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Abstract: This mini-review is aimed at briefly summarizing the present status of functional

near-infrared spectroscopy (fNIRS) and predicting where the technique should go in the next

decade. This mini-review quotes 33 articles on the different fNIRS basics and technical developments

and 44 reviews on the fNIRS applications published in the last eight years. The huge number of

review articles about a wide spectrum of topics in the field of cognitive and social sciences, functional

neuroimaging research, and medicine testifies to the maturity achieved by this non-invasive optical

vascular-based functional neuroimaging technique. Today, fNIRS has started to be utilized on healthy

subjects while moving freely in different naturalistic settings. Further instrumental developments

are expected to be done in the near future to fully satisfy this latter important aspect. In addition,

fNIRS procedures, including correction methods for the strong extracranial interferences, need to

be standardized before using fNIRS as a clinical tool in individual patients. New research avenues

such as interactive neurosciences, cortical activation modulated by different type of sport performance,

and cortical activation during neurofeedback training are highlighted.

Keywords: functional near-infrared spectroscopy; functional neuroimaging; optical imaging;

cortical activation

1. Introduction

Biophotonics is a bridging discipline located at a critical juncture between fundamental advances

in science/technology and biomedicine. Optical technologies have been playing an increasingly big

role in the study of living organisms—the brain, in particular. Neurophotonics is an exploding

research field that spans the intersection of light and neurons for fundamental discovery and clinical

translation [1]. Neurophotonics employs a range of optical methodologies, from microscopies to

spectroscopies, to achieve a multiscale understanding of the structure and function of normal and

diseased brains as well as the nervous system. In particular, neurophotonics has employed photons

to: (1) Interrogate the cellular processes of the nervous systems, (2) manipulate neurons to modulate

function, and (3) detect diseases for clinical diagnosis and surgical guidance. This transdisciplinary

field bridges the disciplines of optical physics, biochemistry, biomedical engineering, physiology,

neuroscience, and neurosurgery. In 2005, Tanner et al. [2] published the first article including the term

“neurophotonics” in the title. The results reported in that article were obtained by near-infrared (NIR)

spectroscopy (NIRS). The discovery of this technique, now named medical NIRS, goes back to 1977 [3],

when Frans Jöbsis, Professor of Physiology at Duke University (Durham, NC, USA), reported that the

relatively high degree of transparency of brain tissue in the 650–900 nm NIR range (“optical window”),

and the characteristic hemoglobin (Hb) absorption spectra in this wavelength region enable real-time

non-invasive detection of Hb oxygenation using transillumination spectroscopy.

Photonics 2019, 6, 87; doi:10.3390/photonics6030087 www.mdpi.com/journal/photonics

http://www.mdpi.com/journal/photonics
http://www.mdpi.com
https://orcid.org/0000-0001-9884-0304
https://orcid.org/0000-0002-3041-2917
http://dx.doi.org/10.3390/photonics6030087
http://www.mdpi.com/journal/photonics
https://www.mdpi.com/2304-6732/6/3/87?type=check_update&version=3


Photonics 2019, 6, 87 2 of 16

In medical NIRS measurements, the source (laser or light emitting diode) and detector probes are

positioned over the scalp surface to detect the change in optical density caused by the hemodynamic

changes mainly expected in the cortical grey matter [4]. Consequently, the light needs to pass through

different extracranial and intracranial tissues (superficial layers, skull, cerebrospinal fluid, meninges,

cortical grey matter) both before and after passing through the brain. At the end, the detected emerging

NIR signal (as a result of the absorption and scattering phenomena) comes mainly from oxygenated Hb

(O2Hb) and deoxygenated Hb (HHb) located in small vessels (<1 mm diameter). A schematic sketch

representing the NIR light travelling through the different intracranial tissues is reported in Figure 1.

 

Figure 1. Schematic representation of the optical region of sensitivity (banana-shaped shaded area) in

non-invasive near-infrared (NIR) studies of the human brain. The illumination and collection points

(which are coupled to a light source and optical detector, respectively) are located on the scalp at a

relative distance of the order of 3 cm. Light propagation is affected by the heterogeneity in the optical

properties of tissues. Therefore, the sensitivity of the optical signal to the probed tissue is not spatially

uniform (as indicated by the different grey levels within the region of sensitivity) and is maximal in the

most superficial tissue layers (scalp and skull). Reproduced with permission from [5]© 2018 licensed

under a Creative Commons Attribution (CC BY) license.

NIR photons propagate simultaneously in the entire illuminated volume of the head, and, due to

multiple scattering, the photon paths have all possible shapes and lengths. The light intensity in the head

cannot be non-invasively measured. Therefore, the light propagation in the head has been predicted

by simulations using realistic head models and the Monte Carlo method [6]. The most meaningful way

to characterize the variety of paths is to use the statistical quantities such as the mean total pathlength

(typically 5–10 larger than the source–detector distance) and the partial pathlength—regions of the

head, in particular. The partial pathlength in the brain of the adult subjects is small compared to the

total pathlength (~10% of the total pathlength at a 3 cm separation).

It is important to obtain the sensitivity of the NIRS signal to the absorption change in the volume of

sampled tissue, in particular in the cortical grey matter, with a particular source–detector pair. For this

purpose, Sakakibara et al. [7], using Monte Carlo simulations and a five-layered head model, elaborated

the spatial sensitivity profile on the surface of the grey matter (Figure 2). The source–detector

pair detects the absorption change in the broad region in the grey matter. The sensitivity of the

source–detector pair is the greatest at the measurement point, but the sensitivity decreases with an

increase in the distance from the measurement point. The black and white lines in the figure indicate

50% and 10% with respect to the maximum sensitivity. The spatial distribution of the sensitivity of

the probe arrangements depends on the positions of the measurement points and the direction of the

spatial sensitivity profiles. Using the Monte Carlo method and the diffusion theory, several previous

studies demonstrated that functional near-infrared spectroscopy (fNIRS) signals are more sensitive to

the surface areas immediately under the optodes, i.e., the scalp, for review [5]. This limitation is less

significant in young children, since, with thinner skull, the partial pathlength in the brain increases.
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Figure 2. The spatial sensitivity profile on the grey matter surface. The black and white dotted lines

indicate 50% and 10% with respect to the maximum sensitivity. This profile was obtained by a Monte

Carlo simulation of a five-layered head model. Reproduced with permission from [7]© 2016 Springer.

In 2012, the Journal of Near Infrared Spectroscopy Special Issue on Medical Application nicely summarized

the most important aspects of the medical NIRS in 16 articles (mainly review articles) [8,9]. Brain/muscle

oximetry and functional NIRS (fNIRS) represented the most established clinical and/or basic research

areas. The first brain oximeter measuring cortical Hb saturation (in %) was built in 1989 by Hamamatsu

Photonics K.K. (Japan). Today, more than 10 brain oximeters with Food and Drug Administration

(FDA) and/or European Union (EU) approval are commercially available and utilized worldwide

mainly in cardiac surgery and neonatal intensive care units [10–13]. The present mini-review does not

cover the present and future applications of oximetry. Instead, it wants to focus exclusively on fNIRS

applied to different medical fields.

In the last 20 years, there have been exponential developments in the field of neuroimaging.

This field includes mainly magnetic resonance imaging (MRI) and molecular imaging, and most

of the changes have occurred in the latter with advances in positron emission tomography (PET).

Now, it is possible to image the brain glucose consumption as well many different chemicals like

dopamine, serotonin, and acetylcholine. Non-invasive vascular-based neuroimaging techniques,

such as functional MRI (fMRI) and fNIRS, map brain activity through hemodynamic-based signals and

are invaluable diagnostic tools in several neurological disorders. Cerebral blood flow (CBF), adequate

for brain activity and metabolic demand, is maintained through the processes of neurovascular

coupling. More particularly, when a specific brain region is activated, CBF increases in a temporally

and spatially coordinated manner tightly linked to changes in neural activity through a complex

sequence of coordinated events involving neurons, glia, arteries/arterioles, and signaling molecules.

fNIRS and fMRI rely on this coupling to infer changes in neural activity that are mirrored by the

changes in the blood oxygenation in the region of the activated cortical area.

fNIRS, applying an array of sources/detectors over the scalp, maps (typical sampling rate 1–10 Hz)

the concomitant increase in O2Hb and the decrease in HHb only at level of cortical microcirculation

blood vessels by means of the characteristic Hb absorption spectra in the NIR range; fMRI only

maps the decrease in HHb in all brain regions with a spatial resolution ten times higher than

fNIRS does. fNIRS also maps the total Hb (tHb) (tHb = O2Hb + HHb), though this is strictly

related to cerebral blood volume. The hemodynamic signals are normally precisely related to the

underlying neuronal activity through neurovascular coupling mechanisms that ensure the supply of

glucose and oxygen to neurons [14] but also provide a heat sink to help cool the brain and removal

of waste by-products [15,16]. In addition, the neurovascular coupling plays a key role in water

dynamics inside the brain barrier [17]. As described recently in detail [18,19], the fNIRS signal

includes six different components that can be classified according to their: (1) Source (cerebral versus
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extra-cerebral); (2) stimulus/task relation (evoked versus non-evoked); and (3) physiological cause

(neuronal versus systemic). The monitoring of the hemodynamic response due to neurovascular

coupling is only one of these six components (i.e., the component neuronal/task-evoked/cerebral), while

all the other components are the physiological noise that acts as confounders in fNIRS studies and

must be removed by different methods [5,19]. While the strict relationship between CBF and neuronal

activity forms a fundamental brain function, whether neurovascular coupling mechanisms are reliable

across physiological and pathological conditions is still questionable; for instance, alterations of the

brain vasculature compromise neurovascular coupling. The mechanisms that are involved in the

neurovascular coupling are different in health and in diseases such as psychiatric disorders and stroke.

In addition, neurovascular coupling mechanisms are probably affected by changing brain states like

sleep, wakefulness, and attention. Though fMRI has been clinically utilized more extensively than

fNIRS, in the last decade the functional activation of the human cerebral cortex has been successfully

explored by fNIRS. The latest is also named: Optical topography, NIR imaging, diffuse optical imaging

(DOI), or diffuse optical tomography (DOT). Unlike fMRI, fNIRS can be utilized on subjects while

moving freely in naturalistic settings (such as face to face communications), in hyper-scanning studies,

and in field studies on subjects practicing sports, playing a musical instrument, etc.

The present mini-review article is aimed at briefly summarizing the current status of fNIRS and at

predicting where the technique should go in the next decade.

2. Where Do We Stand

In order to provide the readers with an update of the fNIRS methods, in Table 1 recent relevant

references (33 articles published from 2012) are reported about several topics related to the fNIRS

basics and technical developments. These articles were identified through the PubMed, Web of Science,

and Scopus databases. The topics include: The basics of NIR photon migration, the state of the art

of instrumentations/signal processing/statistical analysis, and the integration of fNIRS with other

neuroimaging methods.

Table 1. Most relevant references about functional near-infrared spectroscopy (fNIRS): Basics and

technical developments.

Topic Year 1st Author [Ref]

Modeling near-infrared photon propagation in biological tissue
2012 Martelli [20]
2016 Bigio [4]
2018 Fantini [5]

History of fNIRS 2012 Ferrari [21]

State of the art of continuous-wave multispectral fNIRS instrumentation
2014 Scholkmann [18]
2017 Yücel [22]

State of the art of continuous-wave hyperspectral fNIRS
instrumentation

2016 Nsorati [23]
2016 Pham [24]
2018 Giannoni [25]

State of the art of time-domain fNIRS instrumentation
2014 Torricelli [26]
2019 Yamada [27]

Clinical brain monitoring by time-domain fNIRS instrumentation 2019 Lange [28]

State of the art of diffuse optical imaging

2016 Hoshi [29]
2017 Lee [30]
2018 Fantini [5]
2018 Zhao [31]

State of the art of wearable fNIRS
2018 Strangman [32]
2018 Pinti [33]

State of the art of functional connectivity measurements 2018 Fantini [5]
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Table 1. Cont.

Topic Year 1st Author [Ref]

Factors influencing fNIRS data and recommendations 2010 Orihuela-Espina [34]

Caps for long term fNIRS measurements 2015 Kassab [35]

Selection of the optimum source–detector distance 2015 Brigadoi [36]

Mayer waves interference 2016 Yücel [37]
Multiple components of the fNIRS signal 2016 Tachtsidis [19]
Signal pre-processing procedures 2019 Pinti [38]

Anatomical guidance for fNIRS
2014 Tsuzuki [39]

2015 Aasted [40]

Statistical analysis of fNIRS data 2014 Tak [41]

Pattern of hemodynamic response in newborn < 1 month 2018 de Roever [42]

Pattern of hemodynamic response in infants 2018 Issard [43]

Integration of fNIRS with:

• Electroencephalography

• Functional magnetic resonance imaging

• Transcranial magnetic stimulation

2017 Chiarelli [44]
2017 Scarapicchia [45]

2019 Curtin [46]

Recent fNIRS general reviews including the advantages and limitations
of fNIRS

2018 Fantini [5]
2018 Pinti [47]
2019 Quaresima [48]

Ref: Reference number.

The advantages and disadvantages of fNIRS have been widely reported in several recent review

articles [5,47,48]. Unlike other neuroimaging modalities, fNIRS has a very high experimental flexibility.

fNIRS is silent, tolerant to movement artefacts, and allows for long-time continuous measurements.

fNIRS can be easily integrated with fMRI, PET, electroencephalography (EEG) or event related potentials.

A detailed critical comparison between fNIRS and fMRI has been recently reported [5]. Among the

disadvantages, it is noteworthy to mention: (1) fNIRS does not provide anatomical information, and (2)

fNIRS measurements are restricted to the outer cortex and have a low spatial resolution (2–3 cm).

Roughly twenty multi-channel fNIRS systems, which utilize arrays of multiple NIR sources

and detectors arranged over the scalp, are so far commercially available [47,48]. Figure 3 shows one

stationary system and two mobile wireless systems.

Multi-channel fNIRS systems utilize different NIRS techniques: (1) The continuous wave (CW)

multispectral and CW hyperspectral (broadband) techniques, both based on constant tissue illumination,

measuring the light attenuation; (2) the frequency-domain (FD) method, based on intensity-modulated

light, measuring both the attenuation and phase delay of emerging light; and (3) the time-domain (TD)

technique, based on short pulses of light, measuring the shape of the pulse after propagation through

tissues [18]. The CW hyperspectral technique allows for a more accurate separation of the chromopores

than the CW multispectral technique that utilizes few wavelengths [25]. The O2Hb/HHb quantitation

depends on the fNIRS adopted technology [5,18]. The most commonly used CW multispectral fNIRS

instrumentation measures changes of O2Hb and HHb (with respect to an initial value arbitrarily set

equal to zero) that are calculated using a modification of the Lambert–Beer law. Considering that the

tissue optical pathlength is longer than the distance between the source and the detector (Figure 1),

the O2Hb and HHb signal changes are expressed as µmolar*cm or mmolar*mm. CW multispectral

systems offer the advantages of being low-cost and easily transportable (Figure 3). fNIRS analysis

methods permit the monitoring of real-time cortical hemodynamic changes. fNIRS data from multiple

simultaneous measurement sites are displayed by fNIRS systems in the form of O2Hb/HHb map over

a cortical area.
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Figure 3. Continuous wave (CW) multispectral fNIRS instrumentations. Left panel: Stationary system in

a conventional laboratory setting (LABNIRS, Shimadzu, Japan with three wavelengths and 52 channels)

(year of release in USA 2015) (Photo courtesy of University College London, Department of Medical

Physics and Biomedical Engineering). Central panel: Mobile wireless system in outdoor environment

(Brite24, Artinis Medical Systems, The Netherlands with two wavelengths and 24 channels) (year of

release 2018) (Photo courtesy of Artinis). Right panel: Mobile wireless system (LUMO, Gowerlabs

Ltd., UK) (year of release 2019) (Photo courtesy of Gowerlabs). The first commercially available

modular, wearable, high-density diffuse optical tomography (DOT) system consisting of a series of

hexagonal sensor modules (‘tiles’), each of which provides two wavelength LED sources and four

detectors. Channels are formed both within and across tiles with source–detector separations ranging

from 10 to 40 mm. By connecting multiple tiles into the LUMO head cap, users can create lightweight,

high-density fNIRS imaging arrays to cover any part of the cortex. We obtained permission from

photographed subjects.

In 2014, the journal Neuroimage dedicated a Special Issue with 58 articles to celebrate the first

20 years of fNIRS research [49]. Thus far, fNIRS has lacked the combination of spatial resolution and

wide field-of-view sufficient to map in detail distributed brain functions. The emergence of high-density

DOT represents the last generation of multispectral CW fNIRS systems. Figure 3 depicts an example of

a high-density DOT imaging system for children and adults. High-density DOT resolves the basic

problem of the contribution from hemodynamic changes occurring in the scalp, skull, and other

extra-cerebral tissue layers [5].

In order to provide the readers with an update on the fNIRS applications, in Table 2, 44 recent review

articles (published from 2012) covering different applications are listed; the field of psychology/education

is covered by 10 reviews, functional neuroimaging basic research by 13 reviews, and medicine by

18 reviews.

Table 2. Main reviews on the fNIRS applications in the fields of cognitive and social sciences, functional

neuroimaging research, and medicine.

Field of Application Topic Year N. Subjects 1st Author [Ref]

Psychology/education

Cognition and food 2015 39 A Val-Laillet [50]

Cognition in infants 2015 171 C Aslin [51]

Development (typical and atypical)
2014 29 C Vanderwert [52]
2015 149 C Wilcox [53]

Development of mathematics/language
skills in children

2018 7 C Soltanlou [54]

Emotion 2016 11 A Bendall [55]

Influence of exercise on cognition 2018 35 A Herold [56]

Interhemispheric organization 2014 32 A Homae [57]

Psychology general review 2012 106 A Cutini [58]

Social development during infancy 2018 29 C McDonald [59]
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Table 2. Cont.

Field of Application Topic Year N. Subjects 1st Author [Ref]

Economics Neuroeconomic research 2014 15 A Kopton [60]

Linguistics
Language and its development 2012 60

A
C

Quaresima [61]

Word and sentence processing 2012 9 C Rossi [62]

Neuroergonomics Neuroergonomics and fNIRS
2018 68 A Curtin [63]
2019 37 A Zhu [64]

Functional Neuroimaging
Basic Research

Brain computer interface 2015 33 A Naseer [65]

Driving research
2016 10 A Liu [66]
2019 13 A Lohani [67]

Hybrid fNIRS-EEG brain-computer
interfaces

2017 11 A Ahn [68]
2018 43 A Hong [69]

Hyperscanning with multi-subject
measurements

2013 7 A Scholkmann [70]
2018 15 A Minagawa [71]
2018 18 A Wang [72]

Postural and walking tasks 2017 57 A Herold [73]

Resting-state functional brain
connectivity

2014 16 A Niu [74]

Walking
2017 31 A Vitorio [75]
2019 35 A Pelicioni [76]

Walking and balance tasks in older
adults

2018 24 A Stuart [77]

Medicine

Attention deficit disorder 2018 11 C Mauri [78]

Auditory cortex plasticity after
cochlear implant

2018 7 A Basura [79]

Autism spectrum disorder
2019 15 C Liu [80]
2019 30 C Zhang [81]

Cognitive aging 2017 34 A Agbangla [82]

Developmental age attention
deficit/hyperactivity disorder

2019 13 C Grazioli [83]

Eating disorders 2015 11 A Val-Laillet [50]

Epilepsy 2016 23 A Peng [84]

Gait disorders 2017 12 A Gramigna [85]

Mild cognitive impairment 2017 8 A Beishon [86]

Neurofeedback training 2018 127 A Ehlis [87]

Pain assessment in infants 2017 9 C Benoit [88]

Parkinson’s disease and walking
balance tasks

2018 5 A Stuart [77]

Prolonged disorder of consciousness 2018 7 A Rupawala [89]

Psychiatry 2014 168 A Ehlis [90]

Robot-assisted gait training 2019 2 A Berger [91]

Schizophrenic disorders 2017 17 A Kumar [92]

Stroke therapy/recovery/rehabilitation 2019 66 A Yang [93]

A: Adults; C: Children; EEG: Electroencephalography; N: Number of reviewed articles; Ref: Reference number.

The total number of the articles quoted by the 44 reviews is 1675. A detailed analysis of the very

different fields of applications is beyond the aim of this mini-review. It is noteworthy to mention in the

last five years, there has been an increasing number of clinical studies on psychiatric disorders and

basic studies using the hyper-scanning approach. Hyper-scanning, which consists of the measurement

of brain activity simultaneously on two or more people, has been adopted by fNIRS for investigating
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inter-personal interactions in a natural context. fNIRS, more than any other neuroimaging modality, is

suitable for investigating real social interactions by using the hyper-scanning approach.

Table 3 lists five recent video articles showing different applications; these videos very

carefully illustrate different studies performed in a laboratory or outdoor area utilizing stationary or

mobile/wireless instrumentations.

Table 3. Recent fNIRS video articles.

Topic Year 1st Author [Ref]
Device, Company,

Country
Number of
Channels

Brain development. Language
processing study (rhyme
judgment task) on primary school
aged children.

2018 Jasińska [94]
LightNIRS,

Shimadzu, Japan
47

Hyper-scanning. Parent–child
dyads for analyzing brain-to-brain
synchrony during a cooperative
and a competitive computer task.

2019 Reindl [95]
ETG-4000, Hitachi,

Japan
44

Motor cortex activation during
different motor tasks (cycling,
walking) on adults.

2014 Sukal-Moulton [96]
CW6, TechEn,

Milford, MA, USA
24

Temporal cortex activation during
a dance video game task revealed
by fNIRS and fMRI on adults.

2015 Noah [97]
LABNIRS,

Shimadzu, Japan
22

Wearable fNIRS. Real-world
ecological prospective memory
tasks on adults.

2015 Pinti [98]
WOT-100, NeU

Corporation, Japan
16

fMRI = functional magnetic resonance imaging; Ref = reference number.

The top 10 cited articles on fNIRS [21,99–106], ranked according to their citations, account

for between approximately 500 to over 1000 studies and (data from Scopus, Elsevier, Amsterdam,

The Netherlands, June 2019) provide an insight into the historical developments and allows for the

recognition of the important advances in the fNIRS field since 1993, the year of the first five fNIRS

publications [21].

3. Where Should We Go?

The main question is: Might fNIRS improve people’s lives? Imagining the future of the fNIRS

instrumentations and applications is quite difficult. Considering that a significant portion of the optical

pathlength of the detected photons lies within the extra-cerebral tissue (Figure 1), the “vital” main

requirement of all commercial fNIRS instrumentations (using different fNIRS methods) should be

their capability to correct the skull/scalp blood flow/systemic effects. For this purpose, the ideal fNIRS

instrumentation should be equipped with different source–detector distances that can provide the

fNIRS data necessary for adopting the different strategies to disentangle the cerebral/extra-cerebral

contributions of the NIRS signals. These strategies have been recently reviewed [5,19].

The sector of wearable health technology is gaining endless interest. The use of low-cost wearable

monitoring devices or wearable biosensors that allow for the constant monitoring of physiological

signals, such as fNIRS signals, is essential for the advancement of both the diagnosis and treatment of

diseases, as well as for monitoring active life styles [32,107].

Since the first fNIRS studies in 1993, there has been a vast improvement in CW multispectral

fNIRS systems. TD-fNIRS (the most quantitative methodology) is still not at its final stage; broadband

or multi-wavelength laser sources and new detectors can be further miniaturized [108], and the signal

to noise ratio can be consistently improved [109,110].
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New developments in fNIRS technology will further allow for the monitoring, at least on

newborns, of the cytochrome-c-oxidase redox state (CCO), which is also a metabolic marker of

oxidative metabolism [111]. The hyperspectral CW NIR technique is currently used by some research

groups to monitor in vivo human brain metabolism via measurements of the concentration changes

in O2Hb, HHb and the oxidation state of CCO to achieve the quantification of cerebral metabolic

activation in different situations from functional stimulation to response during oxygen-dependent

conditions [23,24]. An increase of the CCO signal, typically corresponding to an increment in cerebral

metabolism, was found, for instance, during the functional activation induced by simulated driving [23],

the Stroop task [24] or working memory tasks [112]. Unlike the hemodynamic changes that are strongly

affected by scalp blood flow changes, the changes in the CCO signal more specifically reflect the brain

cortex activation. Therefore, the CCO measurement could represent an additional and more robust

marker of cortical brain activation, thus allowing for the better identification of false positives and

negatives [19].

The fNIRS integration with multimodal physiological monitoring and neuro-stimulation

methodologies has already been demonstrated [46], but it needs to be better designed and

defined. Very recently, Scholkmann et al. [113] introduced systemic-physiology-augmented functional

near-infrared spectroscopy; SPA-fNIRS), which consists of a combination of fNIRS with physiological

measurements. These measurements, obtained by a gas analyzer, a continuous noninvasive blood

pressure monitor, and a skin conductance measuring device, can give an important integrative view

because any brain stimulation could provoke systemic effects, which, in turn, could affect cerebral

hemodynamics. Therefore, these effects should be investigated because the concept that cerebral

hemodynamic changes are purely associated with brain activation is probably wrong, and it should be

correctly revisited [113].

Considering that fNIRS has no age limitation, it is difficult to predict which would be the most

useful clinical and basic science applications. Table 2 already includes some very useful clinical and

basic science applications to be further investigated. The most important challenge is to improve

patient care by translating the new technologies from basics science into clinical practice.

The FDA, industries and several research groups have become increasingly involved in efforts

to develop international consensus standards that can facilitate the development of fNIRS devices

with the potential to improve the related regulatory processes. Recommendations for conducting and

reporting fNIRS findings should be also generated.

To extract and analyze the fNIRS information at single-subject level, novel methods should be

conceived. Ideally, all clinical applications would require a single-subject analysis, even on-line in the

case of, for example, the neurorehabilitation field. These new methods should be capable to identify the

cortical circuitry and the brain function/dysfunction. For instance, several psychiatric and neurological

symptoms are best explained by network-level changes rather than focal alterations. Given the broad

range of related diseases and methodological variability, defining procedural clinical standards could

be difficult. However, developing recommendations for patient and methodological challenges is

highly desirable to move fNIRS into the clinical realm [114].

The multi-modal integrations of EEG-fNIRS seem to be promising in different fields [44].

For example, EEG-fNIRS can characterize the neurovascular coupling in the brain network dynamics

induced by robot-assisted gait training [91]. In order to guide non-invasive brain stimulation protocols,

a feedback of cortical activations patterns could be useful for the identifications of regions of hypo-

or hyperactivity. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation

technique that involves the application of low intensity direct currents at the scalp for the modulation

of central nervous system excitability [115]. tDCS is an increasingly important tool that is being used

in a wide range of applications, including as a potential adjunct therapy for neurological/ psychiatric

disorders. The integration of tDCS with EEG-fNIRS holds great promise for shedding light on the

underlying neural mechanisms of stimulation effects [115].
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A recent review article summarized the vast potential and bright future of all neuroimaging

techniques [116]. Several advances in functional neuroimaging technologies offer promising

opportunities to answer clinical questions and to address some of the most fundamental aspects of

how the brain works. Local fluctuations in brain physiologic signals are highly correlated across

brain regions organized within functional networks. Functional connectivity maps could also provide

clear guidance for pre-surgical planning for the resection of brain tumors and epileptogenic lesions.

In the future, such connectivity maps may allow clinicians to interrogate functionally perturbed

networks controlling attention, memory, and other key cognitive domains. In addition, fNIRS will

absolutely have a unique role in fields such interactive neurosciences [71], cortical activation in sport

performance [117], and cortical activation during neurofeedback training [87].

Moreover, over the last 20 years, a complementary optical technique—NIR diffuse correlation

spectroscopy (DCS)—has been developed for the continuous measurement of blood flow in tissue.

Applications to the human brain cortex have been successfully demonstrated [118]. DCS uses the

temporal fluctuations of diffusely-reflected light to quantify the motion of tissue scatterers (which

are primarily red blood cells) and provides a non-invasive estimate of deep tissue microvascular

blood flow. By combining oximetry and DCS flow measures, the tissue regional oxygen metabolic

rate—a parameter closely linked to underlying physiology and pathological states—could finally be

quantified [119,120]. Therefore, the combination of fNIRS with DCS could provide a very interesting

tool for functional neuroimaging studies because it could give information about how surface/cortical

blood flow changes affect the hemodynamic signals that are measured by fNIRS.

4. Conclusions

fNIRS technology continues to evolve, and the nature of this approach provides distinct advantages

when studying human cortical activation. Despite the current limitations that are largely isolated to

a limited depth of penetration, a low spatial resolution, and strong extra-cranial interference, in our

view, the feasibility and the success of applying fNIRS in some branches of medicine, neuroimaging

basic research, and social sciences have been well documented. The development of fNIRS has

strongly gained from the advances in microelectronics, computer technology, and optical engineering.

With the advent of further miniaturization and integration such as integrated optics, wearable and

even disposable fNIRS technology can be envisioned. The fNIRS systems that will emerge from these

developments would further enlarge the number of fNIRS applications and make fNIRS findings more

easily comparable with the other ones obtained by using other technologies. Before reaching the final

goal, consisting of the use of fNIRS as a clinical tool in individual patients, fNIRS procedures need to

be standardized.
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