
In a copper mining operation, the copper
recovery in the mineral processing circuit is
affected by upstream operations. The upstream
operations in a conventional copper mine
include blasting, excavation, crushing,
transportation, stockpile storage, as well as
milling in semi-autogenous grinding (SAG)
and ball mills. Varying the specific explosive
energy may have a significant impact on the
downstream comminution processes, and can
maximize the cost savings between blasting
and ball milling while achieving a sufficiently
small P80 at the ball mill (Chung and
Katsabanis, 2000; Nielson and Lownds, 1997;
Nielsen and Malvik, 1999; Scott, 1996). P80 is
the 80% passing size in the cumulative size
distribution (both post-blast and post-mill
fragmentation), and it is generally used as a
representative size of the fragmentation in the
hard-rock mining industry. However, for a
mine with two or more ore types, these
savings are difficult to estimate in absence of

an ore-tracking method that can detect ore
type as well as estimate fragment sizes (Kim
and Kemeny, 2011). There are challenges to
ore-tracking methods as well, resulting from
thorough mixing of ore, for example at the
stockpiles. Dissimilarities between ore types in
terms of their blastability, crushability, and
grindability add to the complexity of
estimating the energy expenditure required to
achieve a target P80 during milling. In
summary, although it may be difficult, it is
important for mine operators to distinguish
between ore types so as to be able to calibrate
the total explosives energy accordingly in
order to maximize the total cost savings over a
period of time. 

Tracking systems have been used in mines
for other purposes in the past. A system based
on a radio frequency identification (RFID)
tracer in a plastic shell has been developed
(Jansen et al., 2009). Although this tracer does
not provide continuous tracking of all ore
types in a mine, it could be used to track ore
transported between stockpiles and bins.
Similarly, RFID tracers have been used to track
blast movements (La Rosa and Thornton,
2011). Continuous tracking already exists for
all ore transported from pits to crushers
(Modular Mining, 2014). This tracking is
based on global positioning system (GPS)
devices attached to the trucks hauling ore from
shovel sites to the primary crushers. However,
the tracking process does not continue through
the comminution circuit and stockpiles. Thus,
tracking ore movement from blast sites to the
ball mills requires prediction and tagging of
ore type of each individual fragment
transported on trucks and conveyors. Tagging
and prediction is useful in mines where the
majority of fragments are over 1 inch 
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(2.54 cm) in size, which, in the authors’ experience, is the
typical cut-off size for feasible prediction of ore type. Where
fragment sizes are smaller, bulk tagging and prediction can
be more useful than individual tagging and prediction. X-ray
fluorescence, X-ray diffraction, and imaging spectrometry are
possible technologies that can be used to remotely sense the
mineral content in fragments (Klug and Alexander, 1954).
Imaging spectrometry relies on obtaining electromagnetic
spectra from the minerals of interest. It has been used in the
past to detect minerals having spectral reflectance
characteristics (SRC) in the visible and invisible parts of the
electromagnetic spectrum. Some of its applications include
mineral mapping (Tangestani et al., 2011), vegetation
species identification (Bechtel, Ribard, and Sánchez-Azofeifa,
2002), and rock discrimination (Sgavetti et al., 2007; Combs
et al., 2011) among others. The works cited have shown that
wavelengths between 400 nm and 2500 nm, comprising both
visible and near-infrared (VNIR) and short-wave infrared
(SWIR) spectra, are the most useful for discrimination.
Statistical analysis methods such as partial least-squares
regression (PLSR) can be used for discriminating between
mineral types based on a hyperspectral image (Haaland and
Thomas, 1988; Blanco and Peguero, 2011). Principal
component regression (PCR) is a method similar to PLSR that
uses principal component analysis (PCA) to determine the
unknown regression coefficients. Logistic regression (LR) is
another competitive method for discriminant analysis, where
the output specifies a particular fragment explicitly and
categorically as belonging to an ore type. 

To solve the tracking problem, we developed a spectral
imaging-based automated tracking method for ore types and
fragmentation. We demonstrate cost savings from applying
the proposed system using a simulated conventional copper
mine. A generic small-sized copper mine with two different
types of ore – hard and soft rock (names of ore aligned with
those used in the case study) – is considered. In general,
mathematical programming and computer simulation can be
applied to model mining operations in order to obtain various
performance measures such as production and equipment
utilization. When used as a standalone tool, stochastic
programming is best suited for instances where the goal is to
maximize a performance measure such as production under
constraints with stochastic model parameters (Kataoka,
1963; Kall, Wallace, and Kall, 1994; Sahinidis, 2004;
Santelices et al., 2017). But when combined with simulation,
in addition to maximization of a measure, the combined tool
can be used to evaluate system performance measures as well
as keep track of detailed system statuses over time, such as
locations of trucks and movement of ore on conveyors.
Simulation models of most processes in mines can be
constructed through a combination of discrete event
simulation and process simulation. The need to use process
simulation arises when environmental factors underlying
crushing and grinding processes vary significantly enough to
impact performance measures such as quality of throughput.
There are several recent applications of process simulation to
model the underlying dynamics in crushers (Asbjörnsson,
Hulthén, and Evertsson, 2012, 2013; da Cunha, de Carvalho,
and Tavares, 2013; Asbjörnsson et al., 2016). Discrete event
simulation has been applied to model truck-shovel haulage
operations in surface coal mines, underground mines, and 

similar operations in construction such as earth movement
(Zhang, 2008; Meng et al., 2013; Nageshwaraniyer, Son, and
Dessureault, 2013; Salama, Greberg, and Schunnesson,
2014; Torkamani, and Askari-Nasab, 2015; Park, Choi, and
Park, 2016). Discrete event simulation software packages
such as ArenaTM and SIMIOTM have become popular because
they offer easy-to-use graphical user interfaces and attractive
animation capabilities. An early, but thorough, review of
software used in mine system simulation in the USA is
provided by Sturgul (1999). Since conducting experiments at
all locations from mine to mill in a real mine in order to
collect inputs and outputs for estimating cost savings is
difficult, a regression model (using experimental data from
one of many operations of the mine) and discrete event
simulation model using ArenaTM software are used to model
all the mining operations in this study. The Monte Carlo
technique is embedded in ArenaTM and is used to estimate
the confidence intervals in performance measures such as
production, equipment utilization, and queue times caused by
uncertainties from shovel loading times, truck haul, and
dumping times. 

In this work, the first objective is to model all operations
from blasting to grinding using a combination of regression
and discrete event simulation. Constructing very granular
models for blasting requires an understanding of the
underlying physics. However, models predicting aggregated
blast particle-size distributions have been constructed in the
past based on linear regression (Kim and Kemeny, 2011;
Modular Mining, 2014). Hence, real data for blasting
parameters such as explosives energy, burden, spacing, rock
properties (tensile strength or mode I fracture toughness),
and block size of the bench face is used to construct a
blasting regression model to predict the resulting particle size
distribution (Kim and Kemeny, 2011). A MS Excel® linear
regression tool has been used to estimate the coefficients of
the blasting regression model. The other operations, such as
excavation and transportation of ore via trucks and
conveyors to crushers and grinders, mimic supply chain
systems, and are therefore modelled using discrete event
simulation in ArenaTM. The data for blasting and other
operations, as well as the structure of the simulated mine, is
based on a mid-sized copper mine in Arizona. One of the
main contributions of this paper is to specify the mean cost
savings percentage, together with its confidence interval, as a
function of specific explosives energy. 

The spectral imaging-based tracking method proposed
involves a combination of software and hardware. The
software tools used are SPLIT Online 4.1 (image processing
system) and a MATLAB-based regression model. SPLIT
Online 4.1 is used to estimate fragment contours and
volumes. At the core of SPLIT Online 4.1 technology are
particle delineation algorithms used for marking outlines of
fragments in truck dumps, muckpiles, and moving conveyor
belts (Kemeny, Mofya, and Kaunda, 2002; Latham et al.,
2003; BoBo et al., 2004). PLSR, PCR, and LR are compared
for selecting the best prediction model for distinguishing
samples from real mines, using the built-in functions in
MATLAB. The main hardware components used in the
method are multispectral cameras. The regression algorithms
mentioned above are used to distinguish between ore types
in each image delivered by the multispectral camera. The 
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VNIR camera costs less than the SWIR camera because the
SWIR camera captures much higher wavelengths. A 3D full-
motion video spectral imaging (FMV-SI) camera such as the
one from Surface Optics (SOC, 2014) is better than line-
scanner cameras in retaining spectral information, even at
medium to high conveyor speeds (approx. 1 m/s in Figure 1).
Since training and validation testing on real ore samples is
necessary for comparisons between different regression
algorithms, the second objective of this work is to collect and
perform laboratory tests on ore samples from different mines.
The tests were conducted on both a static surface (wood) as
well as a moving conveyor. The third objective is to
determine the combination of multispectral camera and
regression model for prediction that can most accurately
detect and distinguish different ore types. To the best
knowledge of the authors, this is one of the first
investigations in which VNIR, SWIR, and FMV-SI cameras
have been studied for distinguishing between ore types on
moving conveyors in a laboratory setting.

A brief description of the blasting regression model, as
well as the simulation model of the mine used as a case
study, is provided. This is followed by a discussion of results
from testing different regression models on different ore
samples using VNIR and SWIR cameras. A technique for
integrating the detected ore type information with delineation
information for implementation in the real mine is explained.
The economic analysis of the overall cost savings achieved
through the proposed spectral imaging-based tracking is
discussed, and finally, the conclusions are presented.

Three simulation sub-models were developed in ArenaTM for
the mid-sized copper mine: (1) forward blasting model, (2)
reverse blasting model, and (3) comminution model (see
Figure 2). The forward blasting model simulates the blasting

process using site-specific blasting models at the pits (Kim
and Kemeny, 2011). Two main assumptions are made for the
simulation modelling: (1) a specific number of truckloads per
day per pit along with cycle times is assumed, and (2) errors
in blasting parameters – burden and spacing – are assumed
to be induced by drill error and the mismatch between drill
pattern and blast direction. The actual value of the error in
blasting parameters can be obtained from operational blast
data. In the experiments conducted, the errors are assumed to
follow a uniform distribution. For example, if the error in
burden is 5%, then the actual burden in a blast can vary
between –5% and +5% of its mean value. Two ore types are
considered in this model, and one shot per day is made at
each of the pits. This sub-model is used to determine the
coefficients of the site-specific blasting model when there is
only limited data availablefor blasting parameters, such as
burden, spacing, and particle size distribution of ore in truck
beds.

For constructing our site-specific blasting model, data
from visible range cameras at a real copper mine in Arizona
was used. F80 of shots – the bench face block size (80%
passing size) before blasting – and particle size distributions
of blasted ore dumped into trucks were provided. F80, bench
height, and tensile strength (T0), are taken to be
deterministic variables. During the simulation run, for each
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pit, the values of burden, spacing, bench height, T0, F80, and
P80 from each truckload were recorded into an MS Access
database. The site-specific blasting model taken from Kim
and Kemeny (2011) and its logarithmic form used in
regression analysis are given in Equations [1] and [2],
respectively. Although additional efforts are needed to
validate this model for many mines around the world, the
results presented by Kim and Kemeny (2011) applying this
blasting model on data from a real copper mine are
promising. ESE is the specific explosives energy, whereas F80
and P80 are the 80% passing sizes before and after the shot
respectively. ln(A) is the intercept, and B, C, and D are the
coefficients in the regression model. 

ESE = A (F80)B(P80)C(T0)D [1]

ln(ESE) = ln(A)+Bln(F80)+Cln(P80)+Dln(T0) [2]

The above model was also applied by Nageshwaraniyer,
Kim, and Son (2015) using an MS Excel regression analysis
tool on same sample data as in this paper, and the best model
coefficients were chosen using the R2 value (which is the
proportion of variation in ESE as explained by variation in T0,
P80, and F80). Values of R2 above 0.9 were obtained, which
implied that the regression model had a good fit between
dependent (ESE) and independent variables (T0, P80, and
F80). Thus, ESE values could be explained by our sample data
using the site-specific blasting model. The estimated
regression coefficients were then provided as input to the
reverse blasting model in order to determine the product of
burden and spacing for a desired P80 for each ore type, given
the F80, bench height, explosives energy, tensile strength,
and specific gravity for the corresponding pit. After many
simulation replicas, the mean of product of burden and
spacing along with the confidence intervals were recorded. If
there is a known relationship between burden and spacing,
the burden and spacing values can be deduced separately
from this product of burden and spacing. If such a
relationship is unavailable, different combinations of burden
and spacing yielding the abovementioned product can be
reviewed, and the best combination among these can be
chosen by blast engineers for application at the real mine.

The P80 of each blast from the forward blasting model
serves as input to the comminution model, which in turn is
used to simulate truck haulage, crushing, stockpiling, and
grinding operations. Using the forward blasting model, plus
the F80, power setting (with uncertainty) and the associated
Bond work indices for each comminution process, we can

estimate throughput as well as the P80 for each of these
comminution processes. Thus, the forward blasting model is
used to construct a model to predict blast fragmentation, the
reverse blasting model is used to determine burden and
spacing (for a desired P80) when needed, and the
comminution model is used to estimate throughput and P80
values for crushing and grinding operations.

In this work, three types of regression techniques were
applied for prediction of ore types from images of ore
fragments: PLSR, PCR, and LR. Fragments of different sizes
were present in each sample image. This was done in order to
analyse the effect of varying fragment sizes on accuracy of
prediction of rock types based on statistical regression
techniques. The fragments, collected from a mid-sized copper
mine in southern Arizona, were not cleaned before imaging,
so as to mimic a real-world situation. In some cases, fines
were added. Spectral imaging-based prediction involves
calibration of the image, training and validation of regression
model, and prediction. Calibration mainly involves correcting
and recalculating the intensities, in raw multispectral images,
of fragments on moving conveyors, based on the extreme
values of intensities obtained from images taken at the same
site on a static conveyor. Thereafter, for each pixel, the
intensity values across all wavelengths are converted into
absorbance values. As an example, in Figure 3, PLSR was
used for distinguishing between QMP (quartz monzonite
porphyry) and diorite, using the corresponding multispectral
image as input. The image of a conveyor moving at 1 m/s
was captured by a multispectral five-band camera with
1024×1360 pixel resolution; the spectral wavelength range
was 400–1000 nm. For training, 11 pixels covering QMP
(bright fragments; assigned ‘1’), diorite (other fragments;
assigned ‘0’), and background (tray; assigned ‘0’) were
chosen. PLSR in this case was trained to predict the pixel-
wise likelihood that there is QMP in an image. When the
trained PLSR was validated, it produced the image depicted in
Figure 3, where pixels that are more likely to be QMP exhibit
red or yellow colours and other pixels blue or green colours.
The bright red fragments are QMP and the others are diorite.
The sets of scenarios that were considered are as follows: (1)
QMP and diorite, (2) QMP and andesite, and (3) diorite and
andesite. In each of these images, training was performed 
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using spectral information from all types of materials
available that could be visually identified. A summary of
conveyor tests performed using this camera for ore type
prediction in a laboratory setting is provided in Table I.  

A summary of tests performed on a static surface with
the SWIR and VNIR cameras is provided in Table II. These
cameras generally have a large number of bands, and hence
they are called hyperspectral cameras. However, due to their
‘push-broom’ mode of operation, these cameras can lose
spectral information at high speeds (Figure 1). So, even
though the results are impressive, they are not suited for
prediction on conveyors at high speeds in real mines. The
effect of the presence of dust and fines on ore type prediction
is demonstrated in Figure 4. As illustrated in the left image of
Figure 4, the presence of dust was simulated in a laboratory

setting. Here, dust was simply blown when the image was
being captured to imitate a real mine. The pixels covering the
fines on top of andesite were not chosen for training. From
Figure 4 (right), it can be observed that the presence of dust
does not affect prediction using either the PLSR, PCR, or LR
method. However, the pixels covered by fines were not
detected as andesite. Here, the more reddish the colour, the
more likely it corresponds to andesite. 

The VNIR camera is mounted four to six feet above the belt to
provide a wide field of view of the passing product. A LED
lighting array is positioned around the camera to provide
even illumination of the target (Figure 5). The FMV-SI
camera uses a micro lens array so that all spectral bands are

Table II

SWIR camera Hard granite, 1275–2380 Logistic Mostly correct - aplite and soft granite are hard to

(1000-2500 nm; 256 band) soft granite, aplite regression model differentiate (3/6 Aplite rocks correct, 5/5 HG 90%

correct, 4/5 SG correct)

1000–2500
Logistic Hard granite predicts well, soft granite & 

90%
regression model aplite are sometimes predicted as each other

VNIR Hard granite, 
350–1100

Logistic Mostly correct - aplite and soft granite are hard

(350-1100nm; 540 band) soft granite, aplite regression model to differentiate (4/4 aplite correct, 90%

4/4 HG correct, 2/4 SG correct)

400–900
Logistic All 12 out of 12 rocks were correctly identified. 

100%
regression model (4/4 aplite correct, 4/4 HG correct, 4/4 SG correct)

Logistic Mostly correct - aplite and soft granite are hard

425–800 regression model to differentiate (2/2 Aplite correct, 4/4 HG 90%

correct, 4/4 soft granite correct)

Table I

VNIR (400-1000nm; 5 band/channel) QMP and diorite 400–1000 Partial least squares Mostly correct (7/7 QMP, 6/7 diorite) 90%

QMP and andesite 400–1000 Partial least squares All correct (8/8 QMP, 6/6 andesite) 100%

Andesite and diorite 400–1000 Partial least squares Some correct (4/6 Diorite, 5/6 andesite) 70%
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imaged with each captured frame. The camera has 16
narrow-band filters over a spectral range of 450–900 nm
with each image size of 640×540 pixels while capturing at
least 30 images per second. 

The proposed hardware to be used for the spectral
imaging-based tracking system (Figure 6) is as follows: (1)
conveyor; (2) multispectral camera; (3) server for storing
images; (4) computer for processing raw multispectral
images and calibrated images using SPLIT Online and the
PLSR regression model. The following software may be used:
(1) dynamic process simulation using ArenaTM, (2) SPLIT
Online, and (3) MATLAB. The sequence of steps involved in
detection and prediction of ore type is as follows. At first, the
raw feed from the cameras will be supplied to the server,
which stores this information. SPLIT Online delineates the
contours of each fragment from the feed images and also
provides average volume information of each fragment.
Then, MATLAB is used to run a PLSR code to distinguish
between ore types. Subsequently, based on the delineations
of the images provided by SPLIT Online, the PLSR outputs of
fragment contours and shadows are ignored. The end results
are the volume and tonnage by ore type that have passed the
camera at a given time. This information will be written into
a table in the server, which can be later used to run a
dynamic process simulation as well as estimate the cost
savings, as discussed later. 

The integration technique for SPLIT (image processing
system) and regression results distinguishing ore types are
briefly discussed here using an example. Figure 7 (left)
shows the delineations of a sample multispectral image
(Figure 3, right) using SPLIT Online. For delineation, SPLIT

Online first converts the RGB portion of the multispectral
image to greyscale. Secondly, various image enhancement
techniques, such as smoothing and sharpening, are applied.
To identify rock fragments, SPLIT Online utilizes techniques
such as texture analysis and threshold determination
algorithms. Results obtained from image processing using
SPLIT Online’s particle detection algorithms are to be overlaid
onto the PLSR code’s colour maps (Figure 3, right for this
example), as shown in Figure 7 (right). Here, pixels of very
dark blue colour in Figure 7 (right) correspond to black
pixels or non-fragment pixels in the delineated image in
Figure 7 (left).  

After ignoring non-fragment pixels, the remaining pixels
are grouped into two clusters. A fragment’s rock type is
estimated after assigning it to an appropriate cluster, based
on its average likelihood as determined by the PLSR code.
Not all pixels of a fragment are homogenous, possibly
because of variations in fracture or mineral content. In some
cases, the detection of non-fragment pixels may not be a
significant issue. For example, a real conveyor’s background
– such as in Figure 8 (left) and the delineated SPLIT image in
Figure 8 (right) – will have no exposure since the fragments
are very closely packed. In such cases, approximations can
be made about the ore type and volume of the very small
non-delineation dust-like fragments.

The proposed tracking system can help estimate the power
consumption for each ore type at blasting, crushing, and
grinding stages. It follows that the four best camera locations
for detecting ore fragment types and sizes leading to power
consumption estimation are before the crusher, after the



crusher, after the stockpile, and after the SAG mill. Due to the
non-availability of detailed P80 by ore type at each stage, the
power consumptions have been calculated for an assumed
reduction ratio (Kim, 2006, 2012; Kim, and Kemeny, 2011;
Nageshwaraniyer, Kim, and Son, 2015) at each stage. The
reduction ratio at a particular stage is defined in this work as
ratio of F80 to P80. The power consumption for blasting
(using the camera before the crusher) is estimated using
Equation [1]. The power consumptions for the crusher and
grinding operations are estimated using the Bond work index
formula with known Bond work indices. 

The aim of this experiment is to demonstrate how
spectral imaging-based tracking of classification into hard
and soft rocks can be used to obtain their optimum ESE

values that maximize cost savings from mine to mill. The
simulation model and the blasting parameter errors discussed
earlier were considered (Nageshwaraniyer, Kim, and Son,
2015). In addition, a percentage error of uniform distribution
UNIF (4, 5.5) was considered for each comminution power
setting. To simplify calculations, it was assumed that the
haulage costs are independent of specific explosives energy
applied during blasting. Therefore, for the purposes of

comparison of cost savings across different specific
explosives energies, the total power consumption is the sum
of power consumptions over the blasting and comminution
processes (Kim, and Kemeny, 2011). It was also assumed
that the mills are the primary bottlenecks in production
(Nielsen and Lownds, 1997; Nielson and Malvik, 1999).
Therefore, fixed relative power consumption cost percentages
were assumed for the blasting, crushing, and milling
processes, with the costs increasing as ore moves from
blasting to milling (Kim, and Kemeny, 2011). The effects of
reductions in Bond work indices due to micro-cracking were
included as well. Ten replications were performed to
determine the mean and confidence intervals of power
consumptions at all the stages indicated in Table III. The cost
savings shown in Figure 9 are compared to the base ESE

scenario of 175 kcal/t (732.2 kJ/t). It can also be seen that
the cost savings for hard rocks are larger for a wider range of
ESE than those for soft rocks. Although this is a preliminary
economic analysis based on some assumptions, the results
show ore-tracking will provide the information necessary to
choose the ESE for each ore type in order to achieve the
maximum cost savings.  

The economic benefits of using a spectral imaging-based
tracking method for ore type prediction in a mid-sized copper
mine in Arizona with two ore types have been demonstrated.
For the experiments, the ore types were assumed to have
different hardnesses; hence, they were classified into hard
and soft rocks (names of ore aligned with those used in the
case study). A simulation model of the material-handling
network from the blast sites to ball mills was constructed for
the analysis. The determination of cost savings over ranges
of ESE (specific explosives energy) values for each ore type is
made possible due to the tracking using a combination of
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Table III

Blasting (before crusher) 6 (bench block size) 8.43 0.219

After crusher 8.43 5.51 20.782

After SAG mill 5.51 0.50 1211.632

After ball mill 0.50 0.100 774.858
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multispectral camera, SPLIT Online fragment delineation
algorithm, and an ore type regression model in MATLAB.
After conducting tests using visible and near-infrared (VNIR)
and short-wave infrared (SWIR) cameras with the number of
bands ranging between 5 to 540, we concluded that:

(1) VNIR range cameras should be chosen, since they
cost less while achieving similar effectiveness to
SWIR cameras in ore type prediction

(2) Only up to five bands were needed for
distinguishing the various samples we obtained
from real mines

(3) A 3D full-motion video spectral imaging camera is
better than line-scanner cameras in retaining
spectral information at medium to high conveyor
speeds.  

It was observed that the cost savings as a function of ESE

do not behave the same way for the two ore types, which
implies that the spectral imaging-based tracking is
economically beneficial for the mine. 

ASBJÖRNSSON, G., HULTHÉN, E., and EVERTSSON, M. 2012. Modelling and dynamic
simulation of gradual performance deterioration of a crushing circuit–
Including time dependence and wear. Minerals Engineering, vol. 33.
pp. 13–19.

ASBJÖRNSSON, G., HULTHÉN, E., and EVERTSSON, M. 2013. Modelling and
simulation of dynamic crushing plant behavior with MATLAB/Simulink.
Minerals Engineering, vol. 43. pp. 112–120.

ASBJÖRNSSON, G., BENGTSSON, M., HULTHÉN, E., and EVERTSSON, M. 2016. Modelling
of discrete downtime in continuous crushing operation. Minerals

Engineering, vol. 98. pp. 22–29.

BECHTEL, R., RIVARD, B., and SÁNCHEZ-AZOFEIFA, A. 2002. Spectral properties of
foliose and crustose lichens based on laboratory experiments. Remote

Sensing of Environment, vol. 82, no. 2. pp. 389–396.

BLANCO, M. and PEGUERO, A. 2011. A new and simple PLS calibration method
for NIR spectroscopy. API determination in intact solid formulations.
Analytical Methods, vol. 4, no. 6. pp. 1507–1512.

BOBO, T.W., NORTON, B., KEMENY, J.M., and TAYLOR, M. 2004. Split-Online®

digital image analysis system to quantify particle size for the industrial
mineral industry. 2004 SME Annual Meeting Preprints.

CHUNG, S.H. and KATSABANIS, P.D. 2000. Fragmentation prediction using
improved engineering formulae. Fragblast, vol. 4, no. 3-4. pp. 198–207.

COMBS, J.H., KUDENOV, M.W., CRAVEN, J., and KEMENY, J.M. 2011. Evaluation of
rock faces with hyperspectral imaging. Proceedings of the 45th US Rock

Mechanics/Geomechanics Symposium. American Rock Mechanics
Association, Alexandria, VA.

DA CUNHA, E.R., DE CARVALHO, R.M., and TAVARES, L.M. 2013. Simulation of
solids flow and energy transfer in a vertical shaft impact crusher using
DEM. Minerals Engineering, vol. 43. pp. 85–90.

HAALAND, D.M. AND THOMAS, E.V. 1988. Partial least-squares methods for
spectral analyses. 1. Relation to other quantitative calibration methods
and the extraction of qualitative information. Analytical Chemistry, 
vol. 60, no. 11, pp. 1193–1202.

JANSEN, W., MORRISON, R., WORTLEY, M., and RIVETT, T. 2009. Tracer-based mine-
mill ore tracking via process hold-ups at Northparkes Mine. Proceedings of

the Tenth Mill Operators' Conference, Adelaide, SA. Australasian Institute
of Mining an Metallurgy, Melbourne. pp. 345–356.

KALL, P., WALLACE, S.W., and KALL, P. 1994. Stochastic Programming. Wiley,
Chichester, UK.

Kataoka, S. 1963. A stochastic programming model. Econometrica, vol. 31, 
no. 1–2. pp. 181–196.

KEMENY, J., MOFYA, E., KAUNDA, R., AND LEVER, P. 2002. Improvements in blast
fragmentation models using digital image processing. Fragblast, vol. 6,
no. 3–4. pp. 311–320.

KIM, K. 2006. Blasting design using fracture toughness and image analysis of
the bench face and muckpile. Master’s thesis, Virginia Tech.

KIM, K. and KEMENY, J.M. 2011. Site specific blasting model for mine-to-mill
optimization. Proceedings of the SME Annual Meeting and Exhibit and

CMA 113th National Western Mining Conference 2011. SME, Littleton,
CO.

KIM, K. 2012. Rock fracturing and mine to mill optimization. Doctoral
dissertation, University of Arizona.

KLUG, H.P. and ALEXANDER, L.E. 1954. X-ray Diffraction Procedures. Vol. 2.
Wiley, New York.

LA ROSA, D. and THORNTON, D. 2011. Blast movement modelling and
measurement. Proceedings of the 35th International Symposium on the

Applications of Computers and Mathematics in the Mineral Industries

(APCOM 2011). Australasian Institute of Mining and Metallurgy,
Melbourne. pp. 297–310.

LATHAM, J.P., KEMENY, J., MAERZ, N., NOY, M., SCHLEIFER, J., and TOSE, S. 2003. A
blind comparison between results of four image analysis systems using a
photo-library of piles of sieved fragments. Fragblast, vol. 7, no. 2. 
pp. 105–132.

MENG, C., NAGESHWARANIYER, S.S., MAGHSOUDI, A., SON, Y.J., and DESSUREAULT, S.
2013. Data-driven modeling and simulation framework for material
handling systems in coal mines. Computers and Industrial Engineering,
vol. 64, no. 3. pp. 766–779.

MODULAR MINING. 2014. http://mmsi.com

NAGESHWARANIYER, S.S., KIM, K.M., and SON, Y.J. 2015. Optimal blast design
using a discrete event simulation model in a hard-rock mine. Mining

Engineering, vol. 67, no. 11. pp. 47–53.

NAGESHWARANIYER, S.S., SON, Y.J., and DESSUREAULT, S. 2013. Simulation-based
optimal planning for material handling networks in mining. Simulation,
vol. 89, no. 3. pp. 330-345. https://doi.org/10.1177/0037549712464278

NIELSEN, K., and LOWNDS, C.M. 1997. Enhancement of taconite crushing and
grinding through primary blasting. International Journal of Rock

Mechanics and Mining Sciences, vol. 34, no. 3. p. 226–e1.

NIELSEN, K. and MALVIK, T. 1999. Grindability enhancement by blast-induced
microcracks. Powder Technology, vol. 105, no. 1. pp. 52–56.

PARK, S., CHOI, Y., and PARK, H.S. 2016. Optimization of truck-loader haulage
systems in an underground mine using simulation methods. Geosystem

Engineering, vol. 19, no. 5. pp. 222–231.

SALAMA, A., GREBERG, J., and SCHUNNESSON, H. 2014. The use of discrete event
simulation for underground haulage mining equipment selection.
International Journal of Mining and Mineral Engineering, vol. 5, no. 3. 
pp. 256–271.

SAHINIDIS, N.V. 2004. Optimization under uncertainty: state-of-the-art and
opportunities. Computers and Chemical Engineering, vol. 28, no. 6. 
pp. 971–983.

SANTELICES, G., PASCUAL, R., LÜER-VILLAGRA, A., MACCAWLEY, A., and GALAR, D.
2017. Integrating mining loading and hauling equipment selection and
replacement decisions using stochastic linear programming. International

Journal of Mining, Reclamation and Environment, vol. 31, no. 1. 
pp. 52–65.

SCOTT, A. ED. 1996. Open pit blast design: analysis and optimisation. JKMRC

Monograph Series in Mining and Mineral Processing, no. 1. Julius
Kruttschnitt Mineral Research Centre, University of Queensland.

SGAVETTI, M., POMPILIO, L., CARLI, C., DE SANCTIS, M.C., CAPACCIONI, F., CREMONESE,
G., and FLAMINI, E. 2007. BepiColombo SIMBIO-SYS data: Preliminary
evaluation for rock discrimination and recognition in both low and high
resolution spectroscopic data in the visible and near infrared spectral
intervals. Planetary and Space Science, vol. 55, no. 11. pp. 1596–1613.

SOC. 2014. Surface Optics Corp. www.surfaceoptics.com. 

STURGUL, J.R. 1999. Discrete mine system simulation in the United States.
International Journal of Surface Mining, Reclamation and Environment,
vol. 13, no. 2. pp. 37–41.

TANGESTANI, M.H., JAFFARI, L., VINCENT, R.K., and SRIDHAR, B.M. 2011. Spectral
characterization and ASTER-based lithological mapping of an ophiolite
complex: A case study from Neyriz ophiolite, SW Iran. Remote Sensing of

Environment, vol. 115, no. 9. pp. 2243–2254.

TORKAMANI, E. and ASKARI-NASAB, H. 2015. A linkage of truck-and-shovel
operations to short-term mine plans using discrete-event simulation.
International Journal of Mining and Mineral Engineering, vol. 6, no. 2. 
pp. 97–118.

ZHANG, H. 2008. Multi-objective simulation-optimization for earth moving
operations. Automation in Construction, vol. 18, no. 1. pp. 79–86. ◆

▲

14 VOLUME 118   


