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Abstract—By extending the system theory under theshin, +) A = {A(¢),t = 0, 1, 2, } [with A(0) = 0], conforms to a
algebra to the time-varying setting, we solve the problem of con- fynction f, called anenvelopeif
strained traffic regulation and develop a calculus for dynamic ser-
vice guarantees. For a constrained traffic-regulation problem with Al — A(s) < F(t — Vs <t
maximum tolerable delay d and maximum buffer size g, the op- (*) (5) < f(t =) =

timal regulator that generates the output traffic conforming to a . .
subadditive envelopef and minimizes the number of discarded Without loss of generality, an envelogecan be assumed to be

packets is a concatenation of thg-clipper with g(t) = min[f(t+ Subadditive [6], i.e.f(s) + f(t —s) > f(t) forall s < .

d), f(t) + q] and the maximal f-regulator. The g-clipper is a Using this characterization, a calculus is developed in [10] and
bufferlessdevice, which optimally drops packets as necessary in [11] to compute deterministic performance measures, such as
order that its output be conformant to an envelopeg. The maximal  pounds on delay and bounds on queue length. Traffic regulation

f-regulator is a buffereddevice that delays packets as necessary in o . .
order that its output be conformant to an envelopef. The maximal addresses the problem of modifying a traffic stream so that it

f-regulator is a linear time-invariant filter with impulse response Conforms to a subadditive enve_lopfe The problem of traffic_ _
£, under the (min, +) algebra. regulation was treated systematically in [8] and [20], where itis

To provide dynamic service guarantees in a network, we develop shown that the optimal traffic regulator that generates an output
the concept of a dynamic server as a basic network element. Dy- ;3 conforming to a subadditive envelogiefor an input4 is a

namic servers can be joined by concatenation, “filter bank summa- . . . . . . .
tion,” and feedback to form a composite dynamic server. We also linear time-invariant filter with the impulse respongander the

show that dynamic service guarantees for multiple input streams (min, +) algebra, i.e.,

sharing a work-conserving link can be achieved by a dynamic ser-

vice curve earliest deadline scheduling algorithm, if an appropriate B(t) = min [A(s)+ f(t — s)].
admission control is enforced. 0ssxt

Index Terms—Buffer overflow, (min, +) algebra, network cal- We call such a filter the maximai-regulator. This characteri-
culus, packet losses, performance analysis, traffic shaping. zation was also observed in [1], [2], and [27].

As the buffer in the maximaf-regulator is assumed to be
infinite, packets from the input might be queued at the regu-
) o _ _lator. For a real-time service, the delay of a queued packet at the
F UTURE high-speed digital networks aim to providgegylator might exceed a maximum tolerable delay and such a

integrated services, including voice, video, fax, and datggcket should be discarded (i.e., clipped). The problem of traffic

To control interaction among traffic generated by differeryagyation with such a delay constraint is called the constrained
sources, traffic regulation seems inevitable. In [10], Crygaffic-regulation problem in [19]. Its objective is to find a regu-

proposed the following deterministic traffic characterizationgator that not only generates traffic conforming to an envelope,

A traffic stream, described by a nondecreasing sequeng also minimizes the number of discarded packets. In addi-

tion to the delay constraint, Konstantopoulos and Anantharam

, . . &l ] also considered the buffer constraint for the regulator. For
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the delay and buffer constraints. As in [16], our approach t®ncept of dynamic servers and their associated calculus. We
based on the time-varying filtering theory under thein, +) show in Section VIl that the dynamic SCED algorithm can be
algebra. By extending the subadditive closure in [8] to the timased to achieve dynamic service guarantees. We conclude the
varying setting, we show that thg-clipper with inputA and paper in Section VIII by discussing possible extensions and ap-
output B can be implemented using the following recursivelications.
equation:

II. TIME-VARYING FILTERING THEORY UNDER

B(t) =min|B(t—1)+ A(t) — A(t — 1) THE MIN, + ALGEBRA

Oglggt[B(s) + f(t —s)]| . under thg'min, +) algebra. The development is parallel to the
- time-invariant filtering theory in [1], [8], and [20]. To extend
The computation complexity of thé-clipper is almost the same the (min, +) algebra to the time-varying setting, we consider
as that of the maximaf-regulator. The recursive equation alsahe family of bivariate functions
implies that thef-clipper is greedy. Packets are discarded only_
when needed. ={F(): F(s,t) >0, F(s,t) < F(s,t+1),

For the constrained traffic-regulation problem with maximum forall0 < s < t}.
tolerable delayl and maximum buffer sizg, the optimal traffic
regulator is shown to be a concatenation of ghdipper with
g(t) = min[f(¢)+q, f(t+d)] and the maximaf-regulator. The
solution is intuitive as the output from tlgeclipper conforms to , :
the envelopeg that yields bounded delajyand bounded queueF(s’ t) < G(s, t)]forall 0 < s < t. We define the following
lengthg at the maximalf-regulator. For example, whef{t) = tW? operations for. fun'ct|ons. '.DF' _
miny <;< x [pit + 07, the corresponding-clipper can be imple- 1) (min) the pointwise minimum of two functions
mented byK parallel bufferlesgo; + min[q, p;d], p;)-leaky .
buckets. A packet is discardedg;f it cannot[be ad]mittéd to one of (F® G)(s, ) = min[F(s, 1), G(s, 1)].
theseK leaky buckets. The output from theclipper isthenfed i) (convolution) the convolution of two functions under the

} In the section, we introduce the time-varying filtering theory

Thus, foranyF’ € F, F(s, t) is nonnegative and nondecreasing
in t. For any two bivariate functionk andG in F, we sayF =
G (respectively,F < G)if F(s,t) = G(s, t) [respectively,

into K parallel(o;, p;)-leaky buckets. (min, +) algebra
In addition, the time-varying filtering theory can also be used .
for dynamic service guarantees. By extending the concept of the (F'xG)(s, ) = min [F(s, 7) + G(, t)].

s<t<t

service curvein [1], [12], and [20] to a bivariate functifif-, -),
we define a dynamid’-server for an inputd if its output B One can easily verify tha(t7:'7 @, x) is a complete dioid (see,
satisfies e.g., [5]) with the zero functiosd and the identity functior,
. whereé(s, t) = oo forall s < ¢, andé(s, t) = 0if s = ¢t and
B(t) 2 Jggt[A(S) +F(s, )] V. oo otherwise. To be precise, we have the following properties.

Analogous to the time-invariant filtering theory in [1], [8], and 1. (Associativity)v ', G, H € F

[20], a dynamicF’-server can be viewed as a linear filter with (FOG)GH=F®(G®H)
the time-varying impulse respongé It can be combined by _
concatenation, “filter bank summation,” and feedback to form (FxG)x H = Fx(Gx H).
a composite dynamic server. We illustrate the use of the dy-2. (Commutativity)v F, G € F
namic server by considering a work-conserving link with a time-
varying capacity and a dynamic window-flow-control problem. FeG=Gar.
We also show that dynamic service guarantees for multiple input3
streams sharing a work-conserving link can be achieved by a™
dynamic service curve earliest deadline (SCED) scheduling al-
gorithm if an appropriate admission control is enforced. As the oo oo 0o oo
SCED algorithm in [27], the dynamic SCED algorithm is an <@ F,) | PG| =PEPF «aG)).
earliest deadline first (EDF) policy that schedules packets ac- i=1 j=1
cording to their deadlines. .
The remainder of this paper is organized as follows. In Sec-4' (Zero elementy I € F
tion Il, we introduce the time-varying filtering theory under the Faeé=F
(min, +) algebra. The development is parallel to the time-in- R
variant filtering theory in [1], [8], and [20]. The reader is also 5. (Absorbing zero element) ' € F
referred to [3] and [4], which contain results overlapping with o ~
this paper. In Sections Il and IV, we introduce the maximal dy- Fré=exF=¢
namic traffic regulators and maximal dynamic clippers, respec-g (Identity elementy F € F
tively. These are used for solving the problem of constrained
traffic regulation in Section V. In Section VI, we develop the Fxe=exF=F.

(Distributivity for infinite “sums”) For any two sequences
of functionsF,,, andG,, in

i=1 j=1
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7. (Idempotency of additiony F € F
FoF=F.

The key difference to the time-invariant filtering theory is that

we do not have the commutative property fom (F, @&, ),
i.e., F'x G # G x H in general. :
LetFy = {F € F: F® e = F}. Thatis, a functior¥’ € 7

if F(¢t,t) = 0 for all t. As in the time-invariant case, we still

have the following monotonicity.
8. (Monotonicity)VF < F, G <

G
<F

FoG<Faod
F*GSF*@.

If F (respectively() is in Fy, thenF x« G < G (respec-
tively, F « G < F). If both F and G are inF,, then
Fod>Fx@d.
For any functionF’ € F, define the unitary operator (calle
the closure operation in this paper)

F* = lim (F @ &)™

n—oo

= lim

n—oo

@@F@ﬂ”@m@FW) 1)

whereF (™ is the self-convolution of for » times, i.e. F(") =
F=D x F,n > 2, andF®™ = F. The limit in (1) exists as
(e FaF®g-..¢ F™)is decreasing im. Expanding (1)
yields

F*(s,t) = irslf Z [F(ti—1, t:)]

i=1

whereS = {tg, t1, to, ..., tm} IS any subset of1, 2, ..., ¢}

)

807

Thus,

(F*xG) > (FoG))" = (FoG)".

[
Lemma 2.2 (Feedback)Suppose that’, G, H € F.
i) For the equation
H=(HxF)® G 3

H = G x F* is the maximum solution.

If inf; F(¢,t) > 0,thenH = G x F* is the unique
solution.

Under the condition in ii), if

i)
ii)
H>HxF)s G

thenH > G x F*.

d The proofs for Lemma 2.2 are identical to those in [8] and [9]

and, thus, are omitted.

Remark 2.3:Asin [8], let F = {f: f(0) >0, f(s) < f(¢t),
s < t} be the set of nonnegative and nondecreasing functions.
Also, let 7y be the subset of functions i with f(0) = 0.
One may then define the convolution of a functib F and a
bivariate functionG e F as follows:

(£ %G)(®) = in [1(s) + Gls. D).

Under such a definitionf x G is in 7. One may viewf x G as
a special case df « G for someF e F with F(0, t) = f(t)
forall t andF'(s, t) = oo, for all t ands > 0. Thus, the results
in Lemma 2.2 still hold.

Remark 2.4: A bivariate functionF’ is time invariantif

Withtg = s <t <ty < -+ <ty =t.

In addition to the algebraic properties, we present several im-
portant properties in Lemmas 2.1 and 2.2 that will be used By letting f(t) = F(0, t), one can easily verify thaf is time
prove results for constrained traffic regulation and service guavariant if and only if there exists somg € F such that
antees. F(s,t) = f(t — s). As a result, time-invariant bivariate func-

Lemma 2.1: Suppose thaF, G € F. tions commute. To see this, consider two invariant functiins

i) (Monotonicity) If F < G, thenF* < G*. andG and letf(t) = F(0, t) andg(t) = G(0, t). Then
ii) (Closure propertiesf™* = F* @ e = F* x F* .

) EF*)“”) :p“'?*)* <§®é . (F*G)(s,1) = min [f(u—s)+g(t—w)] = (GxF)(s.1).
iii) (Maximum solution)F* is the maximum solution of 4)
the equatior = (H+F)@®é, i.e., foranyH satisfying An important corollary of (4) is that Lemma 2.1(v) can be sim-
H=(HxF)®é H < F*, plified as follows (cf. [8, Lemma 2.2(xi)]):

F* can be computed recursively from the following

F(s,t)=F(s+u, t+u) Vs < tandu > 0.

V) (F&G) = (F*&G*)* = (F*+G*)* = F*«G*. (5)

equations:
F*(s, 5) =0 Remark 2.5: A bivariate functionf” is additiveif
F*(s, t) = min [F*(s, ) + F(7, 1)]. F(s,u)+ F(u,t)=F(s,t) Vs<u<t.

s<T<t

V) (F@G)" =(F*®G")" = (F*xG*)*". For an additive bivariate functiofl, one easily check that

Proof: As the proofs for i)—iv) are identical to those in [8]
and [9], we only prove v). From the monotonicity, ® G >
F*® G* > F* xG*. Thus,(F & G)* > (F* x G*)*. On
the other hand, one hds > F' & G. Thus,F* > (F & G)*.
Similarly, G* > (F & G)*. This implies

FO (s, t) = min [F(s, u) + F(u, )] = F(s, 1)

which implies that/™* = F. Note that a bivariate functiof’
is additive if and only if there is a functiofi € F such that
F(s, t) = f(t) — f(s). This can be easily verified by choosing

F*xG*>(FoG)*x(FoG) = (Fo Q)" f(t) = F(0, t).
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[ll. DYNAMIC TRAFFIC REGULATION wherezt = max|0, x]. Supposey(0) = 0. Recursive expan-
sion of Lindley’s equation yields
Given asequencé € Fy, itis defined in [10] and [11] thatt ! I y's equation yl
conformsto the (static)_ upper envelqpe Foif A(t)—A(s) < ¢(t) = max [A(t) — As) = C(s, t)] . @)
f(t—s)forall s <t.ltisalso shown in [8] and [1] that the op- 0<s<t

timal traffic regulator that generates output traffic conformin
to a subadditive envelopgis a linear time-invariant filter with
the impulse responséunder thgmin, +) algebra. In this sec- B(t) = min [A(s) + O(s, t)] ' @)
tion, we extend such a result to the time-varying setting. 0<s<t '

We start from extending the definition of a static envelope tAo ol dditive bivariate f . have f R K25
a dynamic envelope. s C is an additive bivariate function, we have from Remark 2.

Definition 3.1: A sequencel € 7, is said to conform to the thatC* = C, which shows that the work-conserving link is the

dynamic upper envelopg € %, if for all s < ¢ there holds maximal dynamic-regulator. This example also shows that the
A(t) = A(s) < F(s, 1) 0 - calculation of the convolution in (8) can be easily implemented

As in [8] and [9], this characterization has the foIIowingbyvt\?e recurrslmn n (6&' ing link with a ti .
equivalent statements. The proof is omitted. e note that a work-conserving link with a time-varying ca-

Lemma 3.2: Suppose thatl € F, andF € F,. The fol- pacity is also equivalent to a time-varying (greedy) shaper in

; : [20].
'OW'”9 statements are equwalent._ Example 3.5 (Traffic Regulation With a Capacity Con-
__') A conforms to the dynamic upper envelape straint): Consider a link with a time-varying capacity. The link
") A=Ax F; is not necessarily work conserving. As in the previous example,
i) A= AxF" _ let ¢(¢) be the maximum number of packets that can be served
iv) A conforms to the dynamic upper envelape. at timet, andC(t) = Y.'_, ¢(r) be the cumulative capacity
Given a dynamic upper enveloge € ¥, one can construct by timet. Let A(t) and B(t) be the input and output from the
a regulator such that, for any inpdte o, the output from the Jink. Though the link may not be work conserving, the output
regulator conforms to the dynamic upper enveldpeThis is B is still constrained by the capacity, i.e.,
done in the following theorem. Once again, the proof is omitted.
Theorem 3.3:Suppose thatt € F, andF € Fy. Let B = B(t) — B(s) < C(t) — O(s). 9)
Ax F*,
i) (Traffic regulation)B conforms to the dynamic upper
enveloper™ and, thusp also conforms to the dynamic

ginceq(t) = A(t) — B(t), we have

Suppose that we would like to perform traffic regulation for the
input A such that the outpuB conforms to the static envelope

f e F, e,

upper envelopé:.

ii) (Flow constraint)b < A. B(t) — B(s) < f(t — s) Vs <t (10)

iif) (Optimality) For anyB € F, that satisfies i) and ii),
one hasB < B. From Theorem 3.3, we know that the optimal implementation

iv) (Conformity) A conforms to the dynamic upper envefor the output to satisfy (9) and (10) is the maximal dynamic
lopeFifand only if B = A. F-regulator with

The constructiolB = A x I™* is called themaximal dynamic )
F-regulator (for the inputA). F(s, t) = min[C(t) — C(s), f(t—s)]. (11)

As in the time-invariant case, the flow constraiht< A cor- If (1) is bounded above by,... > 0 and if the cumulative

responds to one of the causal conditions in [19] as the numl?ﬂe-varying capacity” is bounded below by some curiiec
of departures cannot be larger than the number of arrivals. Tl}?'over any time window, i.e., if for ald < s < ¢, h(t — s) <
orem 3.3(iii) shows that, under the flow constraint and the coi; o - -

Ci(t) — C(s) < t — s), then one can derive static service
straint that the output traffic conforms to the dynamic upper en (*) (5) < emax(t = 5),

. . . curves bounding below the maximal dynaniieregulator (11).
velopeF’, the maximalF'-regulator is the best construction thatSuch CUIVeS arg obtained in [15] [22]yand [23]9 (11
one can implement. ' . .

Example 3.4 (Work-Conserving Link With a Time-Varying
Capacity): Consider a work-conserving link with a
time-varying capacity. Let(t) be the maximum number of The maximal dynamid’-regulator solves the traffic-regula-

IV. DYNAMIC TRAFFIC CLIPPING

packets that can be served at timeC(t) = >.'_ ¢(r) tion problem with an infinite buffer. In this section, we consider
be the cumulative capacity in the intervdl, t], and the traffic-regulation problem without a buffer. The question is
C(s,t) = C(t) — C(s) be the cumulative capacity inthen how one drops packeigtimallysuch that the output con-

the interval[s + 1, t]. Let A(t) and B(t) be the input and forms to a dynamic envelop. Such a problem was previously
the output from the work-conserving link. Denote fit) the solved in [16]; however, the solution in [16] cannot be easily
number of packets at the link at tinte The work-conserving implemented directly. In the following theorem, we present a
link is then governed by Lindley’s equation recursive construction for the solution. .
Theorem 4.1: Suppose thatt € F, andF' € F.LetB(t) =
(A @ F)*(0, t), whereA(s, t) = A(t) — A(s). The following
qt+1)=[q(t) + A(t+1) — A(t) —c(t+1)]" (6) statements then hold.
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i) (Traffic regulation)B conforms to the dynamic upperlt then follows from Lemma 2.2(i) that¢ x (/i @ F)* is the

B(t) = (Ao F) 0, 1)
< (A@F)*(Q s) + (AeaF) (s, t)
<B(s) + F(s, t)

enveloper'. maximum solution of (16). Note that
ii) (Clipping constraintB(¢)—B(t—1) < A(t)—A(t—1) . . . .
for all . ) (e* (A@F) )(t) - (A@F) (0, t) = B(t).
iii) (Optimality) For anyB € F, that satisfies i) and ii),
one hasB < B. Thus, B is the maximum solution that satisfies i) and ii).
iv) B can be constructed by the following recursive equa- To see iv), note from Lemma 2.1(iv) thBtcan be constructed
tion:; recursively as follows:
B(t) = min|B(t — 1) + A(t) — A(t — 1), B(t) = min [B(s) + min[A() — A(s), F(s, $)l]
: = mi in [B At) - A
Juin [B(s) + F(s, ]| (12) min| min [B(s) + A(t) — A(s)],
with B(0) = 0. Jin [B(s) + F(s, t)] 17)
v) (Conformity) A conforms to the dynamic upper enve- B
lopeFifand only if B = A. with B(0) = 0. SinceB satisfies the clipping constraint,
The construction in (12) is called thenaximal dynamic
F-clipper (for the inputA) in this paper. B(s) + A(t) — A(s)
Proof: For anys < ¢, we have from Lemma 2.1(iv) that =B(s)+ At —1)— A(s) + A(t) — A(t - 1)
> B(s)+B(t—1)— B(s) + A(t) — A(t - 1)
(

This implies that

_ min [B(s) + A(t) — A(s)] = B(t — 1) + A(t) — A(t —1).
and, hencepB < B x F so thatB is conformant toF', estab- 0<s<t
lishing i). Thus

To see ii), note similarly that '

B(t) = (A S F) 0, 1) B(t) = min|B(t — 1) + A(t) — A(t — 1),

< (A @ F) (0,t—1)+ (A @ F) (t—1,1) min [B(s) + F(s. 0] | . (18)
<Bt—1)+A(t—1,1).
< B( )+ A ) To prove v), note that iB = A, then it follows from (18) that

Next, we establish iii). Suppose thBte 7, satisfies i) and A = A x F. Thus,A conforms to the dynamic envelopge On
ii). Since B(0) = 0 the other hand, ifA conforms to the dynamic envelopgé then

B<e (13) A(t) — A(s) < F(s, t).

wheree(0) = 0 ande(s) = oo for s > 0. As B conforms to  This impliesA @ F = A. As A* = A from Remark 2.5
the dynamic envelopé’ .
L B(t)=(A®F) (0,t) = A(t) — A(0) = A(t).
B<Bar 1) ()= (Ao F) (0.1)=A(t) - A0) = A®)
]
‘We note that the original representation in [16] is tBét) =
(A% F*)*(0, t). This is equivalent to our resultin Theorem 4.1,
as can be seen from Lemma 2.1(v), and the fact #fat= A.
<B+A (15) As(A® F)* = (A@ F*)* in Lemma 2.1(v), one also has the
. B following equivalent implementation:
with A(s, t) = A(t) — A(s). The constraints in (13)—(15) are
equivalent to B(t) = min|B(t — 1) + A(t) — A(t — 1),

B:B@(B*F)@(B*A)@e. (16)

The inequality in the clipping constraint in ii) is equivalent to
B(t)— B(s) < A(t)— A(s) forall s < t and it can be rewritten
as

min [B(s) + F*(s, )]| . (19)

~ ~ 0<s<t
Applying the distributivity and the fact that € F yields
Note that the key difference between Theorems 3.3 and 4.1 is

B= (B * (é oA F)) De the clipping constraint. The clipping constraint implies that, in
. R any given slot, the packets departing are a subset of the packets
= (B * (A & F)) De. arriving in the same slot. Lei{t) = A(t) — A(t— 1) — (B(t) —
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B(t—1)) be the number of packets clipped at tim&rom (12), In view of (20), the effective inputl; to the work-conserving

we have link with a finite buffer is, in fact, the output of the maximal
dynamicF-clipper with F (s, t) = C(s, t) + ¢, s < t. In par-
L(t) = max|0, B(t — 1)+ A(t) — A(t — 1) ticular, whenc(t) = p for all ¢, we can implement the maximal
dynamicF-clipper with F'(s, t) = p(t — s) + ¢ by constructing
— min [B(s) + F(s, )]| . (20) the _effective input of a_work-conserving link with con_stant ca-
0<s<t pacity p and bufferg. This example also shows that a direct cal-

culation of the convolution in (12) may not be necessary, and

Observe from (20) that packet loss occurs at tinmly when the convolution in this example can be computed recursively by

at least one of the following inequalities is violated: 22)
For the maximal dynamié’-clipper with the inputd and the
Bt—1)+ A(t)— A(t—1))— B
(B(t—1)+A(t) (t=1) () outputB, let L(t) = A(t) — B(t) be the cumulative losses at
< F(s, 1), s=0,1...,¢-1 (21)  the clipper by timet. As B(t) = (A ® F)*(0, t) in Theorem

When this happens, one then discards packets to the ext4é%f using (2) yields

so that the above inequalities are all satisfied. Note also that m
(12) implies that the maximal dynamié-clipper can be L()=A(t)— inf > minf[A(t;) — A(ti 1), F(ti1, )]
implemented in real time since the value®ft) depends only i=
on B(s — 1) andA(s) for s < t.

In the following example, we illustrate how one implements
the maximal dynamié’-clipper by a work-conserving link with
a finite buffer whenF'(s, t) = p(t — s) + g for s < ¢.

Example 4.2 (Work-Conserving Link With a Finite
Buffer): Consider the work-conserving link with a m
time-varying capacity in Example 3.4. In addition, we as- — Z minf[A(t;) — A(ti_1), F(ti_1, ti)]‘|
sume that the buffer size of the linkgsi.e., at mostg packets i1
can be stored at the link. Packets that arrive at the link and find m
the buffer full are lost. As in Example 3.4, ldi(t) and B(t) be =sup »_[A(t) = A(tio1) = F(tioa, t)]T (24)
the input and output from the work-conserving link. Denote by 5=
q(t) the number of pacKets at the link at time_ wheresS = {tg, t1, t2, ..., tm} is any subset of L, 2, ..., t}

We then need to modify Lindley’s equation in (6) as followsyiin to=0<1 <ty <---<t, =t This was previously
. shown in [16, Corollary 1]. A similar result is also obtained in
q(t+1) = min [[q(t) + A(t + 1) = A(t) = et + D], o] - [22] for both the continuous and discrete time settings.

(22) Example 4.3 (Clippers in TandemfNow we compare the
output from the maximal dynamig; & F>-clipper and a con-
catenation of the maximal dynami-clipper and the max-
imal dynamicFE5-clipper. LetA be the input to both systems,
B; be the output from the maximal dynamig -clipper, Bs
be the output from the maximal dynami&-clipper, andB be
the output from the maximal dynami€;, & F;-clipper. Also

For the effective inputd, the work-conserving link behaves!etL(t) = A(t) — B(t) be the cumulative losses at the max-

like a work-conserving link with an infinite buffer. Thus, We|mal dynamicFy & Fy-clipper by timet. Similarly, letLs () =
have from (7) that A(t) — B1(t) and Ly (t) = By (t) — Ba(t). From Theorem 4.1,
we have for alls < ¢

1
m

A(t) - IIlin[A(ti) - A(tifl), F(tifl, tz)]‘|

The number of lost packets at timgdenoted by(¢), is then
max[q(t — 1) + A(t) — A(t — 1) — ¢(t) — ¢, 0]. Let A; be the
effective input to the link, i.e.,

A(t) — As(t — 1) = A(t) — A(t — 1) — £(2).

a(t) = max, [41(8) = Ax(s) = C(s, )] (23) Bi(t) — Bi(s) < A(t) — A(s)
assuming;(0) = 0. This then implies Bu(t) = Bals) < Fi(s, 1)
By(t) = Ba(s) < Bi(t) — Bi(s)
£(t) = max[q(t — 1)+ A(t) — A(t — 1) — c(t) — q, 0] By (t) — By(s) < Fy(s, t).

= max|0, max A [Al(t —1) = Ay(s) = C(s, t - 1)} This implies thatB, conforms to the dynamic upper envelope
- . Fy & Fy and thatBy (t) — Ba(t — 1) < A(t) — A(t — 1). Thus,

+ A(t) — At —1) —c(t) — ¢ By < BandL(t) < Li(t) + Lo(t) for all ¢ by Theorem 4.1.
) . In fact, a concatenation of the maximal dynarficclipper and
= max|0, A;(t — 1)+ A(t) — A(t — 1) maximal dynamid,-clipper is a suboptimal implementation of

an Iy @ F»-clipper. The reason for this, as observed in [16], is

1 } that the discarding of packets in thhg-clipper is not accounted

— o?sigt [Al(s) + C(s, 1) + q for in the F -clipper.
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Example 4.4 (Clippers in Parallel)Continue from the pre- arriving at timet need to be clipped at time Note also that
vious example. Since clippers in tandem are suboptimal atie natural buffer constraint should b¥ (¢) — B(t) < g,
may yield more cumulative losses than the optimal one, we majnere A’ (¢) is the cumulative number of packets arriving up to
use this to compare the cumulative losses for clippers in péime ¢, which have not been discarded at the end of slQur
allel. Now suppose both the maximal dynanfig-clipper and buffer constraintd, (¢) — B(t) < q s, in fact, less restrictive as
maximal dynamicFs-clipper are fed with the inpul. Let B]  A;(t) < A/ (¢) for all t. However, as the below theorem shows,
and B), be the outputs from these two clippers ablt) = the optimal value o, (¢) can be computed without knowledge
A(t) — Bi(t) and Ly(t) = A(t) — Bj(t) be the cumulative of A(s) for s > ¢ so that packets that will eventually be dis-
losses at these two clippers by tim€learly,L (t) = L1(¢). It carded in an optimal clipper can, in fact, be discarded when they
is easy to see from (24) that,(¢t) > L, (¢). Thus, we still have arrive. Assuming this is the case, the backlog of packets in the
L(t) < Li(t) + Ly(¢) for all ¢. This is previously reported in optimal regulator at the end of slots A;(¢) — B(t).

[16, Corollary 2]. Theorem 5.1:Suppose thatl € F, andF € F,. Let A, be
the output from the maximal dynami-clipper for the input
V. CONSTRAINED TRAFFIC REGULATION 4, where

The two traffic-regulation problems, with an infinite buffer (s ) =0 Vs
and without a buffer, are two extreme cases. In practice, packets s "
’ ' , 1) = F , F .
(or cells) may be queued and delayed at a regulator. However,G(s’ t) = min[F"(s, t +d), F"(s, £) + q] Vs <t

thgre might be coqstra|nts for th'e buffer. siz€ gnd the delay. rl'so, let B be the output from the maximal dynandieregulator
this regard, one might have to discard (i.e., clip) some pack

from the input so that the buffer and delay constraints can ! the input;. All constraints (C1)~(C5) are then satisfied,

satisfied. The question is then how one discard packtmally Aoriojﬁr;:(; gnZAB B € Fo that satisfy (C1)~(C5), one has

so that the number of clipped packets can be minimized. Suc he construction ofd: and B. based on a concatenation

a problem is called constrained traffic regulation and was fir8¥ the maximal dynami(éi—clippe'r and the maximal dynamic

considered in[19] fofo, p)-leaky buckets. OurobjectiveinthisF_regulator is called the maximal dynamic-regulator with

section is to provide a general, simple, and optimal solution fa{elayd and’bufferq

the constramed traffic-regulation p“’b'ef“- . . Proof: Suppose thatl; andB are as stated in the theorem.
To formalize the problem of constrained traffic regulatlonl.heorem 4.1 then implies (C1), and also implies tatt) <

with buffer and delay constraints, we Leltb_e the input and3 Ay = G)(1). Conditions (C4) and (C5) follow from Theorem

be the output from the regulator. We require that the buffer o 3(i) and (ii). To establish (C2), note that

cupancy in the regulator be less than or equal tihe delay be ' '

bounded above by, and that the outpuB be conformant to

a dynamic envelopé’. Due to these constraints, packets may M) —g < (AI, *G)(t) —q .

need to be discarded. Let; be the effective input, i.e4;(t) < Ofyggt[/h(s) +F (s, ) + 4l -4
counts the total number of packets arriving up to and including _ @1; F*)(t)

slot ¢, which eventually depart the regulator without being dis- _ B()

carded. The objective is to maximize the effective ingytand - )

the outputB, given the buffer and delay constraints and the co
straint thatB conforms to the dynamic envelogé More for-
mally, given the inpud and a dynamic envelop€, we seek4,

%_imilarly, to establish (C3), note that

and B, which are as large as possible subject to the following A1) < (A x G)(D)
constraints. < Jwin {Ay(s) + F7(s, £+ d)).
(C1) (Clipping constraint)4;(t) — A1(t — 1) < A(t) —
At — 1) for all ¢. SinceA; (t) < A;(s) for s > t andF* is nonnegative, it, there-
(C2) (Buffer constraint)4(t) — q < B(t) for all ¢, where fore, follows thatd (¢) < (A, x F*)(t +d) = B(t+d), which
q is the buffer size at the regulator. establishes (C3). Thus, (C1)-(C5) are satisfied as claimed.

(C3) (Delay constrainty; (¢t) < B(t+ d) for all ¢, whered Next, suppose that;, B € Fy satisfy (C1)—-(C5). From The-
is the maximum tolerable delay at the regulator (as tlegem 3.3(iii), we know that, under the flow constraint in (C5)

regulator serves packets in the FCFS order). and the traffic constraint (C4), we have
(C4) (Traffic regulation)B conforms to the dynamic upper o
envelopeF'. B < Ay x F*. (25)

(C5) (Flow constraint)B(t) < A;(t) for all ¢.

The clipping constraint implies that the packets in the effeddoreover, combining this with (C2) and (C3), we obtain
tive input 4, is a subset of the packets ihfor any timet. We (C2) (Buffer constraint)d; (t) — q < (Ayx F*)(t) for all ¢.
note that the clipping constraint does not imply that packets ar-(C3') (Delay constraintd; (¢) < (A1 x F*)(t + d) for all ¢.
riving at timet have to be clipped at time In fact, they could ~ The buffer constraint in (C2can be rewritten as
be clipped at some time later tharHowever, as will be shown
below, optimal clipping can be greedy and only those packets AL < Ay % Fy (26)
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with Fy(s, t) = F*(s, t) + q. SinceA,(t) € F, is nonde- Controller 1 Bt)contmuerz
creasing in and F*(s, t) is nonnegative Al) —pp ﬁ(_t), s;ts){;%e _(> _» ()
Ay(s) 4+ F*(s, t+d) > Ay(t), s=t+1,....t+d. v +
27) L(t) I(t)

Fig. 1. Work-conserving link with a finite buffer.

Due to the conditions in (27), the delay constraint in'{@&an

be rewritten as There is a well-known duality interpretation for a work-con-
serving link with a finite buffer. One may view the cumulative

Ay < Ay F; (28) capacityC(t) as the cumulative number of tokens generated

by time ¢. As in a leaky bucket, every packet needs to grab

with F3(s, t) = F*(s, t + d). Using the idempotency and dis-a token for its departure. Thus, packet losses occur when the

tributivity, the constraints in (26) and (28) are equivalent to  puffer is full and token losses occur when the buffer is empty.
To be precise, leg(t) be the number of packets at the link

A=A @A < (Al *Fg)EB (41 *F3) = A x (B @ Fy). at timet, L(t) = A_(t) — A (¢t) be the cumulative number of

(29) pa_cket losses by timeg andI(t) = Q(t) —_B(t) be the cumu-

lative number of token losses by timeFig. 1 represents this

Note that Fo® F3)(s, t) = G(s, t) forall s < ¢, whereGisde- system. One then has the following conditions of complemen-

fined in Theorem 5.1. Thus}; conforms to the dynam~ic enve-tary slackness:
lopeG. Using Theorem 4.1(iii) and the assu[nption thatsat-
isfies (C1), it, therefore, follows that; (¢) < (A9 G)*(0, t) = 1{q(t) < }(L(t) = L(t — 1)

0
A4(t). From the monotonicity of, we also have from (25) that
() Y 9 Lg(t) > 0}(1(1) — I(t — 1)) =0

, forall ¢
, forall ¢

3 <A * < *=B. : : ,
BsAinb"sixt" =B wherel{E} = 1 if the eventE is true and 0 otherwise. As

[
We note that, for the special cases thlat= oo (without

delay constraint) and that = oo (without buffer constraint),

the results were previous obtained in [22, Ch. 9]. The resifte Wwork-conserving link with a finite buffer solves the
in Theorem 5.1 not only finds a representation of the optimgp-called Skorokhod reflection problem with two boundaries
traffic regulator that satisfies both the delay and buffer cofg8l: WhereA(t) — C(t) is the free procesd|() is the lower

straints, but also provides a method for the implementation gpundary process, and() is the upper boundary process

such a regulator. In [19], the buffer and delay constraints a@€€: €-9- [18] and [19] for more detailed discussions of the

treated separately, and it is shown that the optimal solution c&h€ction problem). Since the work-conserving link with a
be implemented by the greedy flow controller, which discardinite buffe_r also solves the buffer-constrained traffic-regulation
packets only when needed. As shown in Theorem 5.1, the m&koPlem, it follows from (24) that the upper boundary process
imal dynamicF-regulator with delayl and bufferq is still the of the reflgctlop problem admits the following close-form
greedy flow controller as the maximal dynanticclipper dis- "€Presentation (in terms of the free process):
cards packets only when needed. .

Example 5.2 (Work-Conserving Link with a Finite Buffeih . +
this example, we show that a work-conserving link with afinittg(t) - S‘;ép ; [(A(#:) = C(ts) = (Altica) = Oltiza)) = d]
buffer solves a traffic-regulation problem with a buffer con-
straint. Consider the work-conserving link with a time-varying,neres — {to, t1, ta, ..., L} is any subset of1, 2, ..., t}
capacity and a finite buffer in Example 4.2. As in Examples 3giih to =0 <t <ty < --- < &, = . Using (2) and
and 4.2, let, A,, andB be the input, effective input, and output; _ 4, . ¢, one can also show that the lower boundary process

of the link, respectively. As we have shown from Example 4.2mits the following closed-form representation:
the effective inputd; to the link is, in fact, the output of the

q(t) = Ai(t) — B(t) = (A(t) — C(1)) + 1(t) - L(?)

maximal dynamic7-clipper withG (s, t) = C(s, t) + ¢. Also, el
from Example 3.4, the outpu from the link is the output from I(t)=sup ZmaX[(C(ti)—A(ti)—(C(tiq)—A(tiq))-/ —q]
the maximal dynamicF-regulator withF'(s, t) = C(s, t). S

Thus, the link is a concatenation of the maximal dynamic

G-clipper and the maximal dynamic-regulator. We then have where the sum in the right-hand side is O far= 1. We also
from Theorem 5.1 that the work-conserving link with a finitenote the queue-length procegg) can also be represented in
buffer ¢ is the maximal dynamid -regulator with bufferq, closed form. Two representations basedwn, max and plus

A~

whereF' (s, t) = C(s, t). operations were given in [14].



CHANG et al: MIN, + SYSTEM THEORY FOR CONSTRAINED TRAFFIC REGULATION AND DYNAMIC SERVICE GUARANTEES 813

Example 5.3 (Multiple Leaky Buckets With Buffer and Delay Buffer Clipper Policer Clipper
Constraints): Now consider the maximal dynamic-regulator

Storage system

with delayd and bufferqg when A®®) B,(®) with buffer q | At B,(t)
F(s,s+t)= 1I§I}I§HK[pit + ail, t>0.
This corresponds to the case of multiple leaky buckets with th Loai() Loul®

delay constrainé and the buffer constraint In this case, ] ) ] )
Fig. 2. Storage/policer system with separation between losses due to buffer

discard and policing discard.
G(s, t) = min 121i<nK[/)i(t +d—s)+ 0y,
== and the amount of buffer discarded packets by tinssdenoted

min [p;(t — s) + ;] + ¢ by Lpu¢(t). The second part is the maximal dynaricclipper
| lsisK . referred to here as the policer. Packets are discarded as soon
= min [pi(t = s) +0; + ming, pid]]. as the total output of the storage system exceeds the maximum

output allowed by the policer. This operation is calfpelicing
Thus, one can construct the maximal dynaréieclipper by discard and the amount of discarded packets by tintie to
feeding the input taK' parallel bufferlesgco; + min[g, p:d], policing is denoted by.poi(t).
pi)-leaky buckets. A packet is discarded (or clipped) if it cannot We show thatl,(t) < Lpue(t) + Lpoi(t). Let By(t) be the
be admitted to one of thege leaky buckets. The output from theoutput of the buffer clipperd,(t) and Bo(t) be the input and
maximal dynamia=-clipper is then fed into anothédf parallel output of the policer clipper, respectively. A% is the output
(i, pi)-leaky buckets with buffeg. This example also shows of the maximal dynamid” -clipper
that a direct calculation of the convolution in (12) may not be

necessary, as leaky buckets are known to have recursive imple- By(t) — Ba(s) < F'(s, t). (31)
mentations. Lo .

To bound the cumulative loss for the maximal dynamiyOW letA, be the effective input to the system, i.e.,
G-clipper in this example, we may apply the comparison Ay (t) = A(t) — Lpus(t) — Lpoi(t). (32)

result in Example 4.4. Considéf maximal dynamic clippers, o
all subject to the same input. Thieh clipper is the maximal Also, as shown in Fig. 2, we have

dynamicG;-clipper with
Y PP Lput(t) = A(t) — Bi(t) (33)

Gi(s, t) = pi(t — s) 4+ o; + min[q, p;d]. and

Let L;(t) be the cumulative number of losses by titra theith Loai(t) = As(t) — Bs(1). (34)

clipper. From Example 4.4y | L;(t) is an upper bound for °

the cumulative loss for the maximal dynan@&clipper. Now  SinceLg,.¢(t) + Lpoi(t) is a nondecreasing function nwe

L;(t) is much easier to compute, as it is simply the cumulatieave from (32) that

loss for a work-conserving link with capacity and buffero; +

min[q, p;d] in Example 5.2. Ay (1) = Ar(s) < A(t) = A(s). (35)
Example 5.4 (Bounding Losses by Segregation Betwesh the other hand, because the *

Buffer and Policer): We have shown in Theorem 5.1 that thesatisfies the flow constraint

maximal dynamicF”’-regulator with bufferq is the optimal

implementation to generate an output conforming to the dy- As(t) < By(t). (36)

namic envelopd” and subject to the buffer constraiptin this ) o

example, we will show that segregation of buffer discard andinC€ its storage space is limitedgowe also have

policing discard provides an upper bound on the cumulative

losses for the maximal dynami¢’ -regulator with buffer. Bi(t) < Axt) +q (37)
As we have shown in Theorem 5.1, the first stage of the maysing (32) and (33), we have for @< s < ¢

imal dynamic F’-regulator with bufferq is the maximal dy-

storage system” is causal, it

namic F-clipper, where Ai(t) — Ai(s) = Bi(t) — Bi(s) — (Lra(t) — Lpai(s)).
F(s, t) = F'(s, t) + q. (30) From (30), (31), (34), (36), and (37), it then follows that

Let A(t), D(t), andL(t) be its input, output, and the cumulative AL(t) = Ax(s) < A(t) = A2(s) = (Lpar(t) = Lpai(s)) +¢

losses by time, i.e., L(t) = A(t) — D(t). We now compare the =By(t) — Ba(s) + ¢

cumulative losse$,(¢) with the losses in another system made <F'(s,t)+q

of two parts, as shown in Fig. 2. The first part is some causal = F(s, t). (38)

system with storage capacifyWe know, however, that the first
part discards packets as soon as the total backlogged packet@ambining (35) with (38), one notices that satisfies the same
this system exceeds This operation is calletuffer discard, constraints a®. As D is the output from the optimal implemen-
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tation in Theorem 5.1, it follows that, (¢) < D(¢) or, equiva- is the output from the dynamig'-server. Ifinf; F(¢, t) > 0,
lently, thatL(t) < Lput(t) + Lpoi(t). then the feedback system is a dynaric-server forA.

Such a separation of resources between the “buffered systemTheorem 6.5: Consider a dynamié;-server forA. Let B be
and “policing system” is used in the estimation of loss probdhe output. Also, ley = sup,~([A(t)—B(t)]" be the maximum
bility for devising statistical CAC algorithms as proposed by Lgueue length at the server, wheré = max(0, z). Letd =

Prestiet al. [26] (see also Elwalict al.[17]). inf{é > 0: B(t + 6) > A(t) for all t} be the maximum delay
at the server. Suppose thdtconforms to the dynamic upper
VI. DYNAMIC SERVICE GUARANTEES envelopels.

To guarantee end-to-end deterministic QoS for an input, the ) (Queue lengthy < supsupys [F7 (s, 1) — Fa(s, £)]™.
concept of service curves is developed in [1], [12], and [20] to 1) (Output burstiness) 153 = A, then3 conforms to the
work with the static envelopes of Cruz [10], [11]. A server is dynamic upper envelopks’, where

called a stati¢f-server (f € Fy) for an input sequencd if its Fy(s, £) = max [FF(r, £) — Fy(r, s)]".

output sequenc8 = {B(¢), t =0, 1, 2, ..., } satisfies 0<7<s
B(t) > min [A(s) + f(t — 39 i) (Delay) d < inf{é > 0: supgsup,s [Fy(s,t) —
(1) > min [A() + £(t - )] (39) e T

Remark 6.6: As the maximal dynamid’-regulator is a dy-

for all t. Based on this, there is an associated filtering theo%micF*-server there is an intuitive explanation why the max-
(under the(min, +) algebra) in [1], [8], and [20] that eases deTmal dynamicF-,reguIator with delayl and bufferq is a con-
sign and computation of deterministic QoS. Our main objectivce tenation of the maximal dynar-clipper (with being de-
in this section is to extend the concept of service curves afi]g]ed in Theorem 5.1) and the maximal dynanfieregulator
the associated filtering theory to the time-varying setting so tr}gt ) '

dynamicQoS can be guaranteed. The theory is based on the oﬁ shown in Theorem 4.1, the output from the maximal dy-
lowing definition of a dynamid--server.

Definition 6.1 (Dynamid-Server): A server is called a dy-
namic F-server § € F,) for an input sequenca if its output
sequence satisfieB > A x F, i.e.,

namicG-clipper conforms to the dynamic envelog€s, t) =
min[F*(s, t+d), F*(s, t) + q]. When such an output is fed to
the maximal dynamid’-regulator, one has from Theorem 6.5
that the delay at the maximal dynamitregulator is bounded
above byd and the queue length is also bounded above.by
B(t) > Ogljgt[A@) +F(s, )] (40) ;Ii'géjs, both the delay constraint and buffer constraint are satis-
In the following, we illustrate the use of dynamic service
for all ¢. If the inequality in (40) is satisfied for all input se-guarantees by a dynamic window-flow-control problem.
quences, then we say the dynanfieserver is universal. If the  Example 6.7 (Dynamic Window Flow Controlonsider
inequality in (40) is an equality, we say the dynanhieserver g network with the inputd and the outputB. Suppose that
is exact. the network enforces a dynamic window flow control for the
Analogous to the filtering theory for static service curves, ongput A with the dynamic window sizev(t). We assume that
may view the right-hand side of (40) as the output from a line@if, «(¢) > 0. For the dynamic window-flow-control system,

filter with the time-varying impulse respong&s, ¢) under the the effective input to the network, denoted My, satisfies
(min, 4) algebra. IfF' is a time-invariant bivariate function,

then the dynamid’-server is equivalent to a statjt-server, Aq(t) = min[A(t), B(t) + w(t)]. (41)
wheref(t) = F(0, t).

Clearly, the maximal dynami&-regulator is ainiversaland Observe thaB(t)+w(t) = (BxH)(t), whereH is the function
exactdynamicF*-server. Analogous to the time-invariant caseVith H(s, t) = oo for s < t andH(t, t) = w(t). One may
one has the following properties in Theorems 6.2—6.5 for diewrite (41) as follows:
namic F-servers. The proofs are omitted, as they are identical
to those in [8] and [9]. Ar=A® (BxH). (42)

Theorem 6.2 (Concatenation concatenation of a dy-
namic Fi-server for an input sequencd and a dynamic
Fy-server for the output from the dynamik;-server is a
dynamicF'-server fprA, whereF = F ?kFQ. . . B> A, «F (43)

Theorem 6.3 (Filter Bank Summationonsider an input
sequenced. Let B, (respectively,B;) be the output from a | conjunction with (42)
dynamicFi-server (respectivelys-server) forA. The output
from the “filter bank summation,” denoted by, is B; ® Bo. B> A1 xF = (A®(BxH))*xF = (AxF)® (Bx(H«*F))

The “filter bank summation” of a dynamik; -server forA and
a dynamicF,-server forA is then a dynamid’-server for4, where we apply the distributive property and the associativity of
whereF = F| @ Fs. *. Since we assume thatf; w(t) > 0
Theorem 6.4 (Feedback)Consider an input sequence € ) ) )
Fo and a dynamid-server forB, whereB = A® Ay, and4,  Wi(H x F)(t, t) = nf[H(¢, t) + F(¢, 1)] = infw(t) > 0.

Also, we assume that the network is a dynaifiiserver for
the effective inputd, i.e.,
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We then have from Lemma 2.2(iii) that i) We prove the sufficient part by contradiction, as in [25].
i Suppose that the first packet that misses its deadline occurs at
B> AxFx(Hx*F)". timet. Let7 be the last slot no later tharsuch that the server

L . serves less thaa(7*) packets. Since the EDF policy is work
Thus, the d){knam|c window-flow-control system is a dynam'gonservingr* < t, as there is at least one streapacket back-
Fx (H « F)*-server. logged at time.. Moreover, there are exactty(r*, t) packets
served in the intervdl™ + 1, ¢].

Now let s* be the last slot in the interv@d™ + 1, ], during

In this section, we define a scheduling algorithm, called thehich a packet with deadline greater thais served. If all the
dynamic SCED algorithm, which we will show achieves the dypackets served during the interyaf 4 1, ¢] have deadlines less
namic service guarantees in Section VI. than or equal ta, then defines* = 7* (in this case, there are

Consider a server with a time-varying capacity. tét) be no backlogged packets at the end of siot Thus, during the
the maximum number of packets that can be served at#jmenterval[s* +1, ¢], exactlyC(s*, t) packets are served, and each
andC(s, t) = E’;:S“ ¢(7) be the cumulative capacity in theof these packets has a deadline that is less than or equal to
interval[s+1, t]. A policy is called the EDF if the server sched- Let S be the set of streams that are not backlogged at the end
ules the packets according to their deadlines. Note that the EDffslot s*. We claim that those packets servedsdnh+ 1, t] can
policy is work conserving, i.e., the server serves packets whemly come from the streams ifi. Suppose that streairis not
ever there are packets at the server. in S. Since there is a packet with deadline greater thévat is

Now consider feeding streams of inputs to such a serverserved in slot*, all the backlogged streatrpackets at the end
Let A;(t) be the cumulative number of packet arrivals of thef slot s* must have deadlines greater tharThis implies all
ith stream up to time. Each packet is assigned a deadline. Wiée stream packets with deadlines not greater thdrave been
assume that the deadlines within the same strearm@nde- served, as we assume the deadlines are nondecreasing within the
creasing Also, let N;(t) be the number of packets from thesame stream. Thus, those packets servédin- 1, ] can only
ith stream that have deadlines not greater th#s we assume come from the streams i), as those packets have deadlines less

the deadlines for each stream is nondecreasing, packetm than or equal ta.

VII. DYNAMIC SCED SHEDULING ALGORITHM

streami is assigned the deadling; , from the following in- Now suppose that streainis in .S. As there are no back-
verse mapping: logged stream packets at the end of slet, all the stream
packets that arrive not later thah have been served. Thus, the
D; = inf{t: t > 0 andN;(t) > k}. (44) number of stream packets that can be served[if + 1, ] is

) bounded above byV;(t) — A;(s*))*. This, in turn, implies that
Theorem 7.1:Suppose that the server is operated under the, n mber of packets served[iff + 1, t] is bounded above by
EDF policy. The necessary and s_uff|C|ent _con_dltlon for everz:ies(Ni(t) — A;(s*))T. As there is a packet that misses its
packet to be served not later than its deadline is deadline at time. the bound is strict. Thus

as O 0 <D = A ) = 3 INi(1) = Ai(s”)

i€S i€S’

Z N;(t) < min

2 — 0<s<t
i€S

> Ai(s) + C(s, 1)
i€S

. for someS’ that is a subset of with N;(t) > A;(s*). AsS" is
for all ¢ and for everys that is a subset of1, 2, ..., n}. asubsetof1, 2, ..., n}, we have a contradiction to (45).m

Proof: i) We first prove the necessary part. LB{t) be Lemma 7.2: Suppose we choos¥; — A; x F; someF; €
the cumulative number of packet departures from all streamsyg i=1, . nE X (s t) < O(s. t)forall0 < s <

to time ¢. Since the EDF policy is work conserving, we have t,h

en all the packets are served not later than their deadlines.
from Example 3.4 that

Such a deadline assignment scheme is called the dynamic
SCED algorithm in this paper.
Proof: It suffices to verify that the sufficient condition in
Theorem 7.1 is satisfied. Note that for evéhyn {1, 2, ..., n}

B(t) = min,

Z Ai(s) +C(s, t)

As we assume that every packet is served not later than its dead- Z N;(t) = Z Ogligt[Ai(s) + Fi(s, t)]

line i€S ies o=
n n R < Jmin > [Ai(s) + Fi(s, 1))
. < — i . Ssst <
; Nz(t) = B(t) Oglslgt Z; Al(‘S) + C(S t) (46) _ZGS
for all . = Jmin ZS Ai(s) + ZS Fis, t)]
Let S be a subset of1, 2, ..., n}. Suppose that we now =€ e
oply have the streams ifi (the packets from other stream.s.are < min Z Ails) + Z Fy(s, 1)
discarded). Based on a standard sample path argument, itis clear 0ss<t| £ P
that, under the EDF policy, every packet is still served not later -
than its deadline. Following the same argument as in (46) yields < min | > Ai(s) + C(s, t)
(45). IR e
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where we usé’(s, t) > 0and),_, Fi(s, t) < C(s, t) inthe
last two inequalities. [ |
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where we apply the associativity of From Lemma 7.2, it then
follows that all the packets are served before their deadlines. De-

The next lemma implies that deadlines in the dynamic SCEidte byB;(t) the cumulative number of departures from stream
algorithm can be assigned in real time. Specifically, if packetby timet. Thus,

k from stream arrives during slot, D; ; can be computed
without knowledge of4;(s) for s > ¢.

Lemma 7.3: Suppose packet from streami arrives during
slot ¢. Under the dynamic SCED algorithmi); , = D; (%)
where

(47)

D; (1)
- inf{

Proof: Note that, under the dynamic SCED algorithm

A:A>tand min [A;(u) + Fi(u,A)] > k

0<u<t—1

Since packet: arrives at timef, we haveA;(u) < k for u < .

Thus, (4; = I;)(A) < A;(A) < kwhenA < ¢ — 1, which

implies thatD; ;, > ¢ by definition of D; ;. in (48). Therefore,
by definition of D; 1, we have

(Ai x ;) (D, k)
[A;(u) + Fi(u, D; )]

By definition of D; (t), this impliesD; 1 (t) < D; . To show
the reverse inequality, note that by definition Bf (t), we
have

min [A4;(u) + Fi(u, D; x(t))] > k.

0<u<t—1

(49)

SinceA;(u) > k for w > t and F; is nonnegative, inequality
(49) implies that A; x F;)(D;, x(t)) > k. By definition of D; ,
this then implies thaD; , < D; «(¢). []

In Theorem 7.4, we state the admission criteria for the dy-
namic SCED algorithm for a server with a time-varying ca-

for all
]

and the server is a dynamid;-server for A;
1=1,...,n.

VIIl. CONCLUSIONS

By extending the filtering theory under tfimin, +) algebra
to the time-varying setting, we solved the problem of con-
strained traffic regulation. For a constrained traffic-regulation
problem with maximum tolerable delay and maximum
buffer size q, we showed that the optimal regulator that
generates the output traffic conforming to a dynamic en-
velope F' and minimizes the number of discarded packets
is a concatenation of the maximal dynami&clipper with
G(s, t) = min[F*(s, t + d), F*(s, t) + ¢q] and the maximal
dynamicF'-regulator. To provide dynamic service guarantees in
a network, we developed the concept of the dynaftiserver
as a basic network element. We showed that dynamic servers
can be joined by concatenation, “filter bank summation,”
and feedback to form a composite dynamic server. We also
proposed the dynamic SCED scheduling algorithm to achieve
dynamic service guarantees for a work-conserving link subject
to multiple inputs.

One possible application of the time-varying filtering theory
is dynamic admission control. For a given connectiome may
define a service curvg to be guaranteed over the interi@al+
1, b;] if a dynamic service curvé; is guaranteed, where

0, if s <a;andt <a;
fz-(t—ai), IfSSGJL andai <t <y
F'(S f): fi(t—s), if a; < s <b;anda; <t <,
LA fz(bz—s) if a; < s <b;andt > b;
0, if s > b; andt > b;
f,'(b,' — ai), if s < a; andt > b;.

pacity. Once the admission criteria are met, the dynamic SCEy 5,ch a definition for dynamic service guarantees, an inter-
algorithm can then be used for providing dynamic service Qualsting problem is to find the relaxation time such that con-

antees.

Theorem 7.4:A set of n arrival streams, indexed

nection: has virtually no impact on the admission criteria in
Theorem 7.4 afteb; + r;.

i = 1,...,n, arives to a server. The arrival sequence of rinay we note that our approach is also applicable in the

the ith stream is denoted by;, and is known to conform to

continuous-time setting, as shown in [21] and [23]. We also note

the dynamic upper enveloge;. The server has a time-varyingat the bivariate functiod” could berandom By specifying
capacity to serve up to(t) packets during slot. Under the he propabilistic characteristics of the bivariate functignit

dynamic SCED algorithm, the server is a dynaifijeserver for
A; foralli = 1, ..., n if the following condition is satisfied
forall s < t:

(Gix F))(s, t) < C(s, t).
1

(50)

n

2

Proof: As we assume thatl; conforms to the dynamic
upper envelopé&’;, we have from Lemma 3.2(ii) that; = A; x
G;. Thus,

Ni:Ai*FL‘:(Ai*Gi)*Fi:Ai*(Gi*Fi)

is possible to provide probabilistic guarantees. Previous results
along this line could be found in [7] and [13].
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