel-
evant non-dominated α-vector and its associated belief. Un-
fortunately, since QPn is quadratic, one cannot directly apply
the results of Grötschel et al. [1981] to solve QPn.

An important step in proving the convergence of our pro-
posed algorithms is to solve the following separation prob-
lem, formally: compute a new facet Fn

t of Ct from any cur-
rent solution α̂n

t of QPn which is not already in Ct. This

can be done by using the algorithm GenerateFacet(α̂n
t , Γ̃t+1)

(Proposition 3).

Proposition 3. Given a set Γ̃t+1 of α-vectors at time-step

t representing the value function Ṽt+1, and a vector αt ∈
R

|S|, one can decide if αt belongs to Ct or not, and if not,
generate a facet of Ct. We call the corresponding algorithm

GenerateFacet(αt, Γ̃t+1).

Each time we solve QPn and δnt is not satisfy-
ing, we can generate a new facet Fn

t from α̂n
t using

GenerateFacet(α̂n
t , Γ̃t+1). We then can set b̊nt = b

Fn
t

t

to add the corresponding constraint to C̃n
t (which becomes

C̃n+1
t), where b

Fn
t

t is the belief corresponding to the facet

Fn
t . In doing this, C̃n

t converges to Ct (Proposition 4).

Proposition 4. C̃n
t converges to Ct since at each iteration

we compute a new facet of Ct, and the convex polyhedron Ct

has a finite number of facets. Thus, there exists n∗ ∈ N such

that the solution α̂n∗

t of QPn∗ belongs to Ct, i.e. δn
∗

t = 0.
Therefore, for a given precision ǫp > 0 there exists nǫp ∈ N

such that δ
nǫp

t ≤ ǫp.

QPn is however still not easy to solve, because the objec-
tive function is clearly not concave, due to the term αt · bt.
But, since α̂n

t necessarily belongs to one of the extreme

points of C̃n
t , it satisfies the System 7:

αt · b̊
i
t ≤ αt(̊b

i
t) · b̊

i
t, i = 0, ..., n− 1

αt · b̊
ij
t = αt(̊b

ij
t) · b̊

ij
t , j = 1, ..., |S|

(7)

Let β1, ..., β|S| ∈ [0, 1] such that b̂nt =
∑

j∈1,...,|S| βj̊bt
ij

and
∑

j∈1,...,|S| βj = 1. Such βj and b̊
ij
t always exist if we

assume that there are at least |S| beliefs b̊it affinely indepen-

dent (for example, by setting the |S| first b̊it to the extreme
points of the simplex B). αt · bt can be easily re-written∑

j=1,...,|S| βij (αt(̊b
ij
t) · b̊

ij
t), which is a linear expression.

This technique of linearization is similar to considering in-

terpolations of BL(Ṽt+1) as an upper bound [Poupart et al.,
2011]. Our approach differs from [Poupart et al., 2011] be-
cause we calculate a tight upper bound in order to guarantee
a near best possible improvement of the lower bound instead
of computing upper bound and lower bound with two inde-
pendent heuristics.

Thus, we can finally reformulate QPn into a MILP (Propo-
sition 5).

Proposition 5. Let b0t , ..., b
n−1
t be n ≥ |S| beliefs. Prob-

lem QPn(b
0
t , ..., b

n−1
t) can be reformulated as the following

MILP, called MILPn(b
0
t , ..., b

n−1
t), containing only contin-

uous variables except n that are 0-1 variables.

max gt
s.t. gt ≤ Wt − Ut

Wt =
∑

i=1,...,n βi(αt(̊b
i
t) · b̊

i
t)∑

j=1,...,|S| βj = 1
bt · 1 = 1

bt =
∑

i=1,...,n βi̊b
i
t

αt · b̊
i
t + yi = αt(̊b

i
t) · b̊

i
t, i = 0, ..., n− 1

yi ≤ M(1− xi), i = 0, ..., n− 1

Ut ≥ α̃t · bt, α̃t ∈ Γ̃t

βi ≤ xi, i = 0, ..., n− 1∑
i=0,...,n−1 xi ≤ |S|

bt ≥ 0
yi ≥ 0, i = 0, .., n− 1
βi ≤ 1, i = 0, .., n− 1
βi ≥ 0, i = 0, .., n− 1
xi ∈ {0, 1}, i = 0, .., n− 1
Wt, Ut, gt ≥ 0

(MILPn)
where M ≥ T ×Rmax with Rmax the maximum reward over
the matrix R. M is then an upper bound of the term αt · b̊

i
t.

Any optimal solution of MILPn is also an optimal solu-
tion of QPn. We keep the same notation for the solutions:

(α̂n
t , ˆ̃αn

t , b̂nt , ĝnt).

We now have all the tools to solve Equation 6 with bounded
error (Proposition 6). The procedure to find the correspond-
ing near optimal belief (FBB) is given in Algorithm 1.

Proposition 6. Given a time-step t, Ṽt, Ṽt+1 and a repre-

sentation B̃t of the belief space B, one can solve approxi-
mately the optimization problem corresponding to Equation 6
to within specified precision ǫp, using Algorithm 1, called
FBB (Find Best Belief).

Algorithm 1 Find the best belief for expanding B̃t according
to Equation 6 to within specified precision ǫp

1: procedure FBB(t, B̃t, Γ̃t, Γ̃t+1, ǫp)
2: n← 0
3: for s ∈ S do
4: b̊

n

t ← es ⊲ es, s ∈ S are extreme points of B
5: n← n+ 1
6: while ∆ > ǫp do

7: (α̂n

t , b̂
n

t , ĝ
n
t)← Solve MILPn(̊b

0

t , ..., b̊
n−1

t
)

8: ∆← δnt = α̂
n

t · b̂
n

t −α(b̂nt) · b̂
n

t

9: Fn
t ← GenerateFacet(α̂n

t , Γ̃t+1)

10: b̊
n

t ← b
F

n
t

t

11: n← n+ 1
return ĝnt , b̂t

Proposition 7. In the worst case, Algorithm 1 requires
O(PN ×2N+|S|+1) operations, where N designates the max-
imum number of facets needed to describe Ct and PN is a
polynomial in N and the size of the POMDP.

Theorem 8. In finite time, one can solve approximately any
finite-horizon POMDP with a specified arbitrary maximum
gap ǫ, using Algorithm 2 by setting ǫp ≤ ǫ.

Algorithm 2, which we call ǫ-min, aims to provide a com-
pact solution under the constraint of respecting a gap less than
or equal to a fixed parameter ǫ uniformly spread across each
time-step. ǫ-min is attractive because one can specify a re-
quired maximum gap, but ǫ-min may lead naturally to the cal-
culation of a large number of α-vectors per time-step, since
the algorithm adds new α-vectors until the required maxi-
mum gap is reached. This behavior is not suitable when look-
ing for simple solutions.

However, we can easily adapt ǫ-min to constrain the max-
imum number of α-vectors to use per time-step. We call this
algorithm α-min (Algorithm 3).

Theorem 9. In finite time, one can solve approximately any
finite-horizon POMDP with a specified arbitrary maximum
number N of α-vectors per time-step using Algorithm 3 by
setting ǫp small enough. Algorithm 3 provides a maximum
gap between the solution it computes and an optimal solution.

Algorithm 2 ǫ-min: Solve POMDP with a maximum gap ǫ,
to within precision ǫp

1: procedure ǫ-MIN(H , A, S, O, ǫ, ǫp)

2: Γ̃T−1 ← {ra| a ∈ A, ra is not dominated}
3: gapT−1 = 0
4: for t ∈ H ′ do
5: B̃t = b

init

t ⊲ b
init

t is an arbitrary belief
6: gapt ←∞

7: for t = T − 2, T − 3, ..., 0 do
8: while gapt >

ǫ
T−1

do

9: (gapt, b
∗
t)← FBB(t, B̃t, Γ̃t, Γ̃t+1,

ǫp

T−1
)

10: B̃t ← B̃t ∪ {b
∗
t }

11: Γ̃t ← Γ̃t ∪ {α(b∗t)}

12: gap←
∑

t∈H′

gapt

13: return {Γ̃t, t ∈ H}, gap

Algorithm 3 α-min: Solve POMDP with a maximum num-
ber N of α-vectors, to within precision ǫp

1: procedure α-MIN(H , A, S, O, N , ǫp)
2: Lines 2 to 7 of Algorithm 2

3: while |Γ̃t| < N and gapt >
ǫp

T−1
do

4: Lines 9 to 13 of Algorithm 2

5 Experiments

We first assess the performance of α-min on four small finite-
horizon POMDP problems from the literature2and a larger
randomly generated problem (random30). We compare its
performance to a leading infinite-horizon POMDP solver Sar-
sop [Kurniawati et al., 2008]. Sarsop results were obtained by
solving the POMDPs over an infinite-horizon with γ = 0.999
and a maximum computational time of 1000s. Sarsop lower
bounds (LB) were calculated as the expected sum of rewards
cumulated over T time-steps by simulation of the infinite pol-
icy using a γ=1. α-min results were obtained using a fixed
number of α-vectors set arbitrarily with a maximum compu-
tational time of 1000s per time-step on a 94.4 GB, 3.47GHz,
19 cores computer and CPLEX 12.5. Overall, the perfor-
mance of α-min is encouraging with surprisingly good gaps
obtained considering the small quantity of α-vectors (Ta-
ble 1). The lower bounds of Sarsop and α-min are close.
Table 2 shows the behavior of the lower bounds and gaps
generated by α-min as the allowed number of α-vectors is
increased for the problem milos-aaai97.

Table 1: For each T , this table reports for Sarsop and α-min
the number of α-vectors, the lower bound and gap achieved.

Problem Algo. |α| LB T=10 LB T=20 LB T=30 LB T=∞
(gap) (gap) (gap) (gap)

aloha.10 sarsop 190 64.87 89.09 95.77 535.46

|S| = 30 (9.03)

|A| = 9 α-min 30 62.66 85.46 94.53

|O| = 3 (6.67) (20.97) (38.22)
α-min
sarsop

0.966 0.96 0.987

learning.c3 sarsop 11433 1.36 2.29 2.36 2.45

|S| = 24 (0.207)

|A| = 12 α-min 24 1.96 2.11 2.16

|O| = 3 (6.23) (13.26) (18.34)
α-min
sarsop

1.441 0.921 0.915

cheng.D4-5 sarsop 15 77.29 153.03 232.55 7883.85

|S| = 4 (92.85)

|A| = 4 α-min 4 77.85 156.55 235.25

|O| = 4 (1.61) (3.59) (5.57)
α-min
sarsop

1.007 1.023 1.011

milos-aaai97 sarsop 122 41.48 99.75 176.07 5801.19

|S| = 20 (6399.01)

|A| = 6 α-min 20 50.31 89.20 140.23

|O| = 8 (104.62) (419.66) (608.39)
α-min
sarsop

1.213 0.894 0.796

random30 sarsop 29 598.21 1215.99 1811.95 603.43

|S| = 60 (38.06)

|A| = 30 α-min 10 599.04 1198.74 1798.16

|O| = 30 (418.51) (942.95) (1530.21)
α-min
sarsop

1.001 0.985 0.992

2http://pomdp.org/examples/index.shtml

Table 2: Improvement of the lower bound and the gap as the
number of α-vectors is increased.

problem algorithm |α| LB T=10 gap T=10

milos-aaai97 α-min 6 44.98 124.78
milos-aaai97 α-min 10 46.67 115.50
milos-aaai97 α-min 15 49.75 104.68
milos-aaai97 α-min 20 50.31 104.62
milos-aaai97 α-min 30 50.73 80.40

Figure 2: Policy graph of the four populations Sumatran
tigers non stationary problem assuming the starting belief
state of all populations ‘extant’. Each color corresponds to
one possible observation.

Finally, we illustrate the benefits of using α-min to best man-
age or monitor four sub-populations of Sumatran tigers with
declining connectivity over a 10-year time horizon [Linkie et
al., 2006]. We model this problem as a non-stationary finite-
horizon POMDP with 16 states representing the status extinct
or extant of each sub-population; 13 actions representing the
decisions of doing nothing, managing and/or monitoring each
sub-population; 16 observations representing the difficulty of
detecting Sumatran tigers in each sub-population (absent or
present); and 10 transition matrices representing the declining
connectivity between subpopulations over time. The proba-
bilities of going extinct with and without management were
derived based on tiger census estimates [Chadès et al., 2008;
Linkie et al., 2006]. Detection probabilities were derived
based on [McDonald-Madden et al., 2011], and projected
fragmentation scenarios followed [Linkie et al., 2006]. In-

terested readers can refer to the supplementary material3

for the POMDP files corresponding to this problem and
to [Chadès et al., 2008; McDonald-Madden et al., 2011;
Regan et al., 2011] for limitations and advantages of using
POMDPs in conservation problems. For sake of illustra-
tion, Figure 2 presents the policy graph obtained for T=10
and |α|=7 by α-min. In this case, the solution is guaranteed

to be at most 10% from the optimal strategy (gap < LB
10).

The CPU time required to solve the problem was 378 sec-
onds. Note that because this is a non-stationary finite-horizon
POMDP, it is not possible to provide a Sarsop solution.

6 Discussion

We proposed two new algorithms, ǫ-min and α-min, to ap-
proximately solve finite-horizon POMDPs. Both algorithms
rely on finding at each time-step α-vectors to minimize the
gap between the optimal value function and its current ap-
proximation, as formally expressed by Equation 6. ǫ-min cal-
culates an approximate solution given a maximum gap, which
can lead to the calculation of very many α-vectors. α-min
is more directly applicable to computational sustainability as
it provides good POMDP solutions given a fixed number of
α-vectors. α-min can easily be adapted to find approximate
solutions given a CPU time limit, or both a time limit and a
maximum number of α-vectors.
α-min greedily expands the set of beliefs and the set of α-

vectors by adding iteratively new beliefs and α-vector which
aim to reduce the current gap as much as possible, until N
α-vectors have been added. One interesting possible future
direction would be to improve α-min in order to generate a set
of α-vectors of a given cardinality N with the guarantee that
no strictly-better set of the same cardinality exists (to within
a given precision).

Unlike most point-based approaches, our algorithms as-
sume that we do not know the initial belief b0. Taking ad-
vantage of b0 could be explored in future work.

Our method can also be adapted to the infinite-horizon
case, since it is a point-based approach. In our case, it was
particularly interesting to propose a solver for finite-horizon
POMDPs as it allows us to generate non-stationary policies,
given that, in the context of computational sustainability, the
transition matrices and rewards might change over time.

Finally, the complexity bound of Proposition 7 could prob-
ably be improved. However finding an “efficient” complexity
bound, e.g. polynomial in the instance, is unlikely given the
non-approximability results for POMDPs in general and for
finite-horizon POMDPs in particular [Lusena et al., 2001].

Notation Description

Ṽt Lower bound of the value function Vt

Γ̃t Set of α-vectors describing Ṽt

α̃t α-vector belonging to Γ̃t

BL Bellman operator

αt Such that ∀bt ∈ B,α(bt) · bt = BL(Ṽt+1)(bt)

Table 3: Main notations table.

3https://sites.google.com/site/ijcaialphamin/home

References
[Bellman, 1957] R. Bellman. Dynamic Programming.

Princeton University Press, Princeton, New Jersey, 1957.

[Chadès et al., 2008] I. Chadès, E. McDonald-Madden,
M. A. McCarthy, B. Wintle, M. Linkie, and H. P. Possing-
ham. When to stop managing or surveying cryptic threat-
ened species. Proceedings of the National Academy of Sci-
ences, 105(37):13936–13940, 2008.

[Chadès et al., 2011] I. Chadès, T. G. Martin, S. Nicol, M. A.
Burgman, H. P. Possingham, and Y. M. Buckley. Gen-
eral rules for managing and surveying networks of pests,
diseases, and endangered species. Proceedings of the Na-
tional Academy of Sciences, 108(20):8323–8328, 2011.

[Grötschel et al., 1981] M. Grötschel, L. Lovász, and
A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1(2):169–
197, 1981.

[Hansen, 1998] E. Hansen. Finite-memory control of par-
tially observable MDPs. PhD thesis, University of Mas-
sachussets at Amherst, 1998.

[Hauskrecht, 2000] M. Hauskrecht. Value-function approx-
imations for partially observable markov decision pro-
cesses. Journal of Artificial Intelligence Research, pages
33–94, 2000.

[Kurniawati et al., 2008] H. Kurniawati, D. Hsu, and W. S.
Lee. Sarsop: Efficient point-based POMDP planning
by approximating optimally reachable belief spaces. In
Robotics: Science and Systems, volume 2008. Zurich,
Switzerland, 2008.

[Linkie et al., 2006] M. Linkie, G. Chapron, D. J. Martyr,
J. Holden, and N. Leader-Williams. Assessing the via-
bility of tiger subpopulations in a fragmented landscape.
Journal of Applied Ecology, 43(3):576–586, 2006.

[Littman et al., 1995] M. L. Littman, A. R. Cassandra, and
L. P. Kaelbling. Efficient dynamic-programming updates
in partially observable Markov decision processes. Tech-
nical report, 1995.

[Lusena et al., 2001] C. Lusena, J. Goldsmith, and
M. Mundhenk. Nonapproximability results for par-
tially observable Markov decision processes. J. Artif.
Intell. Res.(JAIR), 14:83–103, 2001.

[Madani et al., 2003] O. Madani, S. Hanks, and A. Condon.
On the undecidability of probabilistic planning and related
stochastic optimization problems. Artificial Intelligence,
147(1):5–34, 2003.

[Mahjoub, 2014] A. R. Mahjoub. Concepts of Combinatorial
Optimization, chapter Polyhedral Approaches. John Wiley
& Sons, Inc., Hoboken, NJ, USA, 2014.

[McDonald-Madden et al., 2011] E. McDonald-Madden,
I. Chadès, M. A McCarthy, M. Linkie, and H. P. Possing-
ham. Allocating conservation resources between areas
where persistence of a species is uncertain. Ecological
Applications, 21(3):844–858, 2011.

[Nicol and Chadès, 2012] S. Nicol and I. Chadès. Which
states matter? An application of an intelligent discretiza-
tion method to solve a continuous POMDP in conservation
biology. PLoS ONE, 7(2):e28993, 02 2012.

[Papadimitriou and Tsitsiklis, 1987] C. H. Papadimitriou
and J. N. Tsitsiklis. The complexity of Markov deci-
sion processes. Mathematics of operations research,
12(3):441–450, 1987.

[Pineau et al., 2006] J. Pineau, G. Gordon, and S. Thrun.
Anytime point-based approximations for large POMDPs.
Journal of Artificial Intelligence Research, pages 335–
380, 2006.

[Poupart and Boutilier, 2003] P. Poupart and C. Boutilier.
Bounded finite state controllers. In Advances in neural
information processing systems, page None, 2003.

[Poupart and Boutilier, 2004] P. Poupart and C. Boutilier.
Vdcbpi: an approximate scalable algorithm for large
pomdps. In Advances in Neural Information Processing
Systems, pages 1081–1088, 2004.

[Poupart et al., 2011] P. Poupart, K.-E. Kim, and D. Kim.
Closing the gap: Improved bounds on optimal POMDP
solutions. In ICAPS, 2011.

[Åström, 1965] K. J. Åström. Optimal control of Markov
processes with incomplete state information. Journal of
Mathematical Analysis and Applications, 10(1):174, 1965.

[Regan et al., 2011] T. J Regan, I. Chadès, and H. P. Poss-
ingham. Optimally managing under imperfect detection:
a method for plant invasions. Journal of Applied Ecology,
48(1):76–85, 2011.

[Roy et al., 2005] N. Roy, G. J. Gordon, and S. Thrun. Find-
ing approximate pomdp solutions through belief compres-
sion. J. Artif. Intell. Res.(JAIR), 23:1–40, 2005.

[Shani et al., 2006] G. Shani, R. I Brafman, and S. E. Shi-
mony. Prioritizing point-based POMDP solvers. In Ma-
chine Learning: ECML 2006, pages 389–400. Springer,
2006.

[Shani et al., 2012] G. Shani, J. Pineau, and R. Kaplow.
A survey of point-based POMDP solvers. Autonomous
Agents and Multi-Agent Systems, 27(1):1–51, June 2012.

[Sigaud and Buffet, 2013] O. Sigaud and O. Buffet. Markov
decision processes in artificial intelligence. John Wiley &
Sons, 2013.

[Smallwood and Sondik, 1973] R. D. Smallwood and E. J.
Sondik. The optimal control of partially observable
Markov processes over a finite horizon . Operations Re-
search, 21(5):1071–1088, 1973.

[Tulloch et al., 2015] V. J.D. Tulloch, A. I.T. Tulloch, P. Vis-
conti, B. S. Halpern, J. E.M. Watson, M. C. Evans, N. A.
Auerbach, M. Barnes, M. Beger, I. Chadès, et al. Why do
we map threats? Linking threat mapping with actions to
make better conservation decisions. Frontiers in Ecology
and the Environment, 2015.

