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Abstract.  The question of an optimal age-
depth relation for deep—sea sediment cores has
been raised frequently. The data from such cores
(e.g., 60 values) are used to test the astro-
nomical theory of ice ages as established by Mi-
lankovitch in 1938. In this work, we use a min-
imal cost function approach to find simultane-
ously an optimal age-depth relation and a lin-
ear model that optimally links solar insolation or
other model input with global ice volume. Thus a
general tool for the calibration of deep—sea cores
to arbitrary tuning targets is presented. In this in-
verse modeling type approach, an objective func-
tion is minimized that penalizes: (1) the devia-
tion of the data from the theoretical linear model
(whose transfer function can be computed analyt-
ically for a given age-depth relation) and (2) the
violation of a set of plausible assumptions about
the model, the data and the obtained correction
of a first guess age—depth function. These as-
sumptions have been suggested before but are now
quantified and incorporated explicitly into the ob-
jective function as penalty terms. We formulate

Copyright 1992
by the American Geophysical Union.

Paper number 92PA01235.
0883-8305/92/92PA-01235%$10.00

an optimization problem that is solved numeri-
cally by conjugate gradient type methods. Us-
ing this direct approach, we obtain high coher-
ences in the Milankovitch frequency bands (over
90%). Not only the data time series but also
the the derived correction to a first guess linear
age-depth function (and therefore the sedimen-
tation rate) itself contains significant energy in a
broad frequency band around 100 kyr. The use
of a sedimentation rate which varies continuously
on ice age time scales results in a shift of energy
from 100 kyr in the original data spectrum to 41,
23, and 19 kyr in the spectrum of the corrected
data. However, a large proportion of the data
variance remains unexplained, particularly in the
100 kyr frequency band, where there is no sig-
nificant input by orbital forcing. The presented
method is applied to a real sediment core and to
the SPECMAP stack, and results are compared
with those obtained in earlier investigations.

1. INTRODUCTION

Proxy data from deep-sea cores have been used
extensively to test the orbital theory of ice ages
introduced by Milankovitch [1938]. A problem
in the direct comparison between time-dependent
forcing (changes in solar insolation) and space-
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(i.e., depth-) dependent data, however, is that
there is no accurate experimental age-dating pro-
cedure for the long time intervals considered.
Shackleton et al. [1990] suggested that even well-
established ages (such as the Brunhes/Matuyama
boundary at 730 ka) might be underestimated by
up to 7% (with a correct value 780 ka). Recently,
this hypothesis has received independent support
by Hilgen [1991] using a similar astronomical tun-
ing approach and by Izett and Obradovich [1991]
for the case of the Brunhes/Matuyama bound-
ary (new estimate at 790 ka) and by Walter
et al. [1991] for older isotopic evenis from a
10Ar/3Ar analysis using a single-crystal laser—
fusion technique.

Here we present a universal tool for testing or-
bital and other theories of ice ages. The method
used produces optimal age-depth functions for ar-
bitrary cores and is subjective only in terms of the
choice and the relative importance of the different
components of the objective function. In contrast
to previous approaches, the user can quantify a
priori some subjective preference for different fea-
tures of the final solution (e.g., deviation {rom an
initial first guess age-depth function), and thus
explore the sensitivity of the final solution to the
relative importance of the different criteria used.

This work pursues two simultaneous goals.
First, we try to find an optimal response function
for a linear system of arbitrary high order that
links solar insolation with climate indices, for ex-
ample, global ice volume as represented by the
ratio of stable oxygen isotopes. The solar insola-
tion varies with the geometry of the Earth’s orbit
around the Sun and can be computed numerically
for at least the last million years [Berger, 1978]. In
the frequency domain, this input contains signif-
icant energy only in the Milankovitch frequency
bands of 41, 23, and 19 kyr. In further experi-
ments, we use also the sum of the normalized or-
bital parameters (the so-called ETP time series)
[cf. Imbrie et al., 1984] as system input which in
addition contains energy in the 100 kyr frequency
band.

Second, we are looking for an age—-depth func-
tion for the data such that the difference between
model output (as a function of time) and data (as
a function of depth in the core) is minimized in
the least squares sense.

In order to achieve these two goals, we for-
mulate an objective function for an optimization
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problem, where additional requirements for nu-
merical stability and physical plausibility are in-
corporated into the objective function as penalty
terms. This idea originally goes back to the work
of Hasselmann and Herterich [1983], who sug-
gested minimizing the weighted sum of the fol-
lowing five components: (1) the deviation be-
tween the model and the data, (2) the deviation
of the optimal age-depth relation at well-dated
points (e.g., the Brunhes/Matuyama boundary)
from their ages determined by other means, (3)
the overall deviation of the optimal age-depth re-
lation from a first guess (which in a standard case
is assumed to be a linear interpolation hetween the
present and the Brunhes/Matuyama boundary at
730 ka), (4) the square of the second derivative
of the new age-depth relation, and (5) the over-
all deviation of the optimal linear model from a
preferred linear model (which in the following is
assumed to be of first order).

The choice of the different constants and fixed
functions in these components (i.e., well-dated
points, initial age-depth function) is subjective
and expresses the users individual preference
about different age-depth functions. In this ap-
proach, however, the subjectivity is incorporated
a priori into the objective function and an optimal
solution is found with respect to these preferences.

Hasselmann and Herterich [1983] suggested that
this optimization problem could be solved by an
iterative process of integrating Euler’s equations
(the necessary condition for optimality of the cor-
rection of the initial age-depth function derived
from variational calculus), computing the transfer
function of the optimal linear model analytically,
and optimizing with respect to the remaining pa-
rameters. In this paper we begin with a similar
weighted objective function that includes an ad-
ditional term to assure a monotonically increas-
ing age-depth relation. However, this objective
function is subsequently minimized directly by a
conjugate-gradient type algorithm where deriva-
tives are computed numerically.

The procedure for determining an optimal age—
depth relation of deep-sea cores is tested by ap-
plying it to data of the Meteor core M 13519
[Sarnthein et al., 1984] and to the SPECMAP
stack [Imbrie et al., 1984]. The results are com-
pared with earlier studies by Herterich and Sarn-
thein [1981], Shackleton and Matthews [1977], Im-
brie et al. [1984], and Herterich [1988].
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A rather similar approach has recently been ex-
plored by Grieger [1992]. In his work a function
#(z) is introduced that maps points in the core to
the corresponding ages; this is the reverse of the
z(t) mapping adopted here. Grieger’s objective
function and the model restrictions are formulated
in the time domain rather than the frequency do-
main.

The most widely applied method for dating
cores for the last 900 kyr is the approach used by
Imbrie et al. [1984] to establish the SPECMAP
age—depth relation. Tollowing the initial work
by Hays et al. [1976], the SPECMAP age-depth
relation was obtained by passing the orbital pa-
rameters (obliquity and precession index) rather
than the solar insolation through an exponentially
damped system with a time constant of 17 kyr.
The output curve obtained (ETP) was used as
the target for the filtered data curves. The best
fit was determined iteratively for the different fre-
quency bands by phase locking the data to the
orbital parameter curves and averaging over sev-
eral cores.

Another inverse method was suggested by Mar-
tinson et al. [1982] in order to correlate two given

time series, which are related to each other by a
mapping function «(¢). This mapping function is
assumed to be a linear trend modified by a trun-
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cated Fourier series. The trend parameter and
the Fourier coefficients then form the indepen-
dent vector for a coherence maximization prob-
lem. This is solved by an iterative steepest ascent
method with additional constraints for a constant
step length in order to prevent the system of the
normal equations from becoming unstable prema-
turely. However, this method was applied to ar-
tificial data sets, to two different deep-sea sedi-
ment cores, and to correlate two profiles from the
Southeast Indian Ridge in order to determine the
differential spreading rate but has not been used
to investigate the case of orbital forcing. Thus the
calibration by Martinson et al. [1982] establishes
only a relative depth-depth mapping function in
contrast to the absolute depth-time relation ob-
tained from astronomical time series in this study.

Martinson et al. [1987] provided a high-resolu-
tion chronostratigraphy for the last 300 kyr by av-
eraging the results of four different orbital tuning
approaches. Each of these approaches was based
on different assumptions:

1. The “phase locked approach” assumes con-
stant phase between dominant components of or-
bital forcing and the corresponding components in
the geological data.

2. The “direct response approach,” where the
response is assumed to mimic the forcing, consis-
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Fig. 1. 6'80 data curve of Meteor core M 13519 [from Sarnthein et al., 1984].
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tent with the original Milankovitch theory.

3. The “nonlinear response approach” uses the
nonlinear model of Imbrie and Imbrie [1980] con-
sisting of two simple linear models with different
time constants for warming and cooling.

4. The “pure components approach” is compa-
rable to the original idea of Hays et al. [1976], fur-
ther developed by Imbrie et al. [1984] mentioned
Here the tuning target is constructed
from the linear combination of “pure” (i.e., orbital
rather than solar insolation) components and their
harmonics.

The final chronology was determined to have
an average error of 5 kyr. This error analysis
is based on averaging over different tuning ap-
proaches which are all assumed to be equally plau-
sible.

Shackleton and Matthews [1977] derived a
depth-time relation by directly correlating coral
terraces in Barbados with the oxygen isotope
stratigraphic record. Herterich and Sarnthein
[1984] tested three different approaches using data
from Meteor core M 13519. They obtained the ini-
tial age-depth function “LIN” by linear interpo-
lation between radiometrically dated points. The
“CARPOR” age-depth relation is also based on
radiometric data and was developed under the
twin assumptions of constant accumulation rate
of aeolian dust near the thermal equator and
the influence of differential porosity and calcium-
carbonate dissolution on the short-term sedimen-
tation rates. Two further age-depth relations
were again obtained by orbital tuning (“TUNE”
and “STUNE”). The second approach differs from
the first by keeping the isotopic stage boundary

above.
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Fig. 2. The standard run optimal age-depth func-
tion for Meteor core M 13519.
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5/6 [cf. Sarnthein et al., 1984; Prell et al., 1986]
and the Brunhes/Matuyama magnetic reversal
fixed at 127 and 730 ka, respectively. The goal
of both approaches was to maximize squared co-
herence, which reaches values of up to 75%.

Herterich [1988] considered an objective func-
tion similar to that originally developed by Has-
selmann and Herterich [1983]. The optimal model
(of arbitrary high order) and the preferred model
were assumed to be identical, and an age-depth
relation was found for the last 300 kyr. The solu-
tion was obtained by an iterative process of inte-
grating Euler’s equation for the age-depth func-
tion and optimizing the objective function with
respect to the remaining model parameters.

Recently, Shackleton et al. [1990] suggested that
over the last 2 myr a better match with or-
bital models could be obtained with a time scale
departing from the established SPECMAP time
scale below 620 ka (isotopic stage 16 as defined by
Shackleton and Opdyke [1973]. As a consequence,
the Brunhes/Matuyama boundary was dated at
780 ka instead of 730 ka as mentioned above.

2. A SIMPLE MODEL

In this work, two different models are used to
relate the §'®0 data (that are assumed to rep-
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resent global ice volume) and the assumed solar
forcing r(t) or R(f). (In the following, time se-
ries are denoted by lower case letters in the time
domain and upper case letters in the frequency
domain. All time series are furthermore assumed
to be normalized to zero mean and unit standard
deviation.) In the first case, an arbitrary linear
model is introduced that can be described by its
impulse or frequency response functions h and H,
respectively. The output of this system, the theo-
retical global ice volume, y or Y, is represented by
the convolution of the impulse response function
and the input r

y(t):/_o;h(t—u)r(u)du (1)

or equivalenily by the product of frequency re-
sponse function and input representation in the
frequency domain

Y(f) = H(f) R(f). (2)

In the second case, we consider a preferred
model with response functions hy or Hy that is
typically of low order and can be specified by
a stochastic differential equation. For the fol-
lowing we assume for simplicity and consistency
with Hasselmann and Herterich [1983] and Her-
terich {1988]. that the output, yo or Yo, of this
preferred system is given by

d

EyO( )=

although linear systems of higher order are also
permissible and can be easily implemented in the
numerical method used. Here o and A are pa-
rameters of the preferred model that can also be
used for improving the fit. The frequency response
function of the preferred system (3) is given by

Ho(f) =

—Ayo(t) + ar(t), (3)

- (4)
2rif + A
The variance of the output time series of these

two models, y and yo, will be compared with the
variance of the core data.

3. DATA

Oxygen isotopes ratios recorded from foramini-
fera are strongly correlated to global ice volume
and can be used as an indicator for ice ages [Shack-
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leton and Opdyke, 1973]. The data obtained from
deep-sea cores are expressed in the usual § nota-
tion related to the PDB standard and are given
as a function of depth in the core by

18O/IGOSL'«mdard —18 0/160

sample(c)
180/160 .

§80(c) :=

standard

Linear interpolation is used to complete the §%0
curve between actually sampled points in the
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Fig. 4. Coherence between system input (solar
insolation) and 60 before (dashed line) and af-
ter (solid line) optimization. In the top panel the
case with constraints on the parameters of the
preferred model (A > 0 and a > 0) is shown,
while the unconstraint result is given in the bot-
tom panel. Horizontal lines indicate the 95% and
99% confidence limits on an artanh scale [cf. Jenk-
ins and Watts, 1968].
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core. In Figure 1 the normalized 6'®0 val-
ues of the core M 13519 from the Sierra Leone
Rise (5°39,5'N, 19°51’W) are plotted versus depth
[Sarnthein et al., 1984].

To test theories of ice ages, the isotopic data
must be converted from depth to time-dependent
data. Starting from an initial first guess age-
depth relation ¢y, we introduce a correction z to
obtain a new age-depth function

cnelU(t) = CO(t) + I(t). (5)

The data curve then becomes a function of time
and the age—-depth correction

8"80(enew(t))
§'%0(co(t) + =(1)). (6)

Ydar(x,t) =

In the following, the physical length of the core is
denoted by ! and this point is assumed to be well-
dated at time 7. The value ¢t = 0 corresponds to
the present condition. The first guess age—depth
relation ¢g and the correction term z are assumed
to satisfy

Crew(—T) = co(=T) + a(—-T) = L

It should be noted here that yy4.; is subject to
different types of error. These include sampling
errors within the core (i.e., errors associated with
the selected sampling interval), disturbances due
to the process of coring and in situ disturbances
at the ocean floor (e.g., bioturbulence and changes
in currents). Thus yy,, is only one realization of
the theoretically infinite ensemble of realizations
of the stochastic process underlying the data. The
fitting of the data yq,, to the model output is done
in the spectral domain. Averaging over neigh-
boring frequencies of the full resolution sample
spectra (or, equivalently, over chunks using corre-
sponding time windows) is used to obtain consis-
tent estimators of the power and cross spectra. In
the following, averaging is performed with moving
averages always computed over seven frequencies
(14 degrees of freedom). This averaging process is
denoted by cornered parentheses < - >.

In the standard case the variation of the solar
insolation at 65°N at July 15 is used as system in-
put, since the solar insolation during the summer
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Fig. 5. Phase shifts of the data against system in-
put before (dashed lines) and after (solid lines) op-
timization procedure with constraints (top panel)
and without constraints (bottom) on the param-
eters of the preferred model as in Figure 4. The
dotted line shows the preferred model.

at high northern latitudes is believed to be crucial
for ice buildup (cf. Milankovitch [1938] or more
recently Crowley and North [1991]). The numeri-
cal computation of the solar insolation at a given
time uses the method of Berger [1978].

4. OBJECTIVE FUNCTION

In this section we establish the objective func-
tion for the minimization problem following the
original idea by Hasselmann and ITerterich [1983].
The objective function F' consists of the weighted
sum
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6

F= Z ng
=1

of six terms F; to Fs. Each of these terms rep-
resents a different quantified prejudice about the
principal features of the final solution. The num-
bers g1 to gs serve two purposes: First, they re-
flect the individual preference regarding the rela-
tive importance of the different components. Sec-
ond, they are used to normalize the different com-
ponents for numerical stability of the optimiza-
tion procedure. The sensitivity of the optimiza-
tion problem to changes in the weights is discussed
later.

The first term represents the mean square dif-
ference between model output y and data y4a:

F= 0, < (9() = yaue(2, )2 > d (7)

which is equivalent to the classical coherence max-
imization criterion as considered in many other
investigations [e.g., Martinson et al., 1982]. The
averaging over neighboring frequencies of the full
resolution sample spectra or the equivalent local
averaging process in the time domain indicated by
< - > (as an estimation of a hypothetical statisti-
cal ensemble average) is redundant here but is in-
troduced as it will be required later for cross spec-
trum estimation in computing the transfer func-
tion H of an optimally fitted linear system.

Second, the corrected age-depth function should
not deviate too strongly from the first guess ¢
(see equation (5)). This requirement is expressed
by the next component

F= /_OT (1)t (8)

Furthermore, the correction function should bhe
as smooth as possible and, in particular, it should
not contain sharp peaks which would permit the
“swallowing” of complete cycles of the data at
times where there is little energy in the data.
Therefore the third penalty term is

O (dPx(2) ?
F3_/_T( = ) dt. (9)

As mentioned above, certain layers in the core
may already be well-dated by other (possibly
radiometric) methods (e.g., Brunhes/Matuyama
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boundary). Such well-dated points should not be
changed substantially in the optimized age-depth
function. Thus a fourth penalty component

K

F—'l = Z(Ck - Cnew(fk))z (10)

k=1

is introduced. where ¢, t (k =1,...,K) denote
the depths and times, respectively, of well-dated
points.

The optimal linear model should be consistent
with and provide some information about a plau-
sible physical model. Without this restriction,
the transfer function of an arbitrary linear model
might differ substantially in adjacent frequencies.
In this situation it would be difficult to explain the
mechanism linking solar insolation to global ice
volume by a simpler model of low order. There-
fore the choice of the optimal linear model of ar-
bitrary high order is restricted to a smaller sub-
set of models that have reasonable phase shifts
in adjacent frequencies. Imbrie et al. [1989] in-
vestigate the question of space-dependent phase
shifts which also assumes some reasonably con-
tinuous behavior of the transfer functions. Thus
we require through the fifth penalty term that the
model should be close to the preferred model or,
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Fig. 6. Optimal transfer function (hold line) plot-
ted only where the system input contains signifi-
cant energy and the transfer function of the pre-
ferred model given by equation (4) (thin line).
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generally, to a model class of low differential or-
der characterized by a finite number of parameters
(e.g., see equation (3) with two parameters @ and

A),

Fo= 3 <RSP > [H() - Holf)P. (1)

J==-c0

The first five components of the objective func-
tion are essentially the same as suggested by Has-
selmann and Herterich [1983]. For practical pur-
poses (especially if the weight ¢; is chosen to be
large) it is necessary to include a sixth condition
that prevents the age—depth relation from revers-
ing in time. Thus a very large penalty is intro-
duced for age-depth functions which do not in-
crease monotonically:

d 2
F6=/0 (X(t) Ecm(t)) dt, (12)

-7

where
x(t) =1 2 Cnew(t) <0
x(t)=0 otherwise.

In addition to these requirements one could spec-
ify a preferred value or range for the parameters
of the preferred model. For example, negative «
and A in the preferred model (3) are physically
meaningless. Again, such constraints can he for-
mulated as least squares terms and added to the
objective function with appropriate weights.

In summary, we construct an objective function

6
F(z,H,a.\) =3 g.F(x.H o, ), (13)
=1

that depends on the age-depth correction z, the
optimal transfer function H and the parameters
of the preferred system (which we will take in the
following to be o and X in accordance with the
first-order preferred model given in (3)). For given
values of the correction x(t) and the parameters o
and A, the optimal transfer function can be com-
puted analytically at every frequency (since we
consider only a finite interval of data, the vari-
ables in the frequency domain are discrete with
Af = 1/7). From the standard minimal condi-
tion we obtain
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Fig. 7. Power spectra estimates for the §'®0 time
series before (top) and after (bottom) optimiza-
tion. It should be noted that for clarity the spec-
tral estimates are plotted here on a linear scale in
contrast to the power spectra shown in Figure 10
till Figure 15, which were plotted on a logarithmic
scale as suggested by Jenkins and Watts [1968].
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where the overbar denotes complex conjugates.

For g5 = 0 one recovers the standard optimal
linear model solution. In the case that both pa-
rameters g; and gs are positive, the numerator
in equation (14) induces a shift from the estima-
tor of the cross spectrum < R(f,}Yyu(x, f,) > to-
wards the transfer function of the preferred system
Ho(f,). Substitution of the optimal transfer func-
tion (14) into the objective function (13) yields
then a simpler cost function

F(z,a,X) ZJ,

that depends only on the correction z(¢) and the
paramelers a and A.

(z,a,A), (15)

5. NUMERICAL RESULTS

The discretization of the objective function F'
in equation (15) which is necessary for the numer-
ical optimization is presented in the appendix. In
the following. we shall consider some typical appli-
cations with A + 2 = 130 independent variables
consisting of 128 time node components (At =
6 kyr which allows a straightforward application
of standard fast Fourier transform (FFT) algo-
rithms) and two components representing the pa-
rameters o and A of the preferred model.

Standard Case

As a standard case we consider the §%0 data
from the Meteor core M 13519 (Figure 1) [Sarn-
thein et al., 1984]. Starting from a linear in-
terpolation between the present and the Brun-
hes/Matuyama boundary at 730 ka as the first
guess age—depth function, the optimization proce-
dure produces a correction that shifts certain time
nodes up to 24 kyr (32 ¢m) in the core. In the fol-
lowing, the resulting age—depth function shown in
Figure 2 is referred to as the standard run. The
net correction (Figure 3) has large variations with
typical cycle lengths in a broad frequency hand at
approximately 100 kyr (more precisely with peaks
at 80 and 250 kyr).

Martinson et al. [1982] investigate a similar sit-
uation with artificial data sets and arrive at a
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distorted signal that shows a saw-toothed shape
similar to that of the original §280 function. This
distorted signal was obtained by passing the orig-
inal sinusoidal signal through a mapping function
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Fig. 8. The top panel shows the data curves be-
fore and after optimization, while in the middle
the data time series is plotted versus model out-
put, which can be seen at the bottom again com-
pared to solar insolation.
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Fig. 9. Optimal transfer function (indicated by
the crosses for the Milankovitch frequencies) and
preferred transfer function (full lines). The full
line on the right hand side is the transfer function
of the preferred model for A = 0.024 and « = 0.07.
The full line on the left-hand side shows the graph
of formula (4) for A = —0.06. The distance be-
tween the optimal and the preferred transfer func-
tion does not depend strongly on the sign of A.

which consists of a linear trend modified by an
oscillatory component in the same frequency as
the signal. Martinson et al. [1982] concluded that
a nonlinear, oscillatory mapping function might
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arise when the recording process itself is some-
what sensitive to fluctuations in the signal. This
is precisely the case in this situation where the
sedimentation rate (recording process) is indeed
sensitive to climate state (signal).

For the standard run age—depth relation, co-
herence values between data and solar insolation
are obtained that exceed the 99% confidence lim-
its in all three Milankovitch frequency bands 19,
23, and 41 kyr (cf. top panel in Figure 4). It
is important to note that the coherences obtained
are dependent upon the averaging procedure used.
In this work, averages of the full resolution sam-
ple spectra were computed over a relatively wide
range of frequencies (14 real degrees of freedom).
In general, the confidence levels at a given fre-
quency for stochastic estimators associated with
a certain averaging technique depend not only on
the number of degrees of freedom used for aver-
aging but also on the bandwidth of the spectra
at that frequency. In this case the bandwidth of
solar insolation at, for example, 41 kyr is not as
wide as the frequency range used for averaging.
Thus the confidence limits for coherence depend
in our case on frequency. For simplicity and com-
parability with other invesligations [e.g., Imbrie
et al., 1984] the standard confidence limits in ac-

TABLE 1. Ages of Isotopic Events

Isotopic Events Depth, cm Age, ka
Herterich Imbrie Briiggemann
0.0 0.0 0.0 0.0 0.0
1.1 14.0 9.0 6.0 5.9
2.0 26.0 16.4 12.0 12.5
2.2 32.0 20.3 19.0 18.0
3.0 36.4 22.9 24.0 22.8
3.1 42.8 27.0 28.0 31.0
3.3 80.0 52.2 53.0 58.1
4.0 90.7 60.2 59.0 63.2
5.0 96.3 64.5 71.0 65.9
5.1 115.0 79.5 80.0 78.0
5.2 128.4 90.4 87.0 95.3
5.3 138.0 98.0 99.0 102.2
5.4 145.3 103.5 107.0 105.6
5.5 168.6 120.0 122.0 119.7
6.0 184.0 129.7 128.0 127.6

Isotopic event data from Prell et al. [1986]. Ages are given for events
in core Meteor M 13519 during the last 130 kyr. The core data and the
third column are taken from Herterich [1988], while the fourth column
shows the SPECMAP results given by Imbrie et al. [1984].
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TABLE 2. Ages of Isotopic Events

Isotopic Event Depth, cm

Age, ka
CAR. TUNE STUNE SHACK SPEC. Briiggemann
1/ 2 24.0 13 17 10 13 12 11
2/ 3 38.0 27 31 18 32 24 25
3/ 4 83.0 56 73 49 64 59 60
4/ 5 98.0 70 86 63 75 71 67
5/6 184.0 127 139 127 128 128 128
6/ 7 271.0 209 195 184 203 186 203
7/ 8 370.0 277 260 244 262 245 289
8/9 416.0 312 290 269 310 303 306
9/10 506.0 374 348 332 362 339 375
10/11 558.0 410 381 369 383 362 395
11/12 622.0 444 420 409 459 423 458
12/13 685.0 510 478 475 492 478 519
13/14 744.0 540 526 527 524 524 549
14/15 758.0 551 537 539 565 565 560
15/16 829.0 608 591 598 617 620 622
16/17 884.0 657 635 644 654 659 649
17/18 916.0 678 658 668 675 689 677
18/19 968.0 712 701 712 712 726 719
19/20 996.0 733 720 730 736 736 739

Ages of the stage boundaries (defined by Shackleton and Opdyke [1973]) in core Meteor
M 13519 for the full length of the core. The depths are taken from Sarnthein et al. [1984].
The three tuning approaches CARPOR (CAR.), TUNE and STUNE are given by Herterich
and Sarnthein [1984] which also lists the SHACK data from Shackleton and Matthews [1977].
The SPECMAP (SPEC.) age-depth function is given by Imbrie et al. [1984].

cordance with Jenkins and Watts [1968] have been
given in Figure 4.

The phase shifts of the data relative to the solar
insolation (top panel in Figure 5) are negative in
the Milankovitch frequencies. This is a necessary
condition for our linear model to be causal (it im-
plies that the physical quantity represented by the
data follows the solar insolation). On the other
hand, the phase shifts at 41 and 23 kyr are larger
than the shift at 19 kyr, which implies instability
in the case of a first-order model (for models of
arbitrary high order, as for example H, this does
not violate any stability condition). However, the
95% confidence limits for the phase shifts, which
depend on the associated coherence [Jenkins and
Watts, 1968], extend to the phase shift curve of
the preferred model, which is given by

—2nf

¥(f) = arctan( ). (16)

It should be stressed that other investigations
[e.g., Martinson et al., 1982] have had the sole aim

of maximizing either the coherence or the phase
agreement with some preferred model. This is not
the case here. In our study, coherency maximiza-
tion is restricted by requiring that the optimal fre-
quency response function should not deviate too
far from the preferred model or model class. In or-
der to maximize the coherence between data and
solar insolation, the weight ¢5 in (15) should be
small compared to g;. The transfer function (14)
is then dominated by the cross spectrum of input
and data and the coherence approaches the maxi-
mum possible value for an arbitrary linear model.
If, on the other hand, the weight g5 is chosen rela-
tively large compared to the other weights, the
optimal transfer function will be dominated by
the frequency response function of the preferred
model, and the agreement in phase with 1he pre-
ferred model will be good, at the expense of the
coherence [cf. Herterich 198§].

The amplitudes of the transfer functions are
plotted in Figure 6, while the data spectra be-
fore and after optimization are shown in Figure 7.
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By using a sedimentation rate which varies on the
same time scale as the ice ages, a transfer of en-
ergy can be observed from the 100 kyr cycle band
of the data spectrum before optimization into the
41, 23, and 19 kyr frequency bands of the spec-
trum after the optimization process. The sed-
imentation rate varies between approximately 0
and 3 cm/kyr. The effects on the original data of
this correction to the initial age-depth function
can be seen in the top panel of Figure 8. The two
remaining panels show the output of the optimally
determined linear model of arbitrary high order
compared to the data after optimization (middle
panel) and the system input solar insolation (bot-
tom).

The data spectrum before optimization con-
tains significant energy only in the 100 kyr fre-
quency bhand (Figure 7, top panel). After the
age—depth function has been optimally adjusted,
the data spectrum also contains energy in the
Milankovitch frequencies (cf. Figure 7, bottom
panel). However, a large part of the data variance
cannot be explained by a linear model with in-
put solar insolation. This result is not surprising
considering the large climate response and neg-
ligible solar forcing in the 100 kyr band. Imbrie
and Imbrie [1980] and Martinson et al. [1987] have
suggested for this reason the use of a nonlinear
model consisting of two different linear models for
cooling and warming periods, an approach which
is motivated by the typical asymmetric shape of
the data curves. As already mentioned above,
this saw-toothed shape of the data curve may in
part be explained by the dependence of the sed-
imentation rate on the climate state [Martinson
et al., 1982]. However. it should be noted that
spectral power of the sinusoidal data by Martin-
son et al. [1982] was transferred by the oscilla-
tory mapping function only into frequencies which

Fig. 10. Results for application of the method
presented to case 1 (i.e.. SPECMATP stack with
the standard first guess age-depth function and
tuning target solar insolation). The top panel
shows the spectra before (thin line) and after op-
timization (bold line), while the associated coher-
ences are shown in the middle panel. At the bot-
tom the optimized data curve and the SPECMAP
stack are plotted versus time.
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Fig. 11. As for Figure 10, but for case 2 (i.e,,
core M 13519 with a first guess age-depth func-
tion given by a linear interpolation hbetween iso-
topic stage boundaries dated by the SPECMAP
calibration).
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were multiples of the original frequency. Thus it
would be difficult to explain a shift of power from
100 kyr to the Milankovitch frequencies at 41, 23,
and 19 kyr as observed here. Moreover, the com-
bination of an oscillatory age-depth relation and
a linear model does not account for the fact that
most of the power in the data spectrum is con-
tained in the 100 kyr cycle where there is no signif-
icant power in the system input. Therefore since
a considerable amount of the data variance can-
not be satisfactorily explained by a linear model,
the least squares function (15) leads to a mini-
mization problem with large residuals. The value
of the objective function at the optimal solution
is approximately 65% of the value at the starting
point.

For a physically plausible interpretation of the
preferred model the parameters a and A must be
positive. Positive A is required for stability of the
preferred system, while positive a implies smaller
ice sheets for larger insolation. Yet the mathe-
matical problem of minimizing objective function
F in (17) is well posed even for arbitrary « and
A. If, for the sake of simplicity, the optimization is
carried out without restricting @ und X to positive
values, the optimal solution found yields negative
values for both parameters of the preferred model
indicating that a first-order Markov process such
as (3) does not suffice to describe the system in
a satisfactory manner. The coherences between
data and system input obtained in this situation
are obviously higher than in the constraint case
that the parameters a and A are forced to be pos-
itive. If A is allowed to become less than zero,
the fifth component of the objective function (11)
then no longer represents the distance between the
frequency response function H and the transfer
function of a physical preferred system but gives
instead an approximation target for H in form of a
complex function of frequency that depends in ad-
dition on two parameters. The actual position in
the complex plane of the optimal transfer function
in the Milankovitch frequencies does not depend
strongly on the sign of A (Figure 9). Experiments
(Figures 4 and 5) show that the influence of the
sign (i.e., the shape of the complex approxima-
tion target) on the resulting age-depth relation
and the obtained coherences and phase shifts is
rather small. This is due to the fact that the pre-
ferred model is rather meant to control the shape
of the optimal transfer function and prevent large
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Fig. 12. As for Figure 10, but for case 3 (i.e.,
core M 13519 with a first guess age-depth function
given by a linear interpolation between the present
and the redated Brunhes/Matuyama boundary at

780 ka).
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discontinuities in adjacent frequencies than actu-
ally force the optimal model in the direction of the
preferred model. However, if o is sign-constrained
and 1/X is assumed to lie in the interval between
10 and 100 kyr, then the optimal time constant
obtained is 41.7 kyr, while the optimal value for
1/X without further constraints is -15.2 kyr.

The results obtained by this approach for the
age—depth function are consistent with earlier in-
vestigations. The ages of isotopic events deter-
mined in core Meteor M 13519 [Sarnthein et al.,
1984] are compared with those obtained by Her-
terich and Sarnthein [1984], Herterich [1988], Im-
brie et al. [1984], and Shackleton and Matthews
[1977] in Table 1 (fine temporal resolution for the
last ice age cycle) and Table 2 (coarse temporal
resolution). The deviations between the different
approaches tend to be larger in the center of the
time interval considered, away from the well-dated
end points. The highest amplitudes in the cor-
rection z (see Figure 3) lie in the time interval
between 200 and 500 ka, in which the greatest de-
viations between the three different age-depth re-
lations obtained by Herterich and Sarnthein [1984]
are found. Grieger [1992] achieved an age-depth
function very similar to our optimal result in the
standard run, despite the fact that he neglected
the low-frequency component in his model. Mar-
tinson et al. [1987] arrived at age-depth relations
for another core that show departures from linear-
ity which are similar to those obtained here in the
standard run.

The amplitudes and phase shifts of the data
spectrum against system input are comparable
to the values given by Hasselmann and Hert-
erich [1983] for the age-depth relations CARPOR,
TUNE, and STUNE.

The maximum coherences obtained (greater
than 90%) are higher than those given by Her-
terich and Sarnthein [1984] (maximum in sin-
gle peaks of T5% squared coherence which cor-
responds to approximately 85% coherence), even
though coherence is not exclusively maximized in
our objective function F in (17). The coherences
are slightly lower than those given by Imbrie et
al. [1984] for the SPECMAP time scale, although
it should be pointed out that the SPECMAP co-
Lierences are calculated between an artificial stack
and the sum of the normalized orbital parameters
(ETP). By using the ETP curve as system input,
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the SPECMAP approach is also able to explain
data energy contained in the 100 kyr cycle, where

there is no significant energy in solar insolation.
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Application to Different Cases

In order to test the method with different com-
binations of input data series, tuning targets and
first guess age—depth functions, we performed sen-
sitivity studies on the following cases:

1. SPECMAP stack with the standard first
guess age—-depth function and tuning target solar
insolation.

2. Core M 13519 with first guess age-depth
function given by a linear interpolation hetween
isotopic stage boundaries dated by the SPECMAP
calibration.

3. Core M 13519 with a first guess age—depth
function given by a linear interpolation between
the present and the redated Brunhes/Matuyama
boundary at 780 ka with At increased from 6 to
7 kyr.

4. SPECMAP stack with a first guess age-
depth function given by a linear interpolation be-
tween isotopic stage boundaries optimally dated
by the standard run.

5. SPECMAP stack with a first guess age-
depth function given by a linear interpolation
between the present and the redated Brun-
hes/Matuyama boundary at 780 ka with At in-
creased {from 6 to 7 kyr.

6. SPECMAP stack with the standard first
guess age—depth function but the tuning target
ETP.

The results (spectra of the data before and after
optimization, corresponding coherences and op-
timized time series compared to the SPECMAP
stack) are shown in Ifigures 10 — 15. Note that
in the case of ETP-forcing (case 6) it is possible
to improve the SPECMAP calibration in terms of
the coherences, although this was the SPECMAP
optimization criterion. The optimal time constant
of the preferred system in this case is 12.8 kyr.

The coherences obtained for the SPECMAP
case with a first guess age-depth relation taken
from the optimal standard run (case 4) are quite

Fig. 13. As for Figure 10, but for case 4 (i.e.,
SPECMAP stack with a first guess age-depth
function given by a linear interpolation hetween
isotopic stage boundaries optimally dated by the
standard run).
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high, although only forcing by solar insolation is
considered, but do not reach the values obtained
in case 6. This observation and the fact that
the optimal solutions for the standard case and
case 2 are quite diflerent indicates the dependence
of the final solution on the subjective choice of the
first guess age-depth function. Reasonable coher-
ence values were also obtained for the two cases
(case 3 and case 5) that were started with a first
guess age—depth function that attributes an age
of 780 ka to the Brunhes/Matuyama boundary in-
stead of 730 ka. This gives further support to the
redating of the Brunhes/Matuyama boundary as
suggested by Shackleton et al. [1990].

Random Time Series and Sensitivity Analysis

It has been shown that high coherences in all
three Milankovitch frequencies can be obtained
for real ocean core data by optimizing the age-
depth function. There is naturally a lingering
suspicion that this may just be an artifact of the
analysis method, and that high coherences could
have been generated artificially for any random
time series. To rule out this possibility, filtered
white noise tests were performed, in which the in-
put time series were generated randomly with a
spectrum similar to that of a typical §%0 data
series (i.e., most energy contained in the 100 kyr
frequency band). Again, corrections of a similar
shape were produced and a similar energy shift
from the 100 kyr to the 41 kyr band could be
observed, but significant coherences could be gen-
erated in only one frequency band at a time. It
was impossible to obtain simultaneously reason-
able coherences in all three Milankovitch bands,
as found for real ocean core data.

The weights g, served two purposes. First, they
were used to normalize the different components
of the objective function, which is necessary for
numerical stability. Second, they reflect the sub-

Fig. 14. As for Figure 10, but for case 5 (i.e.,
SPECMAP stack with a first guess age-depth
function given by a linear interpolation between
the present and the redated Brunhes/Matuyama
boundary at 780 ka).
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jective judgement of the user as to the respec-
tive importance of the different components. For
physically meaningful age-depth functions we al-
ways selected large values for the weight g,. Since
the corresponding objective function component
is zero for all first guess age—depth functions, this
does not contribute to the initial iterations of the
objective function and acts only to prevent solu-
tions from becoming nonmonotonic. To test the
sensitivity of the minimization problem with re-
spect to the remaining weights ¢q,..., g5 we com-
puted standard case solutions for weights which
were individually multiplied by factors

1 1
— —, 10, 1
100° 10° 0, 100

while all other weights were kept at their stan-
dard run values. The highest coherences were
obtained in the standard run. The basic low-
frequency structure (cycle length of 250 kyr and
more) of the optimal age—-depth function remains
constant throughout the sensitivity analysis, al-
though the high-frequency details (in this context:
cycle lengths at 100 kyr and less) varied consider-
ably. This preliminary sensitivity analysis yields
age—depth functions with differently shaped cor-
rections. As expected. a much smoother correc-
tion was obtained, when the parameter for the
second derivative was increased.

Another question raised above is the influence
of the first guess age-depth function on the so-
lution. This chosen fixed function is part of the
quantifiable subjectivity of the approach. Since
the deviation of the age-depth function from the
first guess is penalized, the results obtained for
two different first-guesses will differ if the devi-
ations are large. Different solutions were actu-
ally obtained by changing the first guess, as indi-
cated in the case studies discussed ahove. We per-
formed a further numerical test in which the first
guess age-depth relation was altered from a linear
function by adding randomly selected corrections
drawn from the interval [-3 ¢m, 3 c¢cm]. The result

Fig. 15. As for Figure 10, but for case 6 (i.e.,
SPECMAP stack with the standard first guess
age—depth function but tuning target ETP).
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from this experiment did not differ significantly
from the standard run. In general, the optimiza-
tion problem is more sensitive to the weights than
to small, random changes of the first guess age-
depth function, although substantial and system-
atic changes of this function will alter the results
considerably (e.g., SPECMAP calibration versus
linear interpolation). Thus, if a priori information
about the data indicate that a linear age-depth
function is incorrect, this information should be
used to determine a better first guess age-depth
function. For example, if the linear age-depth
function incorrectly maps a peak of the data curve
to an input peak, the algorithm is not likely to
change this incorrect matching, since the reduc-
tion of the cost function by more coherent model
and data time series is compensated by the in-
crease in the remaining components of the objec-
tive function.

This dependence of the optimal solution on the
initial guess is not to be confused with the pos-
sibility of arriving at a local minimum which is
not the absolute minimum. In general, there is
no guarantee that numerical optimization routines
will locate the global minimum, although there
are algorithms that cope with this problem (e.g.,
the simulated annealing approach developed by
Kirkpatrick et al. [1983] originating from equa-
tion of state calculations in thermodynamics by
Metropolis et al. [1953]). Since the objective func-
tion is neither quadratic nor convex, we may ex-
pect local minima. A typical graph of the ob-
jective function for the coherence maximization
problem is given by Martinson et al. [1982]. How-
ever, the objective function (15) is much smoother
here, since, as discussed above, an improvement
in one component (e.g., higher coherence by in-
cluding an additional input cycle at data points
of small amplitude) is usually outperformed by
the remaining components (e.g., the third compo-
nent that penalizes large curvature of the correc-
tion). Thus the number of local minima is much
smaller than in the case considered by Martinson
et al. [1982]. The fact that the resulting age-depth
function for the standard run shows shifts of time
nodes up to 24 kyr (32 cm) indicates that the opti-
mization procedure can locate solutions with large
departures from the initial guess, i.e., that sub-
optimal solutions with respect to the first com-
ponent (coherence maximization) are overcome.
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Additionally, the test with a randomly disturbed
initial age—depth function mentioned above indi-
cates that the optimal solution does not strongly
depend on the starting point, and the question
of local minima therefore was not further investi-
gated.

6. SUMMARY AND CONCLUSIONS

The mathematical approach suggested by Has-
selmann and Herterich [1983] represented an at-
tempt to optimize simultaneously the age-depth
function and a linear response model. In this in-
vestigation, we have implemented and improved
this approach, using a completely different nu-
merical solution strategy. The method presented
here provides a universal tool for core calibration
and testing of linear relationships between differ-
ent forcing mechanisms and the response of the
climate system on ice age time scales subject to
quantified individual preferences. It was possible
to improve the SPECMAP calibration in terms
of the obtained coherences. The optimal results
for the age-depth function of an ocean sediment
core are comparable to those given by Herterich
and Sarnthein [1984], Imbrie et al. [1984], and
Shackleton and Matthews [1977] with energy con-
tained in the spectrum of the correction function
itself in a broad band around 100 kyr. Therefore
the sedimentation rate varies on the same time
scale as the ice age cycles. This result has not
been observed in earlier investigations, although
Martinson et al. [1982] were able to reproduce a
sawtooth-shaped function similar to the original
8180 data curve for artificial data sets that were
passed through a mapping function which con-
sisted of a linear trend modified by an oscillatory
component with energy in the same frequency as
the original sinusoidal data.

The coherences are higher than in the work by
Herterich and Sarnthein [1984] and comparable to
those obtained by Imbrie et al. [1984]. It was pos-
sible to transfer energy in the data spectrum from
the 100 kyr band to the Milankovitch frequency
bands, especially at 41 kyr, where significant en-
ergy was not contained previously.

However, a large fraction of the energy con-
tained in the data spectrum, particularly in the
100 kyr frequency band, cannot be explained by a



Briiggemann: Optimization of Age-Depth Relation

linear model using solar insolation as input. The
saw-toothed shape of the data curve mentioned
above suggests that in addition to the interpre-
tation derived from observations by Martinson et
al. [1982] a nonlinear model, such as that proposed
by Imbrie and Imbrie [1980], may be required.
The tuning of age-depth functions to a nonlinear
model is more complicated than the case consid-
ered here, but is in principle amenable to the same
techniques.

The main goal of this investigation, however,
was to develop an automatic time calibration and
dynamical model fitting technique which can be
applied to many cores. In order to develop a
global picture of the structure of the late Pleis-
tocene climate cycles, it will be necessary to op-
timize simultaneously the age-depth functions for
a number of different cores within the context of
a global dynamical model, a task which can be
addressed only with the aid of a general inversion
method.

APPENDIX: DISCRETE OBJECTIVE
FUNCTION

For the numerical optimization, the objective
function F in (15) must be discretized. We as-
sume a uniform discretization ¢; = —7 + At (i =
1,..., M) in the time interval I = [—7,0]. The
continuous correction x(t) is then replaced by a
vector x = (a1,...,7p)T;2, = z(t,). For the
formal minimization algorithm, the parameters
of the preferred model are added to the inde-
pendent vector a, forming the last two compo-
nents rar41 and xarys. For a given vector z :=
(21,...,7242)7, the frequency response H, =
H(f,) of the optimally fit linear system is com-
puted from (14) at all M frequencies f,. H, de-
pends not only on frequency but also on the cor-
rection and parameter vector z, H, =: H;(z).
At all time nodes it is now possible to compute
the output of the optimally fitted linear system
y(t,) as the discrete inverse Fourier transform of
Y = HR. Again, this output depends on the in-
dependent vector w, y,(2) := y(t;). The transfer
function of the preferred linear system depends
also on «

HO,J(-T) = HO(.f])’
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since the last two components of x are the param-
eters a and A. The discretized objective function
is thus given by

M
F(z) = g1 (4,(2) = yaar(z, + co(t,)))?
=1
M
+ g2 )
7=1
M-1 Y, P 2
-1 — 2% + -731+1)
s 2 ( INE
=2
K
+ 91> (ex = (coltym) + z,000))? (17)
k=1
M/2
+ 95 Z < |R(f.7)|2 > |HJ('1:) - HO,J($)|2
]:—]\1/24-1
M-1
+ 9 Z Xf(cnew(tJH) - Cnew(tJ))2v
=1
where
X; = 1 Cnew(t]+1) - Cnew(t]) S 0
X; =0 otherwise.

This defines a discrete, nonlinear, least squares
optimization problem with an objective function
that maps the M + 2-dimensional Euclidean space
to the real line.

The nonlinear dependence of the optimization
problem should not be confused with the most
probably nonlinear relation of solar insolation and
global ice volume, although the dynamical mod-
els used to describe this relation ave linear. The
optimization problem is nonlinear, since the first
M components of the independent vector z are
the individual corrections to the age—depth func-
tion, and the input to the objective function is
given by the value of the interpolated data func-
tion at the corresponding time nodes. One partic-
ular problem is that the objective function is not
differentiable due to the linear interpolation used
in between the points where the data were sam-
pled in the core originally. This problem can be
overcome, however, by cubic spline interpolation.
Least squares problems with many degrees of free-
dom are usually poorly conditioned. The discon-
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tinuities of the first derivative further reduce the
stability. We therefore applied a rather robust and
fast optimization algorithm called PLMA (pre-
conditioned limited memory quasi-Newton algo-
rithm) [c[. Gill and Murray, 1979].

Numerical approximations of the first deriva-
tives were used. Initially, forward differences were
used until these approximations failed a simple
test (computing directional derivatives either di-
rectly or as a scalar product of the gradient and
the chosen unit direction). This usually occurs in
the vicinity of an optimum, and we then switched
to the more time consuming central differences for
higher accuracy.

A comprehensive discussion of optimization al-
gorithms as well as the treatment of numerical
problems such as stability, convergence of algo-
rithms and preconditioning can be found in the
book by Gill et al. [1981]. The numerical diffi-
culties of this particular problem are discussed in

detail by Briiggemann [1990].
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