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Abstract—By extending the system theory under the (min, +)
algebra to the time-varying setting, we solve the problem of con-
strained traffic regulation and develop a calculus for dynamic ser-
vice guarantees. For a constrained traffic-regulation problem with
maximum tolerable delay and maximum buffer size , the op-
timal regulator that generates the output traffic conforming to a
subadditive envelope and minimizes the number of discarded
packets is a concatenation of the-clipper with ( ) = min[ ( +
) ( ) + ] and the maximal -regulator. The -clipper is a

bufferlessdevice, which optimally drops packets as necessary in
order that its output be conformant to an envelope . The maximal

-regulator is a buffereddevice that delays packets as necessary in
order that its output be conformant to an envelope . The maximal

-regulator is a linear time-invariant filter with impulse response
, under the (min +) algebra.
To provide dynamic service guarantees in a network, we develop

the concept of a dynamic server as a basic network element. Dy-
namic servers can be joined by concatenation, “filter bank summa-
tion,” and feedback to form a composite dynamic server. We also
show that dynamic service guarantees for multiple input streams
sharing a work-conserving link can be achieved by a dynamic ser-
vice curve earliest deadline scheduling algorithm, if an appropriate
admission control is enforced.

Index Terms—Buffer overflow, (min +) algebra, network cal-
culus, packet losses, performance analysis, traffic shaping.

I. INTRODUCTION

FUTURE high-speed digital networks aim to provide
integrated services, including voice, video, fax, and data.

To control interaction among traffic generated by different
sources, traffic regulation seems inevitable. In [10], Cruz
proposed the following deterministic traffic characterization.
A traffic stream, described by a nondecreasing sequence
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[with ], conforms to a
function , called anenvelope, if

Without loss of generality, an envelopecan be assumed to be
subadditive [6], i.e., for all .
Using this characterization, a calculus is developed in [10] and
[11] to compute deterministic performance measures, such as
bounds on delay and bounds on queue length. Traffic regulation
addresses the problem of modifying a traffic stream so that it
conforms to a subadditive envelope. The problem of traffic
regulation was treated systematically in [8] and [20], where it is
shown that the optimal traffic regulator that generates an output

conforming to a subadditive envelopefor an input is a
linear time-invariant filter with the impulse responseunder the

algebra, i.e.,

We call such a filter the maximal-regulator. This characteri-
zation was also observed in [1], [2], and [27].

As the buffer in the maximal -regulator is assumed to be
infinite, packets from the input might be queued at the regu-
lator. For a real-time service, the delay of a queued packet at the
regulator might exceed a maximum tolerable delay and such a
packet should be discarded (i.e., clipped). The problem of traffic
regulation with such a delay constraint is called the constrained
traffic-regulation problem in [19]. Its objective is to find a regu-
lator that not only generates traffic conforming to an envelope,
but also minimizes the number of discarded packets. In addi-
tion to the delay constraint, Konstantopoulos and Anantharam
[19] also considered the buffer constraint for the regulator. For

, they derived optimal traffic regulators that sat-
isfied either the delay constraint or the buffer constraint.

Cruz and Taneja [16] considered the zero delay case of the
constrained traffic-regulation problem. This is also the case
without any buffer. By extending the time-invariant filtering
theory under the algebra to the time-varying setting,
it is shown there that the departure process of the optimal
zero-delay regulator, which generates a departure process
conformant to , is the subadditive closure [8] of the arrival
process convolved with. Such a bufferless regulator is called
the -clipper in [16].

Motivated by all these works, one of the main objectives of
this paper is to provide an optimal and implementable solution
for the general constrained traffic-regulation problem with both
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the delay and buffer constraints. As in [16], our approach is
based on the time-varying filtering theory under the
algebra. By extending the subadditive closure in [8] to the time-
varying setting, we show that the-clipper with input and
output can be implemented using the following recursive
equation:

The computation complexity of the-clipper is almost the same
as that of the maximal-regulator. The recursive equation also
implies that the -clipper is greedy. Packets are discarded only
when needed.

For the constrained traffic-regulation problem with maximum
tolerable delay and maximum buffer size, the optimal traffic
regulator is shown to be a concatenation of the-clipper with

and the maximal -regulator. The
solution is intuitive as the output from the-clipper conforms to
the envelope that yields bounded delayand bounded queue
length at the maximal -regulator. For example, when

, the corresponding-clipper can be imple-
mented by parallel bufferless -leaky
buckets. A packet is discarded if it cannot be admitted to one of
these leaky buckets. The output from the-clipper is then fed
into parallel -leaky buckets.

In addition, the time-varying filtering theory can also be used
for dynamic service guarantees. By extending the concept of the
service curve in [1], [12], and [20] to a bivariate function ,
we define a dynamic -server for an input if its output
satisfies

Analogous to the time-invariant filtering theory in [1], [8], and
[20], a dynamic -server can be viewed as a linear filter with
the time-varying impulse response. It can be combined by
concatenation, “filter bank summation,” and feedback to form
a composite dynamic server. We illustrate the use of the dy-
namic server by considering a work-conserving link with a time-
varying capacity and a dynamic window-flow-control problem.
We also show that dynamic service guarantees for multiple input
streams sharing a work-conserving link can be achieved by a
dynamic service curve earliest deadline (SCED) scheduling al-
gorithm if an appropriate admission control is enforced. As the
SCED algorithm in [27], the dynamic SCED algorithm is an
earliest deadline first (EDF) policy that schedules packets ac-
cording to their deadlines.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce the time-varying filtering theory under the

algebra. The development is parallel to the time-in-
variant filtering theory in [1], [8], and [20]. The reader is also
referred to [3] and [4], which contain results overlapping with
this paper. In Sections III and IV, we introduce the maximal dy-
namic traffic regulators and maximal dynamic clippers, respec-
tively. These are used for solving the problem of constrained
traffic regulation in Section V. In Section VI, we develop the

concept of dynamic servers and their associated calculus. We
show in Section VII that the dynamic SCED algorithm can be
used to achieve dynamic service guarantees. We conclude the
paper in Section VIII by discussing possible extensions and ap-
plications.

II. TIME-VARYING FILTERING THEORY UNDER

THE MIN, ALGEBRA

In the section, we introduce the time-varying filtering theory
under the algebra. The development is parallel to the
time-invariant filtering theory in [1], [8], and [20]. To extend
the algebra to the time-varying setting, we consider
the family of bivariate functions

for all

Thus, for any , is nonnegative and nondecreasing
in . For any two bivariate functions and in , we say

(respectively, ) if [respectively,
] for all . We define the following

two operations for functions in .

i) ( ) the pointwise minimum of two functions

ii) (convolution) the convolution of two functions under the
algebra

One can easily verify that is a complete dioid (see,
e.g., [5]) with the zero function and the identity function ,
where for all , and if and

otherwise. To be precise, we have the following properties.

1. (Associativity)

2. (Commutativity)

3. (Distributivity for infinite “sums”) For any two sequences
of functions and in

4. (Zero element)

5. (Absorbing zero element)

6. (Identity element)
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7. (Idempotency of addition)

The key difference to the time-invariant filtering theory is that
we do not have the commutative property forin ,
i.e., in general.

Let : . That is, a function
if for all . As in the time-invariant case, we still
have the following monotonicity.

8. (Monotonicity)

If (respectively, ) is in , then (respec-
tively, ). If both and are in , then

.
For any function , define the unitary operator (called

the closure operation in this paper)

(1)

where is the self-convolution of for times, i.e.,
, , and . The limit in (1) exists as

is decreasing in . Expanding (1)
yields

(2)

where is any subset of
with .

In addition to the algebraic properties, we present several im-
portant properties in Lemmas 2.1 and 2.2 that will be used to
prove results for constrained traffic regulation and service guar-
antees.

Lemma 2.1:Suppose that .

i) (Monotonicity) If , then .
ii) (Closure properties)

.
iii) (Maximum solution) is the maximum solution of

the equation , i.e., for any satisfying
, .

iv) can be computed recursively from the following
equations:

v) .
Proof: As the proofs for i)–iv) are identical to those in [8]

and [9], we only prove v). From the monotonicity,
. Thus, . On

the other hand, one has . Thus, .
Similarly, . This implies

Thus,

Lemma 2.2 (Feedback):Suppose that .

i) For the equation

(3)

is the maximum solution.
ii) If , then is the unique

solution.
iii) Under the condition in ii), if

then .
The proofs for Lemma 2.2 are identical to those in [8] and [9]

and, thus, are omitted.
Remark 2.3:As in [8], let , ,

be the set of nonnegative and nondecreasing functions.
Also, let be the subset of functions in with .
One may then define the convolution of a function and a
bivariate function as follows:

Under such a definition, is in . One may view as
a special case of for some with
for all and , for all and . Thus, the results
in Lemma 2.2 still hold.

Remark 2.4:A bivariate function is time invariantif

and

By letting , one can easily verify that is time
invariant if and only if there exists some such that

. As a result, time-invariant bivariate func-
tions commute. To see this, consider two invariant functions
and and let and . Then

(4)
An important corollary of (4) is that Lemma 2.1(v) can be sim-
plified as follows (cf. [8, Lemma 2.2(xi)]):

(5)

Remark 2.5:A bivariate function is additiveif

For an additive bivariate function, one easily check that

which implies that . Note that a bivariate function
is additive if and only if there is a function such that

. This can be easily verified by choosing
.
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III. D YNAMIC TRAFFIC REGULATION

Given a sequence , it is defined in [10] and [11] that
conforms to the (static) upper envelope if

for all . It is also shown in [8] and [1] that the op-
timal traffic regulator that generates output traffic conforming
to a subadditive envelopeis a linear time-invariant filter with
the impulse responseunder the algebra. In this sec-
tion, we extend such a result to the time-varying setting.

We start from extending the definition of a static envelope to
a dynamic envelope.

Definition 3.1: A sequence is said to conform to the
dynamic upper envelope if for all there holds

.
As in [8] and [9], this characterization has the following

equivalent statements. The proof is omitted.
Lemma 3.2:Suppose that and . The fol-

lowing statements are equivalent.

i) conforms to the dynamic upper envelope.
ii) .
iii) .
iv) conforms to the dynamic upper envelope.

Given a dynamic upper envelope , one can construct
a regulator such that, for any input , the output from the
regulator conforms to the dynamic upper envelope. This is
done in the following theorem. Once again, the proof is omitted.

Theorem 3.3:Suppose that and . Let
.

i) (Traffic regulation) conforms to the dynamic upper
envelope and, thus, also conforms to the dynamic
upper envelope .

ii) (Flow constraint) .
iii) (Optimality) For any that satisfies i) and ii),

one has .
iv) (Conformity) conforms to the dynamic upper enve-

lope if and only if .
The construction is called themaximal dynamic
-regulator (for the input ).
As in the time-invariant case, the flow constraint cor-

responds to one of the causal conditions in [19] as the number
of departures cannot be larger than the number of arrivals. The-
orem 3.3(iii) shows that, under the flow constraint and the con-
straint that the output traffic conforms to the dynamic upper en-
velope , the maximal -regulator is the best construction that
one can implement.

Example 3.4 (Work-Conserving Link With a Time-Varying
Capacity): Consider a work-conserving link with a
time-varying capacity. Let be the maximum number of
packets that can be served at time,
be the cumulative capacity in the interval , and

be the cumulative capacity in
the interval . Let and be the input and
the output from the work-conserving link. Denote by the
number of packets at the link at time. The work-conserving
link is then governed by Lindley’s equation

(6)

where . Suppose . Recursive expan-
sion of Lindley’s equation yields

(7)

Since , we have

(8)

As is an additive bivariate function, we have from Remark 2.5
that , which shows that the work-conserving link is the
maximal dynamic -regulator. This example also shows that the
calculation of the convolution in (8) can be easily implemented
by the recursion in (6).

We note that a work-conserving link with a time-varying ca-
pacity is also equivalent to a time-varying (greedy) shaper in
[20].

Example 3.5 (Traffic Regulation With a Capacity Con-
straint): Consider a link with a time-varying capacity. The link
is not necessarily work conserving. As in the previous example,
let be the maximum number of packets that can be served
at time , and be the cumulative capacity
by time . Let and be the input and output from the
link. Though the link may not be work conserving, the output

is still constrained by the capacity, i.e.,

(9)

Suppose that we would like to perform traffic regulation for the
input such that the output conforms to the static envelope

, i.e.,

(10)

From Theorem 3.3, we know that the optimal implementation
for the output to satisfy (9) and (10) is the maximal dynamic

-regulator with

(11)

If is bounded above by and if the cumulative
time-varying capacity is bounded below by some curve

over any time window, i.e., if for all ,
, then one can derive static service

curves bounding below the maximal dynamic-regulator (11).
Such curves are obtained in [15], [22], and [23].

IV. DYNAMIC TRAFFIC CLIPPING

The maximal dynamic -regulator solves the traffic-regula-
tion problem with an infinite buffer. In this section, we consider
the traffic-regulation problem without a buffer. The question is
then how one drops packetsoptimallysuch that the output con-
forms to a dynamic envelope. Such a problem was previously
solved in [16]; however, the solution in [16] cannot be easily
implemented directly. In the following theorem, we present a
recursive construction for the solution.

Theorem 4.1:Suppose that and . Let
, where . The following

statements then hold.
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i) (Traffic regulation) conforms to the dynamic upper
envelope .

ii) (Clipping constraint)
for all .

iii) (Optimality) For any that satisfies i) and ii),
one has .

iv) can be constructed by the following recursive equa-
tion:

(12)

with .
v) (Conformity) conforms to the dynamic upper enve-

lope if and only if .
The construction in (12) is called themaximal dynamic

-clipper (for the input ) in this paper.
Proof: For any , we have from Lemma 2.1(iv) that

and, hence, so that is conformant to , estab-
lishing i).

To see ii), note similarly that

Next, we establish iii). Suppose that satisfies i) and
ii). Since

(13)

where and for . As conforms to
the dynamic envelope

(14)

The inequality in the clipping constraint in ii) is equivalent to
for all and it can be rewritten

as

(15)

with . The constraints in (13)–(15) are
equivalent to

(16)

Applying the distributivity and the fact that yields

It then follows from Lemma 2.2(i) that is the
maximum solution of (16). Note that

Thus, is the maximum solution that satisfies i) and ii).
To see iv), note from Lemma 2.1(iv) thatcan be constructed

recursively as follows:

(17)

with . Since satisfies the clipping constraint,

This implies that

Thus,

(18)

To prove v), note that if , then it follows from (18) that
. Thus, conforms to the dynamic envelope. On

the other hand, if conforms to the dynamic envelope, then

This implies . As from Remark 2.5

We note that the original representation in [16] is that
. This is equivalent to our result in Theorem 4.1,

as can be seen from Lemma 2.1(v), and the fact that .
As in Lemma 2.1(v), one also has the
following equivalent implementation:

(19)

Note that the key difference between Theorems 3.3 and 4.1 is
the clipping constraint. The clipping constraint implies that, in
any given slot, the packets departing are a subset of the packets
arriving in the same slot. Let
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be the number of packets clipped at time. From (12),
we have

(20)

Observe from (20) that packet loss occurs at timeonly when
at least one of the following inequalities is violated:

(21)

When this happens, one then discards packets to the extent
so that the above inequalities are all satisfied. Note also that
(12) implies that the maximal dynamic -clipper can be
implemented in real time since the value of depends only
on and for .

In the following example, we illustrate how one implements
the maximal dynamic -clipper by a work-conserving link with
a finite buffer when for .

Example 4.2 (Work-Conserving Link With a Finite
Buffer): Consider the work-conserving link with a
time-varying capacity in Example 3.4. In addition, we as-
sume that the buffer size of the link is, i.e., at most, packets
can be stored at the link. Packets that arrive at the link and find
the buffer full are lost. As in Example 3.4, let and be
the input and output from the work-conserving link. Denote by

the number of packets at the link at time.
We then need to modify Lindley’s equation in (6) as follows:

(22)

The number of lost packets at time, denoted by , is then
. Let be the

effective input to the link, i.e.,

For the effective input , the work-conserving link behaves
like a work-conserving link with an infinite buffer. Thus, we
have from (7) that

(23)

assuming . This then implies

In view of (20), the effective input to the work-conserving
link with a finite buffer is, in fact, the output of the maximal
dynamic -clipper with , . In par-
ticular, when for all , we can implement the maximal
dynamic -clipper with by constructing
the effective input of a work-conserving link with constant ca-
pacity and buffer . This example also shows that a direct cal-
culation of the convolution in (12) may not be necessary, and
the convolution in this example can be computed recursively by
(22).

For the maximal dynamic -clipper with the input and the
output , let be the cumulative losses at
the clipper by time . As in Theorem
4.1, using (2) yields

(24)

where is any subset of
with . This was previously
shown in [16, Corollary 1]. A similar result is also obtained in
[22] for both the continuous and discrete time settings.

Example 4.3 (Clippers in Tandem):Now we compare the
output from the maximal dynamic -clipper and a con-
catenation of the maximal dynamic -clipper and the max-
imal dynamic -clipper. Let be the input to both systems,

be the output from the maximal dynamic -clipper,
be the output from the maximal dynamic-clipper, and be
the output from the maximal dynamic -clipper. Also
let be the cumulative losses at the max-
imal dynamic -clipper by time . Similarly, let

and . From Theorem 4.1,
we have for all

This implies that conforms to the dynamic upper envelope
and that . Thus,
and for all by Theorem 4.1.

In fact, a concatenation of the maximal dynamic-clipper and
maximal dynamic -clipper is a suboptimal implementation of
an -clipper. The reason for this, as observed in [16], is
that the discarding of packets in the-clipper is not accounted
for in the -clipper.
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Example 4.4 (Clippers in Parallel):Continue from the pre-
vious example. Since clippers in tandem are suboptimal and
may yield more cumulative losses than the optimal one, we may
use this to compare the cumulative losses for clippers in par-
allel. Now suppose both the maximal dynamic-clipper and
maximal dynamic -clipper are fed with the input . Let
and be the outputs from these two clippers and

and be the cumulative
losses at these two clippers by time. Clearly, . It
is easy to see from (24) that . Thus, we still have

for all . This is previously reported in
[16, Corollary 2].

V. CONSTRAINED TRAFFIC REGULATION

The two traffic-regulation problems, with an infinite buffer
and without a buffer, are two extreme cases. In practice, packets
(or cells) may be queued and delayed at a regulator. However,
there might be constraints for the buffer size and the delay. In
this regard, one might have to discard (i.e., clip) some packets
from the input so that the buffer and delay constraints can be
satisfied. The question is then how one discard packetsoptimally
so that the number of clipped packets can be minimized. Such
a problem is called constrained traffic regulation and was first
considered in [19] for -leaky buckets. Our objective in this
section is to provide a general, simple, and optimal solution for
the constrained traffic-regulation problem.

To formalize the problem of constrained traffic regulation
with buffer and delay constraints, we letbe the input and
be the output from the regulator. We require that the buffer oc-
cupancy in the regulator be less than or equal to, the delay be
bounded above by, and that the output be conformant to
a dynamic envelope . Due to these constraints, packets may
need to be discarded. Let be the effective input, i.e.,
counts the total number of packets arriving up to and including
slot , which eventually depart the regulator without being dis-
carded. The objective is to maximize the effective inputand
the output , given the buffer and delay constraints and the con-
straint that conforms to the dynamic envelope. More for-
mally, given the input and a dynamic envelope, we seek
and , which are as large as possible subject to the following
constraints.

(C1) (Clipping constraint)
for all .

(C2) (Buffer constraint) for all , where
is the buffer size at the regulator.

(C3) (Delay constraint) for all , where
is the maximum tolerable delay at the regulator (as the
regulator serves packets in the FCFS order).

(C4) (Traffic regulation) conforms to the dynamic upper
envelope .

(C5) (Flow constraint) for all .

The clipping constraint implies that the packets in the effec-
tive input is a subset of the packets infor any time . We
note that the clipping constraint does not imply that packets ar-
riving at time have to be clipped at time. In fact, they could
be clipped at some time later than. However, as will be shown
below, optimal clipping can be greedy and only those packets

arriving at time need to be clipped at time. Note also that
the natural buffer constraint should be ,
where is the cumulative number of packets arriving up to
time , which have not been discarded at the end of slot. Our
buffer constraint is, in fact, less restrictive as

for all . However, as the below theorem shows,
the optimal value of can be computed without knowledge
of for so that packets that will eventually be dis-
carded in an optimal clipper can, in fact, be discarded when they
arrive. Assuming this is the case, the backlog of packets in the
optimal regulator at the end of slotis .

Theorem 5.1:Suppose that and . Let be
the output from the maximal dynamic-clipper for the input

, where

Also, let be the output from the maximal dynamic-regulator
for the input . All constraints (C1)–(C5) are then satisfied.
Moreover, for any that satisfy (C1)–(C5), one has

and .
The construction of and , based on a concatenation

of the maximal dynamic -clipper and the maximal dynamic
-regulator, is called the maximal dynamic-regulator with

delay and buffer .
Proof: Suppose that and are as stated in the theorem.

Theorem 4.1 then implies (C1), and also implies that
. Conditions (C4) and (C5) follow from Theorem

3.3(i) and (ii). To establish (C2), note that

Similarly, to establish (C3), note that

Since for and is nonnegative, it, there-
fore, follows that , which
establishes (C3). Thus, (C1)–(C5) are satisfied as claimed.

Next, suppose that satisfy (C1)–(C5). From The-
orem 3.3(iii), we know that, under the flow constraint in (C5)
and the traffic constraint (C4), we have

(25)

Moreover, combining this with (C2) and (C3), we obtain

(C2′) (Buffer constraint) for all .
(C3′) (Delay constraint) for all .
The buffer constraint in (C2′) can be rewritten as

(26)
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with . Since is nonde-
creasing in and is nonnegative

(27)

Due to the conditions in (27), the delay constraint in (C3′) can
be rewritten as

(28)

with . Using the idempotency and dis-
tributivity, the constraints in (26) and (28) are equivalent to

(29)

Note that for all , where is de-
fined in Theorem 5.1. Thus, conforms to the dynamic enve-
lope . Using Theorem 4.1(iii) and the assumption thatsat-
isfies (C1), it, therefore, follows that

. From the monotonicity of, we also have from (25) that

We note that, for the special cases that (without
delay constraint) and that (without buffer constraint),
the results were previous obtained in [22, Ch. 9]. The result
in Theorem 5.1 not only finds a representation of the optimal
traffic regulator that satisfies both the delay and buffer con-
straints, but also provides a method for the implementation of
such a regulator. In [19], the buffer and delay constraints are
treated separately, and it is shown that the optimal solution can
be implemented by the greedy flow controller, which discards
packets only when needed. As shown in Theorem 5.1, the max-
imal dynamic -regulator with delay and buffer is still the
greedy flow controller as the maximal dynamic-clipper dis-
cards packets only when needed.

Example 5.2 (Work-Conserving Link with a Finite Buffer):In
this example, we show that a work-conserving link with a finite
buffer solves a traffic-regulation problem with a buffer con-
straint. Consider the work-conserving link with a time-varying
capacity and a finite buffer in Example 4.2. As in Examples 3.4
and 4.2, let , , and be the input, effective input, and output
of the link, respectively. As we have shown from Example 4.2,
the effective input to the link is, in fact, the output of the
maximal dynamic -clipper with . Also,
from Example 3.4, the output from the link is the output from
the maximal dynamic -regulator with .
Thus, the link is a concatenation of the maximal dynamic

-clipper and the maximal dynamic-regulator. We then have
from Theorem 5.1 that the work-conserving link with a finite
buffer is the maximal dynamic -regulator with buffer ,
where .

Fig. 1. Work-conserving link with a finite buffer.

There is a well-known duality interpretation for a work-con-
serving link with a finite buffer. One may view the cumulative
capacity as the cumulative number of tokens generated
by time . As in a leaky bucket, every packet needs to grab
a token for its departure. Thus, packet losses occur when the
buffer is full and token losses occur when the buffer is empty.
To be precise, let be the number of packets at the link
at time , be the cumulative number of
packet losses by time, and be the cumu-
lative number of token losses by time. Fig. 1 represents this
system. One then has the following conditions of complemen-
tary slackness:

for all

for all

where if the event is true and 0 otherwise. As

the work-conserving link with a finite buffer solves the
so-called Skorokhod reflection problem with two boundaries
[28], where is the free process, is the lower
boundary process, and is the upper boundary process
(see, e.g., [18] and [19] for more detailed discussions of the
reflection problem). Since the work-conserving link with a
finite buffer also solves the buffer-constrained traffic-regulation
problem, it follows from (24) that the upper boundary process
of the reflection problem admits the following close-form
representation (in terms of the free process):

where is any subset of
with . Using (2) and

, one can also show that the lower boundary process
admits the following closed-form representation:

where the sum in the right-hand side is 0 for . We also
note the queue-length process can also be represented in
closed form. Two representations based on, and plus
operations were given in [14].
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Example 5.3 (Multiple Leaky Buckets With Buffer and Delay
Constraints): Now consider the maximal dynamic-regulator
with delay and buffer when

This corresponds to the case of multiple leaky buckets with the
delay constraint and the buffer constraint. In this case,

Thus, one can construct the maximal dynamic-clipper by
feeding the input to parallel bufferless ,

-leaky buckets. A packet is discarded (or clipped) if it cannot
be admitted to one of theseleaky buckets. The output from the
maximal dynamic -clipper is then fed into another parallel

-leaky buckets with buffer . This example also shows
that a direct calculation of the convolution in (12) may not be
necessary, as leaky buckets are known to have recursive imple-
mentations.

To bound the cumulative loss for the maximal dynamic
-clipper in this example, we may apply the comparison

result in Example 4.4. Consider maximal dynamic clippers,
all subject to the same input. Theth clipper is the maximal
dynamic -clipper with

Let be the cumulative number of losses by timeat the th
clipper. From Example 4.4, is an upper bound for
the cumulative loss for the maximal dynamic-clipper. Now

is much easier to compute, as it is simply the cumulative
loss for a work-conserving link with capacity and buffer

in Example 5.2.
Example 5.4 (Bounding Losses by Segregation Between

Buffer and Policer): We have shown in Theorem 5.1 that the
maximal dynamic -regulator with buffer is the optimal
implementation to generate an output conforming to the dy-
namic envelope and subject to the buffer constraint. In this
example, we will show that segregation of buffer discard and
policing discard provides an upper bound on the cumulative
losses for the maximal dynamic -regulator with buffer .

As we have shown in Theorem 5.1, the first stage of the max-
imal dynamic -regulator with buffer is the maximal dy-
namic -clipper, where

(30)

Let , , and be its input, output, and the cumulative
losses by time, i.e., . We now compare the
cumulative losses with the losses in another system made
of two parts, as shown in Fig. 2. The first part is some causal
system with storage capacity. We know, however, that the first
part discards packets as soon as the total backlogged packets in
this system exceeds. This operation is calledbuffer discard,

Fig. 2. Storage/policer system with separation between losses due to buffer
discard and policing discard.

and the amount of buffer discarded packets by timeis denoted
by . The second part is the maximal dynamic-clipper
referred to here as the policer. Packets are discarded as soon
as the total output of the storage system exceeds the maximum
output allowed by the policer. This operation is calledpolicing
discard, and the amount of discarded packets by timedue to
policing is denoted by .

We show that . Let be the
output of the buffer clipper, and be the input and
output of the policer clipper, respectively. As is the output
of the maximal dynamic -clipper

(31)

Now let be the effective input to the system, i.e.,

(32)

Also, as shown in Fig. 2, we have

(33)

and

(34)

Since is a nondecreasing function in, we
have from (32) that

(35)

On the other hand, because the “storage system” is causal, it
satisfies the flow constraint

(36)

Since its storage space is limited to, we also have

(37)

Using (32) and (33), we have for all

From (30), (31), (34), (36), and (37), it then follows that

(38)

Combining (35) with (38), one notices that satisfies the same
constraints as . As is the output from the optimal implemen-
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tation in Theorem 5.1, it follows that or, equiva-
lently, that .

Such a separation of resources between the “buffered system”
and “policing system” is used in the estimation of loss proba-
bility for devising statistical CAC algorithms as proposed by Lo
Prestiet al. [26] (see also Elwalidet al. [17]).

VI. DYNAMIC SERVICE GUARANTEES

To guarantee end-to-end deterministic QoS for an input, the
concept of service curves is developed in [1], [12], and [20] to
work with the static envelopes of Cruz [10], [11]. A server is
called a static -server ( ) for an input sequence if its
output sequence satisfies

(39)

for all . Based on this, there is an associated filtering theory
(under the algebra) in [1], [8], and [20] that eases de-
sign and computation of deterministic QoS. Our main objective
in this section is to extend the concept of service curves and
the associated filtering theory to the time-varying setting so that
dynamicQoS can be guaranteed. The theory is based on the fol-
lowing definition of a dynamic -server.

Definition 6.1 (Dynamic -Server): A server is called a dy-
namic -server ( ) for an input sequence if its output
sequence satisfies , i.e.,

(40)

for all . If the inequality in (40) is satisfied for all input se-
quences, then we say the dynamic-server is universal. If the
inequality in (40) is an equality, we say the dynamic-server
is exact.

Analogous to the filtering theory for static service curves, one
may view the right-hand side of (40) as the output from a linear
filter with the time-varying impulse response under the

algebra. If is a time-invariant bivariate function,
then the dynamic -server is equivalent to a static-server,
where .

Clearly, the maximal dynamic -regulator is auniversaland
exactdynamic -server. Analogous to the time-invariant case,
one has the following properties in Theorems 6.2–6.5 for dy-
namic -servers. The proofs are omitted, as they are identical
to those in [8] and [9].

Theorem 6.2 (Concatenation):A concatenation of a dy-
namic -server for an input sequence and a dynamic

-server for the output from the dynamic -server is a
dynamic -server for , where .

Theorem 6.3 (Filter Bank Summation):Consider an input
sequence . Let (respectively, ) be the output from a
dynamic -server (respectively, -server) for . The output
from the “filter bank summation,” denoted by, is .
The “filter bank summation” of a dynamic -server for and
a dynamic -server for is then a dynamic -server for ,
where .

Theorem 6.4 (Feedback):Consider an input sequence
and a dynamic -server for , where , and

is the output from the dynamic -server. If ,
then the feedback system is a dynamic-server for .

Theorem 6.5:Consider a dynamic -server for . Let be
the output. Also, let be the maximum
queue length at the server, where . Let

: for all be the maximum delay
at the server. Suppose thatconforms to the dynamic upper
envelope .

i) (Queue length) .
ii) (Output burstiness) If , then conforms to the

dynamic upper envelope , where

iii) (Delay) :
.

Remark 6.6:As the maximal dynamic -regulator is a dy-
namic -server, there is an intuitive explanation why the max-
imal dynamic -regulator with delay and buffer is a con-
catenation of the maximal dynamic-clipper (with being de-
fined in Theorem 5.1) and the maximal dynamic-regulator.
As shown in Theorem 4.1, the output from the maximal dy-
namic -clipper conforms to the dynamic envelope

. When such an output is fed to
the maximal dynamic -regulator, one has from Theorem 6.5
that the delay at the maximal dynamic-regulator is bounded
above by and the queue length is also bounded above by.
Thus, both the delay constraint and buffer constraint are satis-
fied.

In the following, we illustrate the use of dynamic service
guarantees by a dynamic window-flow-control problem.

Example 6.7 (Dynamic Window Flow Control):Consider
a network with the input and the output . Suppose that
the network enforces a dynamic window flow control for the
input with the dynamic window size . We assume that

. For the dynamic window-flow-control system,
the effective input to the network, denoted by, satisfies

(41)

Observe that , where is the function
with for and . One may
rewrite (41) as follows:

(42)

Also, we assume that the network is a dynamic-server for
the effective input , i.e.,

(43)

In conjunction with (42)

where we apply the distributive property and the associativity of
. Since we assume that
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We then have from Lemma 2.2(iii) that

Thus, the dynamic window-flow-control system is a dynamic
-server.

VII. D YNAMIC SCED SCHEDULING ALGORITHM

In this section, we define a scheduling algorithm, called the
dynamic SCED algorithm, which we will show achieves the dy-
namic service guarantees in Section VI.

Consider a server with a time-varying capacity. Let be
the maximum number of packets that can be served at time,
and be the cumulative capacity in the
interval . A policy is called the EDF if the server sched-
ules the packets according to their deadlines. Note that the EDF
policy is work conserving, i.e., the server serves packets when-
ever there are packets at the server.

Now consider feeding streams of inputs to such a server.
Let be the cumulative number of packet arrivals of the
th stream up to time. Each packet is assigned a deadline. We

assume that the deadlines within the same stream arenonde-
creasing. Also, let be the number of packets from the
th stream that have deadlines not greater than. As we assume

the deadlines for each stream is nondecreasing, packetfrom
stream is assigned the deadline from the following in-
verse mapping:

and (44)

Theorem 7.1:Suppose that the server is operated under the
EDF policy. The necessary and sufficient condition for every
packet to be served not later than its deadline is

(45)

for all and for every that is a subset of .
Proof: i) We first prove the necessary part. Let be

the cumulative number of packet departures from all streams up
to time . Since the EDF policy is work conserving, we have
from Example 3.4 that

As we assume that every packet is served not later than its dead-
line

(46)

for all .
Let be a subset of . Suppose that we now

only have the streams in (the packets from other streams are
discarded). Based on a standard sample path argument, it is clear
that, under the EDF policy, every packet is still served not later
than its deadline. Following the same argument as in (46) yields
(45).

ii) We prove the sufficient part by contradiction, as in [25].
Suppose that the first packet that misses its deadline occurs at
time . Let be the last slot no later thansuch that the server
serves less than packets. Since the EDF policy is work
conserving, , as there is at least one streampacket back-
logged at time . Moreover, there are exactly packets
served in the interval .

Now let be the last slot in the interval , during
which a packet with deadline greater thanis served. If all the
packets served during the interval have deadlines less
than or equal to, then define (in this case, there are
no backlogged packets at the end of slot). Thus, during the
interval , exactly packets are served, and each
of these packets has a deadline that is less than or equal to.

Let be the set of streams that are not backlogged at the end
of slot . We claim that those packets served in can
only come from the streams in. Suppose that streamis not
in . Since there is a packet with deadline greater thanthat is
served in slot , all the backlogged streampackets at the end
of slot must have deadlines greater than. This implies all
the stream packets with deadlines not greater thanhave been
served, as we assume the deadlines are nondecreasing within the
same stream. Thus, those packets served in can only
come from the streams in, as those packets have deadlines less
than or equal to.

Now suppose that streamis in . As there are no back-
logged stream packets at the end of slot , all the stream
packets that arrive not later thanhave been served. Thus, the
number of stream packets that can be served in is
bounded above by . This, in turn, implies that
the number of packets served in is bounded above by

. As there is a packet that misses its
deadline at time, the bound is strict. Thus,

for some that is a subset of with . As is
a subset of , we have a contradiction to (45).

Lemma 7.2:Suppose we choose some
, . If for all

, then all the packets are served not later than their deadlines.
Such a deadline assignment scheme is called the dynamic

SCED algorithm in this paper.
Proof: It suffices to verify that the sufficient condition in

Theorem 7.1 is satisfied. Note that for everyin
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where we use and in the
last two inequalities.

The next lemma implies that deadlines in the dynamic SCED
algorithm can be assigned in real time. Specifically, if packet

from stream arrives during slot , can be computed
without knowledge of for .

Lemma 7.3:Suppose packet from stream arrives during
slot . Under the dynamic SCED algorithm,
where

and

(47)

Proof: Note that, under the dynamic SCED algorithm

and (48)

Since packet arrives at time , we have for .
Thus, when , which
implies that by definition of in (48). Therefore,
by definition of , we have

By definition of , this implies . To show
the reverse inequality, note that by definition of , we
have

(49)

Since for and is nonnegative, inequality
(49) implies that . By definition of ,
this then implies that .

In Theorem 7.4, we state the admission criteria for the dy-
namic SCED algorithm for a server with a time-varying ca-
pacity. Once the admission criteria are met, the dynamic SCED
algorithm can then be used for providing dynamic service guar-
antees.

Theorem 7.4:A set of arrival streams, indexed
, arrives to a server. The arrival sequence of

the th stream is denoted by , and is known to conform to
the dynamic upper envelope . The server has a time-varying
capacity to serve up to packets during slot. Under the
dynamic SCED algorithm, the server is a dynamic-server for

for all if the following condition is satisfied
for all :

(50)

Proof: As we assume that conforms to the dynamic
upper envelope , we have from Lemma 3.2(ii) that

. Thus,

where we apply the associativity of. From Lemma 7.2, it then
follows that all the packets are served before their deadlines. De-
note by the cumulative number of departures from stream

by time . Thus,

and the server is a dynamic -server for for all
.

VIII. C ONCLUSIONS

By extending the filtering theory under the ) algebra
to the time-varying setting, we solved the problem of con-
strained traffic regulation. For a constrained traffic-regulation
problem with maximum tolerable delay and maximum
buffer size , we showed that the optimal regulator that
generates the output traffic conforming to a dynamic en-
velope and minimizes the number of discarded packets
is a concatenation of the maximal dynamic-clipper with

and the maximal
dynamic -regulator. To provide dynamic service guarantees in
a network, we developed the concept of the dynamic-server
as a basic network element. We showed that dynamic servers
can be joined by concatenation, “filter bank summation,”
and feedback to form a composite dynamic server. We also
proposed the dynamic SCED scheduling algorithm to achieve
dynamic service guarantees for a work-conserving link subject
to multiple inputs.

One possible application of the time-varying filtering theory
is dynamic admission control. For a given connection, we may
define a service curve to be guaranteed over the interval

if a dynamic service curve is guaranteed, where

if and
if and

if and
if and

if and
if and

For such a definition for dynamic service guarantees, an inter-
esting problem is to find the relaxation time such that con-
nection has virtually no impact on the admission criteria in
Theorem 7.4 after .

Finally, we note that our approach is also applicable in the
continuous-time setting, as shown in [21] and [23]. We also note
that the bivariate function could berandom. By specifying
the probabilistic characteristics of the bivariate function, it
is possible to provide probabilistic guarantees. Previous results
along this line could be found in [7] and [13].
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