
PROCEEDINGS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 38, Number 2, April 1973

A  MINIMAL  PARTIAL  DEGREE = 0'

LEONARD  P.  SASSO,  JR.1

Abstract. We construct, recursively in 0', a minimal element

in the upper semilattice, excluding least element, of Turing degrees

of partial functions.

We are concerned here with partial Turing degrees in the sense of [4].

By a function we mean a unary function with domain Çw, the set of

natural numbers, and range £{0, 1}. A function/is Turing reducible to a

function g(f^Tg) iff can be computed by a Turing machine which has

access to the values of g where g is defined. A machine computation is

considered divergent if it calls for a value of g where g is undefined. The

purpose of this restriction is to ensure the single-valuedness of machine

computations (cf. [4]). Equivalently,/ _T g iff is in the closure of g and

the usual initial functions (successor, constants, and projections) under

composition, primitive recursion, and minimalization.

A partial degree is an equivalence class under Turing interreducibility.

The degree off is denoted by/ In [4] we show that the set S$ of degrees

of partial functions with the naturally induced partial order is an upper

semilattice with least element, the degree 0 of the partial recursive functions,

and that the set ¡E~ of degrees which contain a total function, a function

with domain to, is a proper subset of 3¡. In [4] we construct a degree

minimal in ^—{0} but leave open the problem of carrying out such a

construction effectively in 0', the degree of the halting problem for the

partial recursive functions. Below we present a construction which is

effective in a somewhat stronger sense.

We assume an effective indexing of Turing machines and let <&e(x, F)

denote the functional from a> x {partial functions} to co induced by the eth

machine. Hence for a partial function/ <t>e(x,f) is the partial function

computed by the eth machine given access to the values off.

Let the (semi) characteristic function (SJ Cx ofasetotcco be the func-

tion whose value is 0 on a and (undefined) 1 elsewhere. We use Oe(x) to

denote Oe(x, S^). Observe that if x s ß s to then Oe(x, Sß) is an extension
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of Oe(x, SJ for all e. In particular if O^jc, Sx) is total then ^(x, SJ = 1>e(x)

and hence is recursive.

A semicharacteristic degree is a degree containing a semicharacteristic

function. Note that if f is not partial recursive then at least one of

{n:f(n)=0} and {n:f(n)=l} is not recursively enumerable (r.e.). Hence

if 0</then 0<5„^/for some oiÇtu and degrees minimal in 88—{0}

must be semicharacteristic. Since by preceding observations, the only

total, semicharacteristic degree is 0 the solutions to the minimal degree

and minimal degree 5=0' problems for ¿7~—{0}, due to Spector [6] and

Sacks [2] respectively, do not carry over to 3¡ — {0}.

By an array we mean an r.e. by canonical index set of finite sets where

the canonical index \{nx, ■■ ■ , nk}\ of {«,, • • ■ , nk} is 2ni + - ■ • + 2n" and

101 =0. We let Ae denote the array given by the range of Oe(x). The «th

cell Aen of Ae, when defined, is the finite set whose canonical index is

0(,(«). For a Co), let A"e = {n: AeiU is defined and Sa}. Observe for a, ß^co

that 5a ^T Sß iff a=Aße for some e. To see this when Sx = Q>fix, Sß) let

Ae be the array whose «th cell, when defined, is the smallest by ç finite

set y such that O/O, Sy) is defined. Such an array may be recursively

enumerated by following the computations of the fth machine given

access to Sa. Conversely, for a given Ae, consider the machine which, for

argument n, converges to 0 if Aen is defined and if given access to some

function g extending S a and which diverges otherwise. Hence it is clear

that the search for a degree 5!0' minimal in 8t — {0} is a search for a

non-r.e. ol^oj such that Sa^0' and for each e either A" is r.e. or Sx ^T Sa*-

Theorem. There is a co-r.e., nonrecursive set a.Çu> such that for any e

either A"e is r.e. or Sx ^T SA<*-

Proof. We use an e-state type priority construction to enumerate the

complement 5 of a. We assume an effective, 1-1 enumeration of all pairs

fa, nA for which Aen is defined and a simultaneous enumeration of the

r.e. sets W0, Wx, ■ • ■ where We is the domain of OeO). The construction

is in stages. A set ß is said to be fixed at stage t if either ß £ « or some

member of ß has been enumerated in 5 by stage /. In order to make A"e

r.e. we hope to ensure that there is a stage / such that every cell of Ae

which appears after stage / is fixed when it appears. In the other case, in

order to make SX^T S ¿a, we hope to ensure that by following the

construction we can for all but finitely many n either decide whether n is

in a or find a cell Aem such that n e a iff Ae mSa. Simultaneously, we

ensure that a is not r.e. by trying with the use of followers to make ä

touch every r.e. set.

At stage t of the construction a number may be acted upon by being

permanently frozen in  a,  permanently removed from a,  assigned or
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canceled as a follower of an index, attached to \Ae n\, or associated in an

equivalence relation with other numbers. Only finitely many numbers

will be acted upon at any stage. A number not yet acted upon is said to be

free. A number which has been removed or frozen is said to be decided.

If a number m is not free then Xm (possibly = {m}) denotes the equiva-

lence class or association containing m. The rank pX of an association X

is the least index to which a member of Jwas ever assigned as a follower.

A number m is said to be e-covered if some member of Xm is attached to

a canonical index of a cell of Ae. The state aX of an association X is

{e^pX: some member of X is e-covered}.

In order to ensure that Sa ^T SA* when A"c is not r.e. we need to make

use of the attachments and associations set up during the construction.

Hence it is necessary to keep the construction "aligned" at each stage.

The construction is said to be aligned at stage t if, based on the informa-

tion available at the end of stage t, the following two conditions hold:

(1) If « is attached to \Aem\ then n e x iff Aem s oc.

(2) If« and m are associated then n e x iff m e x.

A number n is said to impinge on a number m (at a given point in the

construction) if n e x, m e x, and removing n and aligning would force

the removal of m.

Stage t of the construction is the application of the following four

clauses based on the information available prior to the application of each

clause.

Clause 1. Let r be the least (if any) rank _?, and X the least, by \X\,

undecided association with r—pX, et$aX, and no members impinging

on a follower k e x of any index _r. If Ae n çx and has an undecided

member m such that (i) m is free or r<pXm, (ii) m does not impinge on a

follower k e x of an index _r, and (iii) no m'^m is attached to \Ae n \,

then (iv) attach m to M,, „|, (v) make XV)Xm an association, and (vi)

cancel all followers of indices >r. Otherwise do nothing under this clause.

Clause 2. Let e be the least (if any) index with a follower k e We Hoc.

Cancel all followers of indices >e, remove k, and align the construction.

Clause 3. Let n he the largest number not free or in some cell Ae.n.

for i^t and freeze all free m<n.

Clause 4.    Assign the least free n to the least index e without a follower.

Observe by cancellation in Clauses 1-2 and assignment in Clause 4

that the indices with followers form an initial segment; that an index has

at most one follower at a time; and that an association contains at most

one follower. Observe by Clause 3 that the nonfree numbers form an

initial segment at the end of each stage and, by Clauses 2-4, that the

construction is aligned at the end of each stage. Finally, observe that for

any n with Xn defined pXn is defined unless n is frozen when Xn is defined,
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pXn never rises and, by Clause 1, if Xn grows then aXn or aX for some X

with pX^pXn is enlarged and, in the latter case, pXn drops to pXbecause

Xn grows to XuXn. Hence associations eventually stop growing. We call

an association X complete at t if X has stopped growing by stage t. Of

course, we cannot in general tell when an association is complete. Now

the following five lemmas establish the theorem.

Lemma 1.    a. is a co-r.e.

Proof. The construction is effective and â consists of those numbers

which are removed under Clause 2 at some stage of the construction.

Lemma 2.    Every index gets a permanent follower.

Proof. By Clauses 1-2 the follower of 0 assigned at stage 0 cannot

be canceled. Suppose all i^e have permanent followers assigned by stage

/ and if the follower n of e is removed this is done by stage /. Then any

association X of eventual rank ^e has a member m with Xm defined by

stage /. Hence there are only finitely many associations with eventual rank

^e. Suppose all such associations are complete by stage t"^.t. Then, by

Clauses 1-2, no follower of e+l can be canceled after stage /' and, by

Clause 4, e+l gets a permanent follower.

Lemma 3. If u, v e a. follow e, f respectively and u impinges on v then

eûf.

Proof. Suppose u, vex follow e, f respectively and/<e. Then the

assignment of v to follow / and any Clause 1 action involving Xv must

take place before u is assigned to follow e. Since by Clause 4, u is free

prior to its assignment to follow e, any impingement of « on y must be

introduced through Clause 1 after u and v are assigned. In the notation of

Clause 1 impingement may be introduced through m by (iv) or through X

by (v). But if m or a member of X impinges on v and Clause 1 applies then

pX=r^f In this case u following e>/is canceled.

Lemma 4.    a is not r.e.

Proof. Let n be the permanent follower of e. Then n is not removed

by Clause 2 for some/<e else n would be canceled and n is not removed

by Clause 2 for some/>e by Lemma 3. Hence « remains in a iff « never

appears in We. Thus a.^ We.

From the proof of Lemma 2 we know that we may define te as the least

stage by which all associations of eventual rank ^e are complete and fixed

with respect to a. Of course, te cannot be found effectively. We say a

number n is e-decided if at some stage f>te n is frozen, removed, or

impinges on some m e a with pXm^e. Observe that once n is e-decided «
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is fixed with respect to a since freezing and removal are permanent and

impingement of n on m with Xm fixed £ x forces n to remain fixed.

Lemma 5. For any e either A* is r.e. or any n free at te is eventually

e-covered or e-decided.

Proof. Let e be given and suppose some n free at te is never e-covered

nor e-decided. Then there is a least rank r>e and a least, by \X\, associa-

tion A'of rank r such that no member of Xis ever e-covered or e-decided.

Then at any stage t>tT with e( = e, Ae n must be ineligible for use in

Clause 1 since r, X satisfy the hypotheses of that clause. In this case

Ar „ is fixed with respect to containment in x. If Ae n $a this is clear.

lfm'eAen is attached to \Ae „ | and pXm.^r then m is fixed in x and by

alignment Ae ifl is fixed £ x. If every unfrozen m e Ae „ impinges on a

follower of some index _r or has pXm^r, then every such m is fixed in x.

Hence, modulo {nt: t^tr}, A* is r.e.

The theorem now follows immediately for, in case Aae is not r.e. Sa may

be reduced to S ¿a by following the construction after te and waiting for

those n free at te to be e-decided or e-covered.    |

The following questions concerning minimal partial degrees suggest

themselves. One would like to know which total degrees have minimal

predecessors in the partial degrees (and in particular whether all total

degrees do) and which total degrees are candidates for Cx when Sx is

minimal (especially when x is r.e.). In this context it would be nice to have

a simpler characterization of sets x with Sa minimal. It is then natural to

ask what sorts of co-r.e. sets fit this characterization. (It can be shown that

x cannot be maximal and â of the theorem is clearly not simple.) Finally

one would like to know whether a minimal partial degree can have

arbitrary jump (cf. [1]) and whether it can be made to satisfy various

incomparability conditions (cf. [3], [5]).
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