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Abstract. The paper proposes a financial market model that
generates stochastic volatility and stochastic interest rate using
a minimal number of factors that characterise the dynamics of
the different denominations of the deflator. It models asset prices
essentially as functionals of square root and Ornstein-Uhlenbeck
processes. The resulting price processes exhibit stochastic volatil-
ity with leptokurtic log-return distributions that closely match
those observed in reality. The resulting index of the market is
negatively correlated with its volatility which models the well-
known leverage effect. The average growth rates of the different
denominations of the deflator are Ornstein-Uhlenbeck processes
which generates the typically observed long term Gaussianity of
logreturns of asset prices.
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1 Introduction

An advanced financial market model should be analytically tractable and must
reflect with a minimal number of factors essential stylised empirical facts. It
must work equally well for derivative pricing and hedging as well as for risk
measurement and portfolio management. All factors in such a market model
should represent almost directly observable quantities.

The well-known Black-Scholes model (BSM) assumes that geometric Brownian
motions generate the asset price dynamics. Although the theoretical and practical
importance of the BSM cannot be underestimated, it is far from being satisfactory.
The BSM has the drawback that it assumes deterministic volatility. This does not
match historically observed stochastic volatility. For instance, in the context of
option pricing practitioners have to correct for implied volatility skews and smiles
due to stochastic volatility. The at the money short term implied volatility of
an index has typically a strong negative correlation with the index itself which is
also known as leverage effect. Furthermore, it has been observed that logreturns
of asset prices over very long time periods tend to be Gaussian distributed. On
the other hand, short term logreturns of asset prices have been shown to be
leptokurtic with specific distributional properties. These stylised empirical facts
should be well reflected in a sophisticated financial market model. Furthermore,
such a model should acknowledge certain symmetries that naturally exist in a
market as we will see below.

There is a rich literature on asset price modelling. For surveys on the modelling
of stochastic volatility and other empirical stylised facts in the context of asset
price dynamics, see Ghysels, Harvey & Renault (1996) and Frey (1997).

A well studied group of asset price models covers the subordinated models, see,
for instance, Clark (1973), Hurst, Platen & Rachev (1997), Geman, Madan &
Yor (1998) and Heyde (1999) to mention just a few. These models use non-
decreasing stochastic processes, usually with independent increments, to generate
an independent stochastic operational time as directing process. A drawback for
subordinated asset price models results from the fact that they typically assume
independence between asset price and directing process which prevents these
models to cover the above mentioned leverage effect.

An extensive literature exploits discrete time stochastic processes, for instance,
ARCH and GARCH type asset price models. These models depend on a subjec-
tive choice of the time step size as an important parameter, see Engle & Bollerslev
(1986). Such a choice is not relevant in a stochastic differential equation frame-
work, where drift and diffusion coefficient functions characterise the model.

Some authors suggest to include jumps into the asset price dynamics, see, e.g.,
Kou (2000). Unfortunately, it is almost impossible to identify objectively jumps in
asset price data. Barndorff-Nielsen & Shephard (1998) emphasise that a financial
market model should be a continuous time model and use mean reverting Lévy



processes to generate asset price dynamics which typically lead to incomplete
markets. It is highly desirable that at least an idealised version of a financial
market model forms a complete market. Dupire (1994) and Derman & Kani
(1994) developed volatility function approaches that lead to complete market
models. These are in some sense generalisations of the constant elasticity of
variance model, see, e.g., Cox & Ross (1976). Unfortunately, as shown in Delbaen
& Shirakawa (1997), such models may, in general, not guarantee strict positivity
of asset prices.

This paper proposes a diffusion model, the minimal market model (MMM), that
uses a minimal number of almost directly observable factors, that are modelled
as square root and Ornstein-Uhlenbeck processes under the real world probabil-
ity measure. The basic building blocks of the proposed model are the different
denominations of the deflator measured in units of primary assets. They de-
termine all financial quantities including short rates, dividend rates, volatilities
and risk premia. The MMM reflects well major stylised empirical facts as will
be discussed at the end of the paper. Most importantly, it naturally generates
stochastic volatility without using any additional stochastic volatility process.
This is in contrast to most stochastic volatility models, see, for instance, Heston
(1993) or Fouque, Papanicolau & Sircar (1999), which use unobservable exoge-
neous processes to generate stochastic volatility. The MMM is computationally
highly tractable and allows a good fit to historical and derivative data, as shown
in Heath & Platen (2000).

2 Minimal Market Model

2.1 Savings Accounts and Deflator

Let us define a primary asset as an income or loss producing asset, for instance, a
stock currency or commodity. We consider in a market the evolution of the prices
of d + 1 primary assets, d € {1,2,...}, that is modelled on a filtered probability
space (€2, Ar, A, P). Here the filtration A = (A)scfo,r7 fulfills the usual condi-
tions with Ay being trivial, see Karatzas & Shreve (1988). We assume that each
primary asset has its own time value. The time value of the domestic currency is
expressed via the corresponding savings account process B = {B°(t), t € [0,T]},

e BO(t) = exp { /0 ") ds}

fort € [0,T], T € (0,00). This savings account accumulates continuously interest
according to the domestic interest rate process f° = {f°(t), t € [0,T]} which
describes the income rate from holding the domestic currency. The time value
of the jth primary asset is similarly modelled by the jth savings account process



= {Bi(t), t € [0,T]}, where

dB?(t) = BI(t) fi(t) dt (2.1)

for t € [0,T] with B?(0) = 1. The jth income rate process f7 = {f’(t), t € [0,T]}
can be, for instance, a dividend rate, domestic or foreign interest rate or the net
income rate from holding a commodity. In summary, the jth savings account
measures accumulated income or loss generated by the jth asset in units of the
jth asset, j € {0,...,d}.

We assume that there exists a deflator, see Duffie (1996). This is a strictly
positive A-adapted, continuous process that when used as numeraire makes any
deflated price process an (A, P)-martingale. It is well-known that the deflator is
the optimal growth portfolio as described in Karatzas & Shreve (1998). Let us
denote by D’ = {D(t), t € [0,T]} the jth denomination of the deflator in units
of the jth primary asset j € {0,...,d}. Under the MMM the jth denomination
of the deflator D’(t) at time ¢ is specified as a functional of the form

DI(t) =& (Y/(t)% GU(¢), (2.2)
where
GI(t) = exp { /0 i (s) ds} (2.3)

for t € [0,T] and j € {0,...,d}. The jth initial parameter & > 0 and the
jth exponent q; € (0,00] are given constants. The jth square root process
Y7 ={Y7(t), t € [0,T]}, that appears in (2.2), is characterised by the stochastic
differential equation (SDE)

dY?(t) = sz PO L =YI0)dt =Y M) VYD) aWHE)  (2.4)

with jth diffusion parameter o7 (t) = 32¢_ (y%4(t))? for t € [0, T] and initial value
Y7(0) >0, j € {0,...,d}.

Here W1, ..., W are independent standard Wiener processes. The jth dimension
v/ € (2+ 4g;,00) is a constant and the k, jth volatility parameter v*7 : [0,T] —
(—00, 00) is a deterministic function for j € {0,...,d}, k € {1,...,d}. Obviously,
the square root process Y7 fluctuates around its long term average value of one,
where the diffusion parameter ¢/ controls the speed of its evolution and the
dimension »’ the magnitude of extreme fluctuations. For larger dimension 1/
extreme fluctuations are less likely.

The jth growth rate process i = {n’(t), t € [0,T]} governs according to (2.2) the
average growth of the jth deflator. We assume that 7/ is an Ornstein-Uhlenbeck
process with

df (t) = o (8) (P (t) — 1 () dt + Z BRI (t) AWk (t) (2.5)



for ¢ € [0,7] and initial value 77(0) € (—00,00), j € {0,...,d}. Here the jth
speed of adjustment parameter o’ : [0,T] — (0,00), k, jth diffusion parameter
B* 2 10,T] — (—o0,00) and jth average growth rate 7’ : [0,T] — (—o0,00)
are assumed to be given deterministic functions of time, j € {0,...,d}, k €

,...,d}.

Note that the SDEs for the square root and growth rate processes have unique,
strong solutions with explicitly known transition densities, see Karatzas & Shreve
(1988).

2.2 Asset Price Dynamics and Risk Premia

The jth deflated savings account process 59 = {S7(t), t € [0,T]} is formed by the
ratio

1) = 20

Di(t)

for t € [0,T] and j € {0,...,d}. Note the symmetry between deflated savings
accounts in the model.

(2.6)

By application of the It6 formula, see Protter (1990), we obtain from (2.6), (2.1),
(2.2) and (2.4) for the jth deflated savings account the SDE

45 — 5 <>[f-7<> PO+ o0+ Gl (B =)
ia’” dW*(t) 27)

for t € [0, 7] with initial value

- 1
70) = — 2.8
0= 5 (28)
and thus the k, jth volatility of the jth deflated savings account
. cykod (¢
o (t) = L() (2.9)
Yi(t)

for j€{0,...,d}, ke {1,...,d} and t € [0, T].

By assumption the deflator makes all deflated price processes to martingales.
This means S7 must to be a martingale and it follows from (2.7) that the jth
income rate fulfills the relation

PO=r0 400 (g 5 -2 -4 e



for ¢t € [0,7] and j € {0,...,d}. Note, in the special case v/ = 2(g; + 1) the jth
income rate does not depend on the square root process Y.

From (2.6), (2.7) and (2.1) we obtain by application of the It6 formula the dy-
namics of the jth deflator in the form

dDi(t) = d(?«ﬂ>
(1)

= Dit !( H+> (o )dt Za” £ dWk(t)| (2.11)

k=1

fort € [0,7T] and j € {0,...,d}.

The exchange price X*(t) is the price of one unit of the jth asset at time ¢
measured in units of the sth asset. Using the sth and jth denominations of the
deflator the 7, jth exchange price can be expressed as the ratio

iip _ D)
X"(t) = Di(t) (2.12)
and it follows by application of the It6 formula and (2.11) that
dXH(t) = XU() |(f{(t) - () dt
d
D Ca W) {—c™ () dt + dW*(t)}|  (2.13)

k=1

d}.

Let us now consider the savings accounts which are essential for investment pur-
poses. The jth savings account price S*I(t) at time ¢, when measured in units of
the ith primary asset, is given by the formula

SHI(t) = X (t) BI(t) (2.14)
and it follows by the It6 formula, (2.13) and (2.1) that

for ¢ € [0, T] with initial value X*I(0) = 20

dSH(t) = S (¢ dﬁ+§: W(t)) {—c™(t) dt + dW* (1)}

(2.15)
for ¢t € [0,T] with $%9(0) = X*/(0) and 4,5 € {0,...,d}.

Note in (2.15) that a premium appears in excess of the income rate of the de-
nominating sth asset. More precisely, the 4, jth risk premium has the form

=Y (% () = o™ (t) o™ (2) (2.16)

d
k=1



for t € [0,T) and 4,5 € {0,...,d}. For i = 0 the equation (2.15) describes the
dynamics of the jth savings account expressed in the domestic currency.

2.3 Contingent Claim Pricing

We introduce the (n +1) = 4(d + 1) factors Z°,..., Z" which are assumed to be
given by the SDEs

dZ(t) = of(t, Z°(t), ..., Z™(t)) dt + iﬁ“(t, Z°@),...,Z"@1) dWk(t) (2.17)

for ¢t € [0,T] with appropriate initial value Z(0). The first d + 1 factors are
the square root processes, that is Z%(t) = Y*(t), see (2.4), for t € [0,T] and £ €
{0,...,d}. The following d + 1 factors play the role of the growth rate processes,
that means Z4*1(t) = nt(t), see (2.5), for t € [0,T] and £ € {0,...,d}. The
third set of factors is chosen to generate the average growth of the denominations
of the deflator, that is dZ*T241(t) = G*(t), see (2.3), for t € [0,T] and £ €
{0,...,d}. The fourth group of factors represents the savings accounts, that is
Z4342(t) = BY(t), see (2.1), for t € [0,T] and £ € {0,...,d}. In the standard
version of the MMM, see Platen (2000), one only uses the first d+1 factors which
are already sufficient to generate the key properties of the model, that is the
stochastic volatility that generates the leverage effect and appropriate logreturn
distributions.

We call a nonnegative deflated payoff H = H(T, Z°(T),..., Z™(T)) € [0, cc) that
matures at T € (0,7T] a European contingent claim. One can show, see Platen
(2000), that the deflated price ug(t, Z°(t),...,2"(¢t)) at time t € [0,T] of the
contingent claim H is given by the conditional expectation

wn(t, 2°t), ..., Z"(t)) = E (H | A,) . (2.18)
Let us denote by b(t) = [0"7(t)]{ ;_, the diffusion matrix of primary assets when
denominated in domestic currency with b%4(t) = S9(t) (07*(t) — o%*(t)).

For given H we introduce the vector c(t) = (c!(t),...,c%(t))" with

) = B4, 20, ..., 2" (1)) 8u(t,Z(rg%E..,zn(t))
—u(t,Z°(t),..., Z2"(t)) o™k (2). (2.19)

If the matrix b(t) is nonsingular all t € [0,7], then the number 67(¢) of units
of the jth primary asset that must be held at time ¢ in a self-financing hedge
portfolio that replicates H is determined by the relations

(EL(D), ..., 041))T = b 1(t) elt) (2.20)

7



and

5(t) = S’Ol(t) (u(t, 20, 2'(0) = 9 ) éj@)) L o)

To give an example for the price of a contingent claim it follows that a European
call option with strike price K and maturity 7 written on D° has in units of
domestic currency the price

D(1)
D(T)

ct, Z2°(t), K, T) = E ( (DX(T) — K)* | At> :

Since the deflated deflator has the constant value one the equations (2.19) - (2.21)
determine with the specification u(t, Z°(t),..., Z"(t)) = 1 the number of units of
primary assets that form the deflator.

3 Properties of the MMM

Let us finally discuss several properties of the MMM that are responsible for
its simplicity and its good fit to empirical data. Most importantly, the MMM
generates stochastic volatility without the use of an external volatility process.
Note from (2.9) that the volatilities are proportional to the square root of the
inverse of a square root process. This feature causes negative correlation between
the jth deflator and its volatility and thus generates the well observed leverage
effect typically observed for indices. The resulting volatility process exhibits
natural persistence of high or low values and generates threshold exceedances
that are clustered and very similar to those observed in reality.

From (2.11) and (2.9) it follows that the log-return of the jth deflator over a
small time interval [t,¢ + €], € > 0 has approximately the form

&

log(D?(t +¢)) — log(D?(t)) ) g ( Wkt 4¢) — W),

k=1

which represents a Student ¢ distributed random variable since Y () is gamma
distributed. Thus log-returns over small time intervals of the jth deflator are
Student ¢ distributed under the MMM. This feature has been shown to be consis-
tent with real data for most stock market indices in Hurst & Platen (1997) and
for index benchmarked stock prices in Platen (1999a).

Under the MMM the log-returns over very long time intervals of the jth deflator
are, in principle, Gaussian distributed due to the Gaussian growth rates in the
MMM. This matches the widely observed Gaussianity of long term log-returns.

Since the leverage effect is well modelled by the MMM, implied volatility skews
and smiles for European puts and calls on stock indices, stocks and currencies
match those observed in practice, as shown in Heath & Platen (2000).

8



Under the MMM the short rate (2.10) is, in general, stochastic with properties
that are similar to those actually observed, see Platen (1999b). For instance, the
inverse of the jth square root process generates a diffusion coefficient function

with power 1.5 as observed in different empirical studies on short rates, see, e.g.,
Chan, Karolyi, Longstaff & Sanders (1992).

The crucial advantages of the MMM are its good fit which generates only small
changes in its few parameters and its high computational tractability. The key
quantities for this complete model are almost directly observed. With a minimal
number of factors the MMM overcomes many of the unrealistic features of the
classical Black-Scholes model and most other models.
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