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Abstract. The question of an optimal age- 

depth relation for deep-sea sediment cores has 

been raised frequently. The data from such cores 

(e.g., •1so values) are used to test the astro- 
nomical theory of ice ages as established by Mi- 
lankovitch in 1938. In this work, we use a, min- 

imal cost h•nction approach to find simultane- 

ously an optimal age-depth relation and a lin- 

ear model that optimally links solar insolation or 

other model input with global ice volume. Thus a 

genera.1 tool for the calibration of deep-sea cores 

to arbitrary tuning targets is presented. In this in- 

verse modeling type approach, an objective func- 

tion is minimized that penalizes: (1) the devia- 
tion of the data. from the theoretical linear model 

(whose transfer function can be computed analyt- 
ically for a given age-depth relation)and (2) the 

violation of a set of plausible assumptions about 

the model, the data a.nd the obtained correction 

of a first guess age-depth function. These as- 

smnptions have been suggested before but are now 

quantified and incorporated explicitly into the ob- 

jective function as 1)enalty terms. We formulate 

an optimization problem that is solved numeri- 

cally by conjugate gradient type methods. Us- 

ing this direct. approach, we obtain high coher- 
ences in the Milankovitch frequency bands (over 

90%). Not only the data time series but also 

the the derived correction to a first guess linear 

age-depth function (and therefore the sedimen- 
tation rate) itself contains significant energy in a 

broad frequency band around 100 kyr. The use 

of a sedimentation rate which varies continuously 

on ice age time scales results in a shift of energy 
from 100 kyr in the original data spectrum to 41, 

23, and 19 kyr in the spectrum of the corrected 

data. However, a. large proportion of the data 

variance remains unexplained, particularly in the 

100 kyr frequency band, where there is no sig- 

nificant input by orbital forcing. The presented 

method is applied to a real sediment core and to 

the SPECMAP stack, and results are compared 

with those obtained in earlier investigations. 
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Proxy data from deep-sea cores have been used 

extensively to test the orbital theory of ice ages 

introduced by Milankovitch [1938]. A problem 
in the direct comparison between time-dependent 

forcing (changes in solar insolation) and space- 
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(i.e., del)t.h-) dependent' dat±a, however, is that 
there is no accurat,e experiment,al a.ge-dat,ing pro- 
cedure for the long time intervals considered. 

Shackleton et al. [1990] suggested that. even well- 
est,ablished ages (such as the Brunhes/Mat, uyama 
boundary at 730 ka.) might be underest,imated by 

up t,o 7% (xvit,h a correct value 780 ka). ttecent,ly, 
this hypothesis has received independent support 

by Hilgen [1991] using a similar a.st,ronomica.1 tun- 
ing approach and by Izett and Obra. dovich [1991] 
for t,he case of t,he Brunhes/Mat±uyama bound- 
ary (new estimate at 790 ka) and by Walter 

et, al. [1991] for older isotopic event,s from a 
4øAr/gmAr analysis using a. single-cryst,al la. ser- 
fusion t,echnique. 

Here we present a universal tool for testing or- 

bital a. nd or, her theories of ice ages. The method 

used produces opt,ima.1 age-dept,h functions for a,r- 
bit,rary cores and is subject,ire only in t,erms of t,he 

choice al•d the relat,ive importance of t,he different 

component,s of the objective function. In contra, st 

t,o previous approaches, the user can quant,ify a 

priori some subject, ire preference for different fea,- 

t,ures of the final solution (e.g., deviat,ion from an 

initial first guess age-depth function), and t,hus 

explore t,he sensitivity of the final solution t,o t,he 

relat,ive import,ance of the different criteria used. 

This work pursues two simult,a. neous goals. 
First,. we try to find an opt,imal response funct,ion 

for a linear system of arbitrary high order t,ha, t, 
links solar insolation with climat,e indices. for ex- 

ample, global ice volume as represent,ed by the 
ratio of slable oxygen isotopes. The solar insola- 

tion varies with the geomet,ry of t,he Ea.rt,h's orbit 

around t l•e Sun and can be computed numerica.lly 

for a,t, least the last million yea, rs [Berger, 1978]. In 
t,he frequency domain, t,his input contains signif- 
icant energy only in t,he Milankovit,ch frequency 

bands of 41, 23, and 19 kyr. In further experi- 
ment,s, we use a.lso the sum of t,he normalized or- 

bit,a,1 parameters (t. he so-called ETP time series) 
[cf. Imbrie et al., 1984] a,s system input which in 
addition conlains energy in t,he 100 kyr frequency 
band. 

Second, we are looking for an age-depth func- 
tion for the data, such that the difference bet,ween 

model outpul (as a funct,ion of time) and data (as 
a. function of depth in the core) is minimized in 

the least squares sense. 

In order to achieve these t,wo goals, we for- 
mulat,e an object,ive function for a.n opt,imizat,ion 

problem, where additiona,1 requirement,s for nu- 

merical stability and physical plausibilit,y are in- 

corporated int,o t,he object,ire function a.s penalty 

t,erms. This idea originally goes back t,o the work 

of Hasselmann a.nd Herr,erich [1983], who sug- 
gested minimizing t,he weighted sum of the fol- 

lowing five component, s: (1) t,he deviation be- 
tween t,he model and the data, (2) t. he devia.tion 

of t,he optimal age-depth relation a,t, well-dated 

points (e.g., t,he Brunhes/Iklatuyama bounda. ry) 
from t,heir ages determined by other means, (3) 
t,he overall derjar,ion of the optimal a, ge-dept,h re- 

lation from a first guess (which in a st,a. ndard case 
is a. ssumed to be a linear interpolat±ion between t,he 

present' and lhe Brunhes/Matuyama boundary at± 
730 ka), (4) the square of the second derivative 

of t,he new age-depth relation, a.nd (5) t,he over- 
all deviation of t,he optimal linear model from a 

preferred linear model (which in t,he following is 
assumed to be of first, order). 

The choice of the different const,ants a. nd fixed 

functions in these components (i.e., well-dated 

points, initial age-depth funct,ion) is subject,ive 

and expresses t,he users individual preference 

about different age-depth functions. In this a.p- 

proa, ch, however, the subjectivity is incorporated 

a priori into the objective function and a.n optimal 

solution is found with respect to these preferences. 

Hasselmann and Herrerich [1983] suggested tha, t 
this optimizalion problem could be solved by an 

iterative process of integrating Euler's equa. tions 

(the necessary condition for optimality of the cor- 

rection of the initial age-depth function derived 

from variational calculus), computing the transfer 
function of the optima,1 linear model analytically, 

and optimizing with respect to the remaining pa- 

rameters. In this paper we begin with a, similar 

weighted objective function that includes an ad- 

ditional term to assure a monotonically increa, s- 

ing age-depth relation. However, this objective 

function is subsequently minimized directly by a 

conjugate-gra. dient type algorithm where deriva- 
tives are computed numerically. 

The procedure for determining an optimal age- 

depth relation of deep-sea cores is tested by ap- 

plying it to data of the Meteor core M 13519 

[Sarnthein el al., 1984] and to the SPECMAP 
sta.ck [hnbrie et al., 1984]. The results a. re com- 
pared with earlier studies by Herrerich and Sarn- 

thein [1981], Shackleton and Matthews [1977], Im- 
brie et al. [1984], and nert, e,'id• [1988]. 
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A rather similar approach has recently been ex- 

plored by Grieger [1992]. In his work a function 
t(z) is introduced that maps points in the core to 

the corresponding ages; this is the reverse of the 

~(t) mapping adopted here. Grieger's objective 
function and the mode] restrictions are formulated 

in the time domain rather than the frequency do- 
1-11a, in. 

The most widely applied method for dating 

cores for the last 900 kyr is the approach used by 

Imbrie et al. [1984] to establish tl•e SPECMAP 
age-depth relation. Following the initial work 

by Hays et al. [1976], the SPECMAP age-depth 
relation was obtained by passing the orbital pa.- 

rameters (obliquity and precession index) rather 

than the solar insolation through an exponentially 

damped system with a time constant of 17 kyr. 

The outl)ut curve obtained (ETP) was used as 

the target for the filtered data curves. The best 
fit was determined iterativeIv for the different fre- 

ß 

quency bands by phase locking the data to the 

orbital parameter curves and averaging over sev- 
eral cores. 

Another inverse method was suggested 1)y Mar- 

tinson el, al. [1982] in order to correlate two given 
time series, which are related to each other by a 
mapping function :•'(t). This mapping function is 

assumed to 1)e a linear trend modified by a trun- 

cared Fourier series. The trend parameter and 

the Fourier coefficients then form the indepen- 

dent vector for a coherence maximization prob- 

lem. This is solved by an iterative steepest ascent 
method with additional constraints for a constant 

step length in order to prevent the system of the 
normal equations from becoming unstable prema- 

turely. However, this method was 'applied to ar- 
tificial data sets, to two different deep-sea sedi- 

ment cores, and to correlate two profiles from the 

Southeast Indian Ridge in order to determine the 

differential spreading rate but has not, been used 

to investigate the case of orbital forcing. Thus the 

calibration by Martinson et al. [1982] establishes 
only a relative depth-depth mapping function in 

contrast to the absolute depth-time relation ob- 

tained from astronomical time series in this study. 

Martinson et a.1. [1987] provided a high-resolu- 
tion chronostratigraphy for the last. 300 kyr by av- 

eraging the results of four different orbital tuning 
approaches. Each of these approaches was based 
on different assumptions' 

1. The "phase locked approach" assumes con- 

stant, phase between dominant components of or- 

bital forcing and the corresponding components in 

the geological data. 

'2. Tl•e "direct response approach," where the 

response is assumed to mil•nic the forcing, consis- 
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Fig. 1. 6•80 data. curve of Meteor core M 13.519 [from Sarnthein et al., 1984]. 
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tent with the original Mila, nkovitch theors'. 

3. The "nonlinear response approach" uses the 

nonlinear model of hnbrie and hnbrie [1980] con- 
sisting of two simple linear models with different 

time constants for warming and cooling. 

4. The "pure components approach" is compa,- 

table to the original idea of Hays et al. [1976], fur- 
ther developed by hnbrie et al. [1984] mentioned 
above. Here the tuning ta, rget is constructed 

from the linear combination of "pure" (i.e.. orbital 

rather than solar insolation) components and their 
harmonics. 

The final chronology was determined to have 

an average error of ,5 kyr. This error analysis 

is based on a,veraging over different tuning ap- 
proaches wl•ich are all assumed to be equally plau- 
sible. 

Shackleton and lXlatthews [1977] derived a, 

depth-time relation by directly correlating cora,1 
terraces in Ba,rbados with the oxygen isotope 
stratigraphic record. Herrerich and Sarnthein 

[1984] tested three different a,pproaches using data, 
from Meteor core M 13,519. They obtained the ini- 

tial age-depth function "LIN" by linear interpo- 
lation between ra,diometrically dated points. The 
"CARPOR" age-depth relation is also based on 

radiometric data and wa,s developed under the 
twin assumptions of constant accumulation rate 

,5/6 [cf. Sarnthein et al., 1984; Prell et al., 1986] 
and the Brunhes/Ma.tuyama lnagnet. ic reversal 
fixed at, 127 and 730 ka, respectively. The goal 

of both approaches was to maximize squared co- 

herence, which reaches values of tip to 7/5%. 

Herrerich [1988] considered a.n objective func- 
tion similar to that originally developed by Has- 

sehnann and Herrerich [1983]. The optimal model 
(of arbitrary high order) and the preferred model 
were assumed to be identical, a, nd an age-depth 

relation was found for the la.st 300 kyr. The solu- 

tion was obtained by an iterative process of inte- 

grating Euler's equation for the age-depth func- 

tion and optimizing the objective function with 

respect to the remaining model pa,rameters. 

Recently, Shackleton et al. [1990] suggested that 
over the last 2 myra better match with or- 
bital models could be obta,ined with a, time scale 

departing froin the established SPECMAP time 

scale below 620 ka (isotopic stage 16 as defined by 

Shackleton and Opdyke [1973]. As a consequence, 
the Brunhes/Matuyama boundary was dated a,t 
780 ka instead of 730 ka as mentioned above. 

2. A SIMPLE lXlODEL 

In this work, two different models are used to 

relate the •1s0 data (lhat are assumed to rep- 

of aeolian dust near the thermal equa,tor and •30 

the influence of differential porosity and calcium- • [: ' 
ca,rbonate dissolution on the short-term sedimen- 

ta,tion rates. Two flirther age-depth relations m20[ • [I 00RR•OTION . ß . • were again ( s•Dmgma•i0s- - - obtained b•, orbital tuning "TIINE" 
and STUNE ). The second approach differs fi'om 10 

the first by keeping the isotopic stage boundary s0 
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resent global ice volume) and the assumed solar 
forcing r(t) or R(.f). (In the following, time se- 

ries are denoted 1) 3 ' lower case letters in the time 

domain and upper case letters in the frequency 
dolnain. All time series are furthermore assumed 

to be normalized to zero lnean and unit standard 

deviation.) In the first case, an arbitrary linear 
model is introduced tha, t can be described by its 

impulse or frequency response functions h and H, 

respectively. The output of this system, the theo- 

retical global ice volume, y or Y, is represented by 

the convolution of the impulse response function 

and the input r 

v(t)- •(t- •,),.(•,)d?, (•) 

or equivalently by the product of frequency re- 

sponse function and input representation in the 

frequency domain 

I•(f) - H(f) R(f). (2) 

In the second case, we consider a. preferred 

model with response functions h0 or H0 that is 

typically of low order and can be specified by 

a stochastic differential equation. For the fol- 

lowing we assume for simplicity and consistency 

with Hasselmann and Herrerich [1983] and Her- 
t, erich [1988], that the output, V0 or •%, of this 
preferred system is given by 

d 

•Tv0(t) - -xv0(t)+ o,,.(t), (3) 

although linear systems of higher order are also 

permissible and can be easily implemented in the 

numerical method used. Here o, and • are pa.- 

ramet, ers of the pret•rred model that can also be 

used for improving the fit. The frequency response 

function of the preferred system (3) is given by 

O: 

Ho(f) - 2=i.f + X (4) 
The variance of the output time series of these 

two models, 9 and V0, will be compared with the 
variance of the core data.. 

3. DATA 

Oxygen isotopes ratios recorded froin foramini- 

fera are strongly correlated to global ice volume 

and can be used as an indicator for ice ages [Shack- 

leton and Opdyke, 1973]. The da. ta obtained from 
deep-sea cores are expressed in the usual • nota- 

tion related to the PDB standard and are given 
as a. function of depth in the core by 

•180(C) '-- 

18 16 18 

O/ Osta, ndar d - O/•6Osample(C) 
180/•SOsta,nda,rd 

Linear i•terpolation is used to complete the •180 
curve between actually sampled points in the 
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Fig. 4. Coherence between system input (solar 

insolation) and •5180 betbre (dashed line) and a.f- 
ter (solid line) optimization. In the top panel the 
case with constra, ints on the parameters of the 

preferred model (,\ > 0 and o > 0)is shown, 

while the unconstra.int, result is given in the bof 
tom panel. Horizont.al lines indicate the 95% and 

99% confidence limits on an artanh scale [cf. Jenk- 
ins and Watts, 1968]. 
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core. In Figure 1 the normalized 6•so val- 
ues of the core M 13519 from the Sierra Leone 

Rise (5ø39, 5'N, 19ø51'W) are plotted versus depth 

[Sarnthein et al., 1984]. 
To test theories of ice ages, the isotopic data 

must be converted from depth to time-dependent 

data. Starting from an initial first guess age- 

depth ]'elation Co, we introduce a correction .r to 

obtain a new age-depth function 

The data curve then becomes a function of time 

and the age-depth correction x 

: 5so(0(t)+ (6) 

In the following, the physical length of the core is 

denoted by 1 and this point is assumed to be well- 

dated at time r. The value ! - 0 corresponds to 

the present condition. The first, guess age-depth 
relation co and the correction term .z • are assumed 

to satisfy 

co(O) 

It sho]dd 1)e noted here that Y4at is sul)ject to 

different types of error. These include sampling 
errors within the core (i.e., errors associated with 

the selected sampling interval), disturbances due 

to the 1)roeess of coring and in situ disturbances 

at the ocean floor (e.g., bioturl)ulence and changes 
in currents). Thus !/&t is only one realization of 

the theoretically infinite ensemble of realizations 

of the stochastic process underlying the data. The 

fitting of the data !l&t to the model output is done 

in the spectral domain. Averaging over neigh- 

boring frequencies of the full resolution sample 

spectra (or, equivalently, over chunks using corre- 

sponding time windows) is used to obta.in consis- 
tent estimators of the power and cross spectra,. In 

the following. averaging is performed with moving 
averages always computed over seven frequencies 

(14 degrees of fi'eedom). This averaging process is 
denoted by cornered parentheses <. >. 

In the standard case the variation of the solar 

insolation at 65øN at July 1.5 is used as system in- 

put, since the sola]' insolation during the summer 
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Fig. 5. Phase shifts of the data against system in- 

put before (dashed lines) and after (solid lines) op- 

timization procedure with constraints (top panel) 

and without constraints (bottom) on the param- 

eters of the preferred model as in Figure 4. The 

dotted line shows the preferred model. 

a.t high northern latitudes is believed to be crucial 

for ice build]•p (cf. 5Iilankovitch [1938] or more 
recently Crowley and North [1991]). The numeri- 
cal computation of the solar insolation at a given 

time uses the metl)od of Berger [1978]. 

4. OBJECTI\';E FUNCTION 

In this section we establish the objective fi•nc- 

tion for tl•e minimization problem following the 

original idea by tlasselmann and Hefterich [1983]. 
The objective function F consists of the weighted 
S1A1TI 
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6 

i=1 

of six terms F1 to F6. Each of these terms rep- 
resents a different quantified prejudice about the 

principal features of the final solution. The num- 

bers g• to ga serve two pnrposes: First, l hey re- 
fiect the individual preference regarding the rela- 
tive importance of the different components. Sec- 

ond, they are used to normalize the different com- 

ponents for numerical stability of the optimiza- 

tion procedure. The sensitivity of the optimiza- 

tion prol•lem to changes in the weights is discussed 
later. 

The first term represents the mean square dif- 

ference between model output y and data y•t 

F1 - < (y(t)- yd(,t(x,f)) • >dt (7) 

which is equivalent to the classical coherence max- 

imization criterion as considered in many other 

investigations [e.g., Martinson et al., 1982]. The 
averaging over neighboring frequencies of the full 

resolution sample spectra, or the equivalent loca,1 

averaging process in the time domain indicated by 

< ß > (as an estimation of a hypothetical statisti- 

cal ensemble average) is redundant here but is in- 

troduced a.s it will be required later for cross spec- 
trum estimation in computing the transfer func- 

tion H of an optimally fitted linear system. 

Second, i he corrected age-depth function should 

not deviate too strongly from the first guess c0 

(see equation (5)). This requirement is expressed 
by the next component 

- (S) 

Furthermore, the correction function should be 

as smooth as possible and, in particular, it should 

not contain sharp peaks which would permit the 

"swallowing" of complete cycles of the da, ta a.t 

times where there is little energy in the da.ta. 
Therefore the third penalty term is 

F•- • [ (!t• dr. (9) 
As mentioned above. certain layers in the core 

may already be well-dated by other (possibly 

radiometric) methods (e.g., Brunhes/Matuyama 

boundary). Such well-dated points should not be 

changed substantially in the optixnized age-depth 
function. Thus a fonrth penalty component 

K 

- - 
k=l 

is introduced, where c•., t• (k- 1,..., K) denote 
the depths and times, respectively, of well-dated 
points. 

The optimal linear model should be consistent 

with and provide some informa,tion about a. plau- 
sible physical model. Without this restriction, 
the transfer function of an arbitrary linear model 

might differ substantially in adjacent frequencies. 
In this situation it would be di•cnlt to expla.in the 
mechanism linking solar insolation to global ice 
volume by a simpler model of low order. There- 

fore the choice of the optimal linear model of a.r- 

bitrary high order is restricted to a smaller sub- 

set of models that have reasona.ble pha, se shifts 

in adjacent frequencies. Imbrie et al. [1989] in- 
vestigate the question of space-dependent phase 

shifts which also assumes some reasonably con- 
tinPoPS behavior of the transfer functions. Thus 

we require through the fifth penalty term that the 

model should be close to the preferred model or, 
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Fig. 6. Optimal transfer fundion (bold line) plot- 

ted only where the system input contains signifi- 
cant energy and the transfer function of the pre- 

ferred model given by equation (4) (thin line). 
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generally, to a model class of low differential or- 

der characterized by a finite number of parameters 

(e.g., see equation (3) with two parameters c• and 
X), 

F,- < > Ho(.h)l =. 

The first five components of the objective func- 

tion are essentially the same as suggested by Has- 

selmann and Herterich [1983]. For practical pur- 
poses (especially if the weight g• is chosen to be 

large) it is necessary to include a sixth condition 

that prevents the age-depth relation from revers- 

ing in time. Thus a very large penalty is intro- 

duced for age-depth functions which do not in- 

crease monot onically: 

where 

d 

x(t) - • •-•c,,•,•,(t) _< o 
X (t) - 0 otherwise. 

In addition to these requirements one could spec- 

ify a preferred value or range for the parameters 

of the preferred model. For example, negative c• 

and ,• in the preferred model (3) are physically 

meaningless. Again, such constraints can be for- 

mulated as least squares terms and added to the 

objective function with appropriate weights. 
In summary, we construct an objective function 

6 

F(x,H,c•,,\) - 5-•.g;F•(x,H,o,,A), (la) 
i=1 

tha. t depends on the age-depth correction x, the 

optimal transfer function H and the parameters 

of the preferred system (which we will take in the 

following to be o, and ,• in accordance with the 

first-order preferred model given in (3)). For given 
values of the correction w(t) and the parameters c• 
and ,•, the optimal transfer function can be com- 

puted analytically at every frequency (since we 
consider only a finite interval of data, the vari- 

ables in the frequency domain are discrete with 

Af = i/r). From the standard minimal condi- 
tion we obtain 

H(f,.) 
< > 
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Fig. 7. Power spectra estimates for the •5180 time 

series before (top) and after (bottom) optimiza- 
tion. It should be noted that for clarity the spec- 
tral estimates are plotted here on a linear scale in 

contrast to the power spectra, shown in Figure 10 
till Figure 15, which were plotted on a logarithmic 

scale as suggested by .Jenkins and Wa, tts [1968]. 
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where the overbar denotes complex conjugates. 

For g.• = 0 one recovers the standard optimM 

linear model solution. In the case that both 

rameters g• and g.5 are positive, the numerator 

in equation (14) induces a shift from the estima- 

tor of tile cross spectrum < R(.l•)•%t(x, f,) > to- 
wards the transfer function of the preferred system 

Ho(f,). Substitution of tile optimal transfer func- 
tion (14)into the objective function (l a) yields 

then a simpler cost function 

6 

F(x,o,,\) - y]g•F•(x,o,,A),(15) 
i=1 

that del)ends only on the correction x(t) and the 

parameiers cq and ,\. 

5. NUMERICAL RES[TLTS 

The discretization of the objective function F 

in equation (15) which is necessary for the numer- 

ical optilnization is presented in the appendix. In 

the following. we shall consider some typical appli- 
cations with •I + '2- 130 independent variables 

consisting of 128 time node components (At - 

6 kyr which allows a straightforward application 

of standard fast. Fourier transform (FFT) algo- 

rithms) and two components representing the pa- 

rameters n, and • of the preferred model. 

Sla•da•'d Case 

As a standard case we consider the 5•80 data 

from the Meteor core M 13519 (Figure 1) [Sa.rn- 
thein et al., 1984]. Starting from a. linear in- 
terpolation between the present and the Brun- 

hes/Matuyama boundary at 730 ka as the first 
guess age-depth function, the optimization proce- 
dure produces a correction that shifts certain time 

nodes up to 24 kyr (32 cm) in the core. In the fol- 
lowing, the resulting age-depth function shown in 

Figure 2 is referred to as the standard run. The 
net correction (Figure 3) has large wtriations with 
typical cycle lengths in a. broad fi'equency band at 

approxilnately 100 kyr (more precisely with peaks 
at 80 and 250 kyr). 

Martinson et aJ. [1982] investigate a similar sit- 
uation with artificial data sets and arrive at a 

475 

distorted signal that shows a saw-toothed shape 

similar to that of the original 5•80 h•nction. This 
distorted signal was obtained by' passing the orig- 

inal sinusoidal signal through a ma. pping function 

• a[ DATA BEPORE J 

0 

-1 

-2 

0 100 200 300 400 500 500 700 800 

TIME [kY] 

• [_ MODEL _ _ . 

0 

-1 

0 100 ZOO 300 400 500 600 700 800 

n•. [•Y] 

• 3 -[- MODEL OUTPUT 

z 1 

0 

-1 

0 zoo zoo 300 400 soo 600 700 800 

TIME [kY] 

Fig. 8. The top panel shows the data curves be- 

fore and after optimization, while in the middle 

the data time series is plotted versus model out- 

put, which can be seen at the bottom again com- 

pared to solar insolation. 
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Fig. 9. Optima,1 transfer function (indicated by 
the crosses for the Milankovitch fi'equencies) and 

preferred transfer function (hdl lines). The full 

line on the right hand side is the transfer function 

of the preferred model for ,X = 0.024 and c• = 0.07. 

The full line on the left-hand side shows the graph 

of formula (4) for ,\ = -0.06. The distance be- 
tween the optimal and the preferred transfer func- 

tion does not. depend strongly on the sign of ,\. 

which consists of a, linear trend modified by an 

oscillatory component in the same frequency a,s 

the signal. Martinson et al. [1982] concluded tha, t 
a nonlineal', oscillatory ma, pping function might 

arise when the recording process itself is some- 

what sensitive to fluctuations in the signal. This 

is precisely the case in this situation where the 

sedimentation rate (recording process) is indeed 

sensitive to clilnate state (signal). 
For the standard run age-depth relation, co- 

herence values between data and sola,r insolation 

are obtained that exceed the 99% confidence lim- 

its in all three Milankovitch frequency bands 19, 

23, and 41 kyr (cf. top panel in Figure 4). It 

is important to note that the coherences obtained 

are dependent upon the averaging procedure used. 

In this work, averages of the full resolution sam- 

ple spectra were computed over a relatively wide 

range of fi'equencies (14 real degrees of freedom). 

In general. the confidence levels at a. given fie- 

quency for stochastic estimators associated with 

a certain averaging technique depend not only on 

the number of degrees of freedom used for aver- 

aging but also on the bandwidth of the spectra 

at that frequency. In this case the bandwidth of 

solar insolation at, for example, 41 kyr is not a.s 

wide as the frequency range used for averaging. 

Thus the confidence limits for coherence depend 

in our case on fi'equency. For simplicity and com- 

parability with other investigations [e.g., Imbrie 
et al., 198,1] the standard confidence limits in 

TABLE 1. Ages of Isotopic Events 

Isotopic Events Depth, cm Age, ka 
Herrerich Imbrie Briiggemann 

0.0 0.0 0.0 0.0 0.0 

1.1 14.0 9.0 6.0 5.9 

2.0 26.0 16.4 12.0 12.5 

2.2 32.0 20.3 19.0 18.0 

3.0 36.4 22.9 24.0 22.8 

3.1 42.8 27.0 28.0 31.0 

3.3 80.0 52.2 53.0 58.1 

4.0 90.7 60.2 59.0 63.2 

5.0 96.3 64.5 71.0 65.9 

5.1 115.0 79.5 80.0 78.0 

5.2 128.4 90.4 87.0 95.3 

5.3 138.0 98.0 99.0 102.2 

5.4 145.:1 103.5 107.0 105.6 

5.5 168.6 120.0 122.0 119.7 

6.0 184.0 129.7 128.0 127.6 

Isotopic event data from Prell et al. [1986]. Ages are given for events 
in core Meteor M 13519 during the last 130 kyr. The core data a. nd the 

8 , fourth cohunn third column are taken from Hefterich [19•8] while the 
shows the SPECMAP results given l)y hnbrie et al. [1984]. 
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TABLE 2. Ages of Isotopic Events 

Isotopic Event Depth, cm Age, ka 

CAR,. TUNE STUNE SHACK SPEC. Brfiggemann 

1/2 24.0 13 17 10 13 12 11 
2/3 38.0 27 31 18 32 24 25 
3/4 83.0 56 73 49 64 59 60 
4/5 98.0 70 86 63 75 71 67 
5/6 184.0 127 139 127 128 128 128 

6/ 7 277.0 209 195 184 203 186 203 
7/ 8 370.0 277 260 244 262 245 289 
8/ 9 416.0 312 290 269 310 303 306 

9/10 506.0 374 348 332 362 339 375 
10/11 558.0 410 381 369 383 362 395 
11/12 622.0 444 420 409 459 423 458 
12/13 685.0 510 478 475 492 478 519 

13/14 744.0 540 526 527 524 524 549 
14/15 758.0 551 537 539 565 565 560 
15/16 829.0 608 591 598 617 620 622 
16/17 884.0 657 635 644 654 659 649 
17/18 916.0 678 658 668 675 689 677 
18/19 968.0 712 701 712 712 726 719 
19/20 996.0 733 720 730 736 736 739 

Ages of the stage boundaries (defined by Shackleton and Opdyke [1973]) in core Meteor 
M 13519 for the full length of the core. The depths are taken from Sarnthein et al. [1984]. 
The three tuning approaches CARPOR (CAR.), TUNE and STUNE are given by Herrerich 

and Sa, rnthein [1984] which also lists the SItACK data from Shackleton and Matthews [1977]. 
The SPECMAP (SPEC.) age-deptl• function is given by Imbrie et al. [1984]. 

cordance with Jenkins and Watts [1968] have been 
given in Figure 4. 

The phase shifts of the data, relative to the solar 

insolation (top panel in Figtire 5) are negative in 
the Milankovitch frequencies. This is a necessary 

condition for our linear model to be causal (it im- 
plies that the physical quantity represented by the 

data follows the solar insolation). On the other 
hand, the phase shifts at 41 a.nd 23 kyr are la. rger 
than the shift at 19 kyr, which im. plies instability 
in the case of a first-order model (for models of 

a, rbitrary high order, as for example H, this does 

not violate any sta, bility condition). However, the 

95% confidence limits for the phase shifts, which 

depend on the associated coherence [Jenkins and 
Watts, 1968], extend to the phase shift curve of 
the preferred model, which is given by 

-27rf 

¾,(f) - ). 

It should 1)e stressed that other investigations 
[e.g., Martinson et al., 1982] have had the sole a.im 

of lnaxi•nizing either the coherence or the phase 

agreement with some preferred model. This is not 

the case here. In our study, coherehey maximiza.- 

tion is restricted by requiring that the optimal fre- 
quency response timetlon should not devia,te too 

far from the preferred model or model class. In or- 
der to maximize the coherence between data and 

solar insolation, the weight g,• in (15) should be 

slna, ll compared to g•. The transfer function (14) 
is then dominated by the cross spectrum of input 

and data and the coherence approa, ches the maxi- 

1hum. possible value for an a.rbitrary linear model. 

If, on the other ha, nd, the weight gs is chosen rela- 

tively large compared to the other weights, the 
optimal transfer function will be domina, ted by 
the fi'equency response function of the preferred 
model, and the agreement in phase with (he pre- 

ferred model will be good, at the expense of the 

coherence [cf. Herrerich 1988]. 
The aml)litudes of the transfer functions are 

plotted in Figure 6, while the data. spectra. be- 

fore and after optimization are shown in Figure 7. 
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By using a sedimentation rate which varies on the 

same time scale as the ice ages, a. transfer of en- 

ergy can be observed from the 100 kyr cycle band 

of the data spectrum before optimization into the 

41, 23, and 19 kyr frequency bands of the spec- 

trum after the opti•nization process. The sed- 

imentation rate varies between approximately 0 

and 3 cm/kyr. The effects on the original data. of 
this correction to the initial age-depth function 

can be seen in the top panel of Figure 8. The two 

remaining panels show the output of the optimally 

determined linear model of arbitrary high order 

compared to the data after optimization (middle 

panel) and the systen• input sola.r insolation (bot- 
tom). 

The data spectrum before optimization con- 

tains significant energy only in the 100 kyr fre- 

quency band (Figure 7, top panel). After the 

age-depth function has been optimally adjusted, 

the data spectrum also contains energy in the 

Milankovitch frequencies (cf. Figure 7, bottom 

panel). However, a large part of the data. variance 
cannot be explained by a linear model with in- 

put solar insolation. This result is not surprising 

considering the large climate response and neg- 
ligible solar forcing in the 100 kyr band. hnbrie 

and Imbrie [1980] and Martinson et al. [1987] have 
suggested for this reason the use of a nonlinear 

model consisting of two different linear models for 

cooling and warming periods, an approach which 

is motivated by the typical asymmetric shape of 

the data, curves. As already mentioned above, 

this saw--toothed shape of the data curve may in 

part be explained by the dependence of the sed- 

imentation ]'ate on the climate state [Martinson 
et al., 198'2]. However. it should be noted that 
spectral power of the sinusoidal data by Martin- 

son et al. [1982] was t. ransferred bv the oscilla.- 
tory mapping function only into frequencies which 

Fig. 10. Results for application of the method 

presented to case 1 (i.e.. SPEC, MAP stack with 

the standard first guess age-depth function and 

tuning target solar insolation). The top panel 

shows the spectra before (lhin line) and after op- 

timization (bold line), while the associated coher- 
ences are shown in the middle panel. At the bot- 

tom the optimized data curve and the SPECMAP 

stack are plotted versus time. 
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Fig. 11. As for Figure 10, but, for case 2 (i.e., 
core M 13.519 with a first guess age-depth func- 

tion given by a linear interpolation between iso- 
topic stage boundaries dated by the SPECMAP 
calibration). 

were multiples of the original frequency. Thus it 

would be difficult to explain a shift, of power from 

100 kyr to the Milankovitch frequencies at 41, 23, 

and 19 kyr as observed here. Moreover, the com- 

bination of an oscillatory age-depth relation and 
a linear model does not account for the fact that 

most of the power in the data. spectrum is con- 

tained in the 100 kyr cy'cle where there is no signif- 

icant power in the system input. Therefore since 
a considerable amount of the dat• variance c•n- 

not be satisfactorily explained by • linear model, 

the least squares function (1,5) leads to a mini- 

mization problem with l•rge residuMs. The value 

of the objective function at the optimal solution 

is approximately 6,5% of the value a.t the starting 

point. 

For a physica,lly plausible interpretation of the 

preferred model the parameters c• and A must be 

positive. Positive A is required for stability of the 

preferred system, while positive c• implies smaller 

ice sheets for larger insolation. Yet the mathe- 

ma. tical problem of minimizing objective function 

F in (17) is well posed even for •rbitra,ry c• and 
A. If, for the sake of simplicity, the optimization is 

carried out without restricting c• und A to positive 

values, the optimal solution found yields negative 

values for bolh parameters of the preferred model 

indicating that a first-order Ma.rkov process such 

as (3) does not surlYice to describe the system in 
a satisfactory manner. The coherences between 

d•ta. and system input obtained in this situa.tion 

are obviously higher than in the constraint case 

tha. t the parameters o' and ,\ are forced to be pos- 
itive. If ,\ is allowed to become less than zero, 

the fifth component of the objective function (11) 
then no longer represents the distance between the 

frequency response function H and the transfer 

function of a, physical preferred system but gives 

instead an approximation t. arget for H in form of a, 

complex function of frequency that depends in •d- 

dition on two parameters. The actual position in 

the complex plane of the optimal t. ransfer function 

in the Milankovitch frequencies does not depend 

strongly on the sign of • (Figure 9). Experiments 

(Figtires 4 and 5) show that the influence of the 

sign (i.e., the shape of the complex approxima.- 
tion target,) on the resulting age-depth relation 
and the obtained coherences a,nd phase shifts is 

rather s•nall. This is due to the fact that the pre- 

ferred model is rather meant to control the shape 

of the optimal transfer function and prevent large 
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Fig. 12. As for Figure 10, but for case 3 (i.e., 

core M 13519 with a first guess age-depth function 

given by a linear interpolation between the present 

and the redated Brunhes/Matuyama boundar.x.,at 
780 ka). 

disconti]•uities in adjacent frequencies than actu- 

a.lly force the optimal model in the direct. ion of the 

preferred model. However, if o, is sign-constrained 
and 1/A is assumed to lie in t. he interval between 
10 and 100 kyr, then the optimal time constant 

obtained is 41.7 kyr, while the Ol)timal value for 

1/5 without further constrai•d.s is -1,5.2 kyr. 
The results obtained by this approach for the 

age-depth function are consistent with earlier in- 

vestigations. The ages of isotopic events deter- 

mined in core Meteor M 13,519 [Sarnthein et al., 
1984] are compared with those obta, ined by Her- 
terich and Sa.rnthein [1984], Herrerich [1988], Im- 
brie et al. [1984], and Shackleton and Ma,tthews 
[1977] in Table I (fine temporal resolution for the 
last ice age cycle) and Table 2 (coarse temporal 
resolution). The deviations between the different 

approaches tend to be larger in the center of the 

time interval considered, awa.y from the well-dated 

end point. s. The highest amplitudes in the cor- 

rection a' (see Figure 3) lie in the time interva,1 

between 200 and ,500 ka, in Milch the greatest de- 

viations between the three different age-depth re- 

lations obtai]•ed by Herrerich and Sarnthein [1984] 
are found. Grieger [1992] achieved an age-depth 
function very similar to our optimal result in the 

standard run, despite the fact that he n. eglected 
the low-frequency component in his model. Mar- 

tinson el al. [1987] arrived at age-depth relations 
for another core tl•at show departures h'om linear- 
itv whicl• are similar to those obtained here in the 

., 

standard run. 

The aml)litudes and phase shifts of t]•e data 

spectrum against system input are comparable 

to the values given by Hasselmann and Herr- 

erich [1983] for the age-depth relations (',AitPOit, 
TUNE, and STI•NE. 

The maximum coherences obtained (greater 

than 90%) are higher than tl•ose given by Her- 
terich and Sarnthein [1.984] (maxinmm in sin- 
gle peaks of 7.5% squared coherence which cor- 

responds to approximately 8.5% coherence), even 

though coherence is not exclusively maximized in 

our objective function F in (17). The coherences 
are slightly lower than those given 1)y Imbrie et 

al. [1984] for the SPECMAP time scale, although 
it should be pointed out that. the SPECMAP co- 
herenoes are calculated between an artificial stack 

and the sum of the normalized orbital parameters 

(ETP). By using the ETP curve as system input, 
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the SPECMAP approa,ch is also able to expla,in Application to D•ffere'nt Cases 

data energy contained in the 100 kyr cycle, where 

there is no significant, energy in solar insolation. 
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In order to test the method with different com- 

bina, tions of input data series, tuning targets and 

first guess age-depth functions, we performed sen- 

sitivity studies on the following cases' 
1. SPECMAP stack with the standard first 

guess age-dei)th function and tuning target sola. r 
insolation. 

2. Core M 13519 with first guess age-depth 

function given by a. linear interpolation between 

isotopic stage boundaries da. ted by the SPEC, MAP 
calibration. 

3. Core M 13,519 xvith a, first guess age-depth 

function given by a linear interpolation between 

the present and the redated Brunhes/Matuyama 
bounda,ry at, 780 ka, with At increased from 6 to 

7 kyr. 

4. SPECMAP stack with a, first guess age- 

Fig. 13. As for Figure 10, but for case 4 (i.e., 

SPEGMAP stack with a first. guess age-depth 
function given by a linear interpolation between 

isotopic stage boundaries optimally dated by the 
0 100 200 300 400 500 600 700 800 

TIME [kY] standard run). 

tween isotopic stage 1)oundaries optima,lly dated 

by the standard run. 

5. SPECMAP stack with a, first guess a,ge- 

depth fimction given by a, linea, r interpolation 

between tl•e present and the redated Brun- 

hes/1V[atuyama boundary a.t 780 ka. with At in- 
creased from 6 to 7 kyr. 

6. SPECMAP stack with the standard first 

guess age-depth function but the tuning ta,rget 
ETP. 

The results (spectra of the data. before and a.fter 

optimization, corresponding coherences and op- 

timized time series comi)ared to the SPEC',MAP 

stack) are shown in Figures 10- 1,5. Note that 

in the case of ETP-forcing (case 6) it is possible 
to improve the SPECMAP calibra,tion in terms of 

the coherences, although this was the SPECMAP 

optimization criterion. The ol)t, imal time constant of the preferred systen• in this case is 12.S kyr. 
The coherences obtained for the SPECMAP 

case with a, first guess age-depth relation taken 

from the optimal standard run (case 4) are quite 
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high, although only forcing 103' solar insolation is 
considered, 1)ut do not reach the values obtained 

in case 6. This observation and the fact that 

the optimal solutions for the standard case a. nd 

case 2 are quite different indicates the dependence 

of the final solution on the subjective choice of the 

first guess age-depth function. Reasonable coher- 
ence values were also obtained for the two cases 

(ca, se 3 and case ,5) that were started with a first 
guess age-depth function that attributes an age 

of 780 ka to the Brunhes/Ma. tuyama boundary in- 
stead of 730 ka,. This gives further support, to the 

redating of the Brunhes/Matuyama boundary a,s 

suggested by Shackleton et al. [1990]. 
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Random Time Series and Sensitivity Analysis 

It. has been shown tha, t high coherences in all 
three Milankovitch frequencies can be obtained 

for real ocean core data, by optimizing the age- 

depth function. There is naturally a lingering 
suspicion that this 1nay just be a,n artifact of the 

analysis method, and that high coherences could 
ha,ve been generated artificia, lly for any random 

time series. To rule out this possibility, filtered 

white noise tests were perforlned, in which the in- 

put time series were genera,ted randomly with a, 

spectrum similar to that of a. typica.1 alSO data 

series (i.e., most energy contained in the 100 kyr 

frequency band). Again, corrections of a. similar 

shape were produced and a similar energy shift 
from the 100 kyr to the 41 kyr band could be 

observed, but significant coherences could be gen- 
erated i•t only one frequency band a.t a time. It 

was impossible to obtain simultaneously reason- 

able coherences in all three Milankovitch bands, 
as found for real ocean core data.. 

The weights gi served two purposes. First, they 

were used to normalize the different coml)onents 

of the objective function, which is necessary for 

numerical stability. Second, they reflect the sub- 

Fig. 14. As for Figure 10, but for case 5 (i.e., 

SPECMAP stack with a first guess a. ge-depth 
function given by a linear interpolation between 

the present and the redated Brunhes/Matuyalna 
boundary a.t 780 ka). 
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jective judgement of the user as to the respec- 

tive importance of the different components. For 

physically meaningful age-depth functions we a.1- 

ways selected large values for the weight g6. Since 

the corresponding ol)jective function component 

is zero for all first guess age-depth functions, this 
does not conlribute to the initial iterations of the 

objective fi•nclion and acts only to prevent solu- 

tions fron• becoming nonmonotonic. To test the 
sensitivity of the minimization problem xvith re- 

spect to the remaining weights g•,... ,g.s we coin- 

puted standard case solutions for weights which 

were individually multiplied by factors 

I 1 

100' 10' 10, 100 

while all other weights were kept a.t their stan- 

dard run values. The highest coherences were 
obtained in the standard run. The basic low- 

frequency structure (cycle length of 250 kyr and 

more) of the optimal age-depth function rema, ins 

constant throughout the sensitivity analysis, a.1- 

though the high-frequency details (in this context' 

cycle lengths at 100 kyr and less) varied consider- 

ably. This preliminary sensitivity analysis yields 

age-depth functions with differently shaped COl'- 

rections. As expected, a lnuch smoother correc- 

tion was obtained, when the parameter for the 
second derivative was increased. 

Anotlmr question raised above is tl•e influence 

of the first guess age-depth function on the so- 

lution. This chosen fixed function is part of the 

quantifiable subjectivity of the approach. Since 

the deviation of the age-depth function from the 

first guess is penalized, the results obtained for 

two different first-guesses will differ if the devi- 

ations are large. Different solutions were actu- 

ally obtained l)y changing the first guess, as indi- 

ca.ted in the case studies discussed above. We per- 
formed a further nulnerical test in which lhe first 

guess age-depth relation was a.ltered from a linear 

function by adding randomly selected corrections 

drawn from the interval [-3 cm, 3 cm]. The result 

Fig. 15. As for Figtire 10, but for case 6 (i.e., 
SPECMAP stack with the standard first guess 

age-depth function but tuning target ETP). 
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from this experiment (lid not differ' significantly 

from the standard run. In general, the optimiza- 

tion prol)]em is more sensitive to the weights than 

to small, random changes of the first guess age- 

depth function, although substantial and system- 

a.t. ic char•ges of this function will alter the results 

considerably (e.g., SPECMAP calibration versus 

linear interpolation). Thus, if a, priori information 

about the data indicate that a. linear age-depth 
function is incorrect, this information should be 

used to determine a better first guess age-depth 

function. For example, if the linear age-depth 
function incorrectly maps a peak of the da, ta curve 

to an input peak, the algorithm is not likely to 

change this incorrect matching, since the reduc- 

tion of the cost function 1)57 more coherent model 

and data time series is compensated by the in- 

crea, se ira the remaining components of the objec- 
tive function. 

This dependence of the optimal solution on the 

initial guess is not. to be confused with the pos- 

sibility of arriving at a local minimum which is 

not the absolute minimum. In general, there is 

no guarantee that numerical optimization routines 

will locate the global minimum, although there 

are algorithms that cope with this problem (e.g., 
the simulated annealing approach developed by 

Kirkpalrick et al. [1983] originating from equa- 
tion of state calcula.tions in thermodyna•nics by 

Metropolis eI al. [19,53]). Since the objective func- 
tion is neither quadratic nor convex, we may ex- 

pect local minima.. A typical graph of the ob- 

jective function for the coherence maximization 

problem is given by Martinson et al. [1982]. How- 
ever, the objective funclion (1,5) is much smoother 

here, since, as discussed above, an improvement 

in one component (e.g., higher coherence by in- 

cluding an additional input cycle at data points 

of small amplitude) is usually outperformed by 

the remaining components (e.g., the third compo- 

nent that penalizes large curvature of the correc- 

tion). Thus l he number of local minima is much 
smaller lhan in the case considered bv Martinson 

et al. [1982]. The fact that the resulting age-depth 
function for the standard run shows shifts of time 

nodes up to 24 kyr (32 cm) indicates that the opti- 

miza.tion procedure can loca, te solutions with large 

departures from the ir•itial guess, i.e., that sub- 

optimal solulions with respect to the first com- 

ponen• (coherence maximization)are overcome. 

Additionally, the test with a randomly disturbed 

initial age-depth function mentioned above indi- 

cates that the optima.1 solution does not strongly 

depend on the starting point, and the question 
of local minima therelbre was not further investi- 

gated. 

6. SUM•IARY AND C, ONCL[•ISIONS 

The mathematical approach suggested by Has- 

selmann and Iterterich [1983] represented a.n at- 
tempt to opt. imize simultaneously the age-depth 

function and a linea. r response model. In this in- 

vestigation, we have implemented and improved 

this approach, using a completely different nu- 

merical solution strategy. The method presented 

here provides a. universal tool for core ca, libration 

and testing of linear rela. tionships between differ- 

ent forcing mechanisms and the response of the 

climate system on ice age time scales subject to 

quantified individual preferences. It was possible 

to improve the SPECMAP calibration in terms 

of the obtained coherences. The optima] results 

for the age-depth function of an ocean sediment 

core are comparal)le to those given by tterterich 

and Sarnlhein [1984], hnbrie et al. [198:1], and 
Shackleton and Malthews [1977] wilh energy con- 
tained in the spectrum of the correction function 

itself in a broad band around 100 kyr. Therefore 
the sedimentation rate varies on the same time 

scale as the ice age cycles. This result has not 

been observed in earlier investigations, although 

Martinson et al. [1982] were able to reproduce a. 
sawtooth-shaped funclion similar to the original 
r5180 dala curve for artificial data sets that were 

passed through a, mapping function which con- 

sisted of a linear trend modified by an oscilla, tory 

component with energy in the same frequency as 

the original sinusoidal data. 

The coherences are higher than in the work by 

Herrerich and Sarnthein [1984] and comparable to 
those obtained by hnbrie et al. [1984]. It was pos- 
sible to transfer' energy in the data spectrum from 

the 100 kyr band to the Milankovitch frequency 

bands• especially at.-11 kyr, where significant en- 
ergy was not, contained previously. 

However, a la.rge fraction of the energy con- 
ta,ined in the data spectrum, particularly in the 

100 kyr frequency band, cannot be explained by a 
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linear model using solar insolation as input. The 

saw-toothed shape of the data curve mentioned 

above suggests that in addition to the i•terpre- 

tation derived from observations by Martinson et 

al. [1982] a. nonlinear model, such as that proposed 
by hnbrie and Imbrie [1980], may be required. 
The tuning of age-depth functions to a nonlinear 

model is more complicated than the ca. se consid- 

ered here, but is in principle amenable to the sa. me 

techniques. 

The main goal of this investigation, however, 

was to develop an automatic time calibration and 

dynamical model fitting technique which can be 

applied to many cores. In order to develop a 

global picture of the structure of the late Pleis- 
tocene climate cycles, it will be necessary to op- 

timize simultaneously the age-depth functions for 
a number of different cores within the context of 

a globa,1 dynamical model, a. ta, sk which ca, n be 
addressed only with the aid of a general inversion 
method. 

APPENDIX' DISCRETE OBJECTIVE 

FUNCTION 

For the numerical optimiza. tion, the objective 

function F in (1,55 must be discretized. We as- 

sume a uniform discreiization ti - -r + fat (i - 
1, .... M) in the time interval I - f-r, 0]. The 
continuous correction x(•) is then replaced by a 

vector a' - (a'l ..... w•)•;a'i - w(•i). For the 
formal minimization algorithm, the pa. rameters 
of the preferred model are added to the inde- 

pendent. vector w, forming the last two compo- 

nents .Tai+l and wa•+2. For a, given vector z '- 

(Xl,...,xM+=) 5", the frequency response H 5 '- 
H(fs) of the optimally fit linear system is com- 

puted from (145 at all M frequencies .h' H• de- 
pends not only on frequency but also on the cor- 

rection and parameter vector x, U5 -' HS(z). 
At, all time nodes it. is now possible to compute 

the output of the optimally fitted linear system 

y(ti) a.s the discrete inverse Fourier transform of 
Y - HI?. Again, this output, depends on the in- 

dependent vector x, y•(x)'- y(tj). The transfer 
function of the preferred linear system depends 
also on x 

Ho,9 ( x ) '- Ho ( .f g ) , 

since the last two components of x are the param- 

eters c• and ,•. The discretized objective function 

is thus given by 

- g, - + 

111 

j=l 

ll•-•.l ('rj-1 --2Xj +Xj+l)2 + g3 
j=2 At2 

/( 

+ 
k-1 

(17) 

•I-1 

¾- g6 Y•. ..\.•(cn,•,,(tj+l) -- c•,•o(tj)) 2, 
j=l 

where 

X5- 1 Chew(It)+1)- Cr•eu,(tj) 5 0 
X• - 0 otherwise. 

This defines a discrete, nonlinear, least squares 

opt, imization problem with an objective function 

that maps the ]1I + 2-dimensional Euclidean space 
to the real line. 

The nonlinear dependence of the optimization 

problem should not be confused with the most 

probably nonlinear relation of solar insola, tion and 

global ice volume, although the dynamical mod- 
els used to describe this relation are linear. The 

optinfization problem is nonlinear, since the first 

M components of the independent vector x a. re 

the individual corrections to the age-depth func- 

tion, and the input to the objective function is 

given by the value of the interpolated data func- 

tion a.t the corresponding time nodes. One partic- 

ular problem is that the objective function is not 

differentiable due to the linear interpolation used 

in between the points where the data were sa.m- 

pied in the core originalis,. This problem can be 

overcome, however, by cubic spline interpolation. 

Least squares problems with many degrees of free- 

dom are usually poorly conditioned. The discon- 
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tinuities of the first derivative further reduce the 

stabiliU'. We therefore applied a rather robust and 

fast optimization algorithm called PLMA (pre- 
conditioned limited memory quasi-Newton algo- 

rithm) [cf. Gill and Murray, 1979]. 
Numerical approximations of the first deriva- 

tives were used. Initially, forward differences were 

used until these approximations failed a simple 

test (computing directional derivatives either di- 

rectly or a.s a scalar product of the gradient and 

the chosen unit direction). This usua, lly occurs in 
the vicinity of a,n optimum, and we then switched 

to the more time consuming central differences for 

higher accuracy. 

A comprehensive discussion of optimization a,1- 

gorithms as well as the treatment of numerical 

problems such as stability, convergence of a, lgo- 

rithms and preconditioning can be found in the 

book by Gill et al. [1981]. The numerical diffi- 
culties of tiffs particular problem are discussed in 

detail by Briiggemann [1990]. 
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