This manuscript has been submitted for publication in Geophysical Research Letters. Please note that, despite being peer-reviewed, the manuscript has yet to be formally accepted for publication. Subsequent versions of this manuscript may have slightly different content. If accepted, the final version of this manuscript will be available via the 'Peer-reviewed Publication DOI' link on the right-hand side of this webpage. Please feel free to contact any of the authors; we welcome feedback.

2

3

4

5

6

8

9

11 12

A minimally cemented shallow crust beneath InSight

¹⁰ Vashan Wright¹, Jhardel Dasent¹, Richard Kilburn¹, and Michael Manga²

¹University of California San Diego, Scripps Institution of Oceanography, La Jolla, CA, 92037 ²University of California Berkeley, Department of Earth and Planetary Science, Berkeley, CA, 94720

13	Key Points:
14	• Any significant volumes of ice or mineral cements within the upper 300 m beneath
15	InSight are likely nodular or broken.
16	• No ice- or liquid water-saturated layers were seismically resolved within the up-
17	per 300 m beneath InSight.
18	• Up to 20% ice is permissible within the pores of fractured basalt layers in the up-
19	per 300 m beneath InSight.

 $Corresponding \ author: \ Vashan \ Wright, \ \texttt{vwright@ucsd.edu}$

20 Abstract

Ice and other mineral cements in Mars' shallow subsurface affect the mechanical 21 properties of the shallow crust, the geologic processes that shape the planet's surface. 22 and the search for past or extant Martian life. Cements increase seismic velocities. We 23 use rock physics models to infer cement properties from seismic velocities. Model results 24 confirm that the upper 300 m of Mars beneath InSight is most likely composed of sed-25 iments and fractured basalts. Grains within sediment layers are unlikely to be cemented 26 by ice or other mineral cements. Hence, any existing cements are nodular or formed away 27 28 from grain contacts. Fractures within the basalt layers could be filled with gas, 2% mineral cement and 98% gas, and no more than 20% ice. Thus, no ice- or liquid water-saturated 29 layers likely exist within the upper 300 m beneath InSight. Any past cement at grain 30 contacts has likely been broken by impacts or marsquakes. 31

32 Plain Language Summary

Quantifying how much and where ice and other minerals exist within Mar's shal-33 low subsurface may help to determine if Mars ever supported life, to understand its cli-34 mate history, to understand Mars as a geological system, and to prepare for human ex-35 ploration. The InSight lander on Mars has an instrument whose data provide estimates 36 for the velocity of seismic waves within the crust. These velocities change depending on 37 rock type and the material that fills the pores within rocks. Possible pore-filling ma-38 terials include gas, liquid water, ice, and other mineral cements. We find that the shal-39 low crust is at best weakly cemented and the pores within the rocks are not entirely filled 40 with ice or liquid water. 41

42 **1** Introduction

Cements in the Martian crust can have multiple origins, including ice frozen from 43 liquid water or condensed from vapor, hydrated minerals formed in situ, or minerals pre-44 cipitated from aqueous fluids (e.g., salts, carbonates, and sulfates). The presence, amount, 45 and composition of ice and other mineral cements in the shallowest sections of the Mar-46 tian crust have implications for robotic and human exploration of Mars, the processes 47 that shape and shaped the surface, and the search for past or extant life. Research on 48 these topics is central to determining if Mars ever supported life, to understand the cli-49 mate history and processes, to understand Mars as a geological system, and to prepare 50 for human exploration. 51

Cementation affects and records geological processes. Cement can strengthen sed-52 iments (herein defined to include regolith and all other granular media layers) by cre-53 ating stiffer contacts between particles. Cementation affects the permeability and poros-54 ity of sediments and fractured rocks, which impacts gas transport driven by atmospheric 55 pressure changes (Morgan et al., 2021). Pores and fractures filled with ice or other min-56 eral cement could confine any deeper liquid water, creating aquifers (Carr, 1979). Ground 57 ice can promote weak explosive eruptions at rootless cones on lava flows (Brož et al., 2021) 58 and may promote phreatomagmatic eruptions (Moitra et al., 2021). Cemented sediments 59 are less prone to eolian and fluvial transport and erosion. The distribution of cements 60 in the Martian sediments may record the accumulation and transport of volatiles in ge-61 ologically recent times (Dundas et al., 2021). Cements may also preserve organic com-62 pounds diagnostic of past or present biological activity (Rivera-Valentín et al., 2020). 63

Cementation impacts human exploration, and a primary motivation for the Mars
 Ice Mapper mission concept is to map ice in the shallowest crust (Davis & Haltigin, 2021).
 The presence of ice and hydrated minerals in shallow sediments and fractured rocks could
 provide a source of water for in situ resource utilization (Piqueux et al., 2019). Cementation-

Figure 1. Models of (A) V_s and (B) V_p from Hobiger et al. (2021) and (C) calculated Poisson's ratio based on the seismic velocities. The black and grey curves are Hobiger et al. (2021)'s maximum likelihood (ML) and maximum a posteriori (MAP) models, respectively. (D) Inferred stratigraphy of the upper 300 m beneath InSight, from Hobiger et al. (2021).

- ⁶⁸ induced strengthening of sediments affects foundations used for engineering infrastruc-⁶⁹ ture (Kalapodis et al., 2020). Cemented sediments can be used as a construction ma-
- ture (Kalapodis et al., 2020). Cemented sediments can be used as a construction material (Liu et al., 2021) and have prompted studies of a range of Mars simulants in prepa-
- terial (Liu et al., 2021) and have prompted studies of a range of Mars simulants in preparation for future human missions (Karl et al., 2021).

Efforts to map and study shallow subsurface ice and other mineral cements inte-72 grate complementary insights from direct and indirect observations. Direct, in situ mea-73 surements of ice and other mineral cements at specific landing sites are possible, yet some-74 times challenging. The Phoenix lander excavated ice in the upper few cm (Morgan et 75 al., 2021). Eolian processes and impact brecciation created a 10-30 m thick regolith (in-76 cluding a sand horizon in the upper 3 m) at the InSight (Interior Exploration using Seis-77 mic Investigations, Geodesy, and Heat Transport mission) landing site (Golombek et al., 78 2020; Warner et al., 2022). There, the rover had difficulties penetrating its heat flow probe 79 (HP3) into the subsurface owing to insufficient friction (Spohn et al., 2022). Indirect meth-80 ods of detecting ice and other mineral cements include analyses of neutron detection, ther-81 mal inertia, geomorphic, and radar data (Morgan et al., 2021). Other indirect methods 82 exploit the sensitivity of geomechanical properties to cements, which influence geophys-83 ical properties such as seismic velocity, electrical conductivity, and gravity. For exam-84 ple, Manga and Wright (2021) used seismic velocities interpreted with rock physics mod-85 els for fractured rocks to infer that there is likely no ice-saturated cryosphere in the 0 86 to 7.5 km depth range beneath the InSight landing site, though they suggested that some 87 mineral cement could be present at greater depths. 88

Here we study the presence and quantity of mineral and ice cements in the upper 89 300 m of the Martian crust by interpreting seismic velocity models derived from data 90 collected by the seismometer deployed by the InSight lander. We interpret the seismic 91 velocities using rock physics models for both fractured rocks and sediments. We also in-92 terpret seismic velocities using a theoretical relationship between dry-frame Poisson's ra-93 tio and grain contact forces in sediments. Figure 1 based on results from Hobiger et al. 94 (2021) shows their derived seismic velocities beneath InSight and the inferred stratig-95 raphy and lithology. Shear wave velocities V_s generally increase from ~0.3 km/s at the 96 surface to ~ 1.7 km/s at 175 m; compressional wave velocities V_p increase from ~ 0.8 km/s 97 to ~ 3.8 km/s within the same depth. At least two low velocity zones exist from 0-157 98 m and 175-300 m, where V_s decreases to ~0.4 km/s and V_p decreases to ~0.8-0.9 km/s. 99 Hobiger et al. (2021) interpreted the higher and lower velocity layers as fractured basalts 100 and sediment, respectively (Figure 1D), consistent with geological mapping (Warner et 101 al., 2022). Our interpretations of these seismic velocities are that sediments within the 102 upper 300 m of the Martian crust is gas-filled; mineral or ice cements likely do not ex-103 ist at grain contacts and there is no evidence for any ice-saturated cryosphere. 104

105 2 Methods

106

2.1 Inferring Subsurface Properties Using Rock Physics Models

We compare measured with theoretically modeled V_s and V_p to infer the mechan-107 ical properties of the upper 300 m beneath Insight, constraining uncertainties with Monte 108 Carlo analyses. For sediments, we assume a porosity reduction profile for Mars, predict 109 seismic velocities with that assumed profile, then compare modeled to measured veloc-110 ities within the lower velocity zones. For fractured basalt layers, we create rock physics 111 templates that relate seismic velocities, porosity ϕ (0-50%), and fracture shape repre-112 sented by elliptical inclusions with an aspect ratio, defined as the short axis divided by 113 long axis, $\alpha = 0.01$ -1. We use the templates to identify the combinations of porosity and 114 fracture shapes that could explain both measured V_p and V_s within the higher velocity 115 zones. 116

¹¹⁷ We compute V_s and V_p from

$$V_s = \sqrt{\frac{\mu_e}{\rho}} \tag{1}$$

$$V_p = \sqrt{\frac{\kappa_e + \frac{4}{3}\mu_e}{\rho}} \tag{2}$$

where ρ , κ_e , and μ_e are bulk density, effective bulk modulus, and effective shear modulus, respectively. Bulk density ρ is

$$\rho = \sum_{i} \phi_{i} \rho_{i} \tag{3}$$

where ρ_i and ϕ_i are densities and volume fractions of the i^{th} constituents, respectively.

Rock physics theoretical models predict dry-frame shear and bulk moduli (μ and κ); $\mu_e = \mu$ and $\kappa_e = \kappa$ for dry rock (Gassmann, 1951; Biot, 1956). We use Hertz-Mindlin's (Mindlin, 1949) rock physics models for uncemented sediments. We use the contact cement model (Dvorkin & Nur, 1996) for sediments with cement that completely surrounds grains that are in contact or cement that only exists at grain contacts. We use the Berryman self-consistent model (Berryman, 1980) for fractured rocks. The equations for the rock physics models are in Mindlin (1949), Dvorkin and Nur (1996), and Berryman (1980). ¹²⁸ We use Gassmann-Biot fluid substitution theory (Gassmann, 1951; Biot, 1956) to ¹²⁹ calculate effects of fluid saturation on κ (i.e., κ_e for liquid water saturated rocks),

$$\frac{\kappa_e}{\kappa_m - \kappa_e} - \frac{\kappa_{f2}}{\phi(\kappa_m - \kappa_{f2})} = \frac{\kappa}{\kappa_m - \kappa} + \frac{\kappa_{f1}}{\phi(\kappa_m - \kappa_{f1})} \tag{4}$$

where κ_{f2} , κ_m , and κ_{f1} are the bulk moduli of the saturating fluid (liquid water in our case), mineral(s), and gas (0 kPa), respectively. Gassmann-Biot theory assumes that fluids are not flowing and minerals and fluids homogeneously distribute within rocks (Gassmann, 1951; Biot, 1956).

The models' input parameters are porosity ϕ , coordination number c_n (average num-134 ber of grains in contact), effective pressure P, mineral Poisson's ratio ν_m , cement frac-135 tion c_f , mineral bulk κ_m and shear μ_m moduli, pore aspect ratio α , and grain rough-136 ness fraction f (i.e., percentage of grain contacts that allows tangential slip, which we 137 assume to be 0 % or 100 % to model end-member ranges). We assume porosity ϕ at the 138 surface (critical porosity ϕ_c) is between 0.3 and 0.5 (Golombek et al., 2018; Lewis et al., 139 2019; Smrekar et al., 2019; Lognonné et al., 2020) and that ϕ exponentially decays with 140 depth z. 141

$$\phi = \phi_c e^{-\frac{z}{k}} \tag{5}$$

where k is a compaction constant (2.82 km) scaled to Mars' gravitational field (Clifford,

143 1986). Effective pressure P is

$$P = \rho g h - p_f \tag{6}$$

where g, h, and p_f represent Mars' gravitational acceleration (3.71 m/s²), depth, and fluid pressure, respectively. We constrain coordination number c_n empirically (Murphy, 146 1982)

$$c_n = 20 - 34\phi + 14\phi^2. \tag{7}$$

The minerals that we use in the models and their respective κ_m and μ_m in GPa are calcite cement (71.6 and 28.2), basalt grains and rocks (80.0 and 40.0), and ice cement (8.7 and 3.8) (Vanorio et al., 2003; Zong et al., 2017). These are some of the main minerals expected within the upper 300m of the Martian crust (Tanaka et al., 2014; Golombek et al., 2018; Pan et al., 2020); we also consider other cements listed in Table S1. We calculate mineral Poisson's ratio from

$$\nu_m = \frac{3\kappa_m - 2\mu_m}{6\kappa_m + 2\mu_m}.\tag{8}$$

¹⁵³ We use Monte Carlo analyses to constrain the effects of input parameter uncertain-¹⁵⁴ ties on the velocities predicted by the rock physics model for cemented and uncemented ¹⁵⁵ sediments. In each of our 10,000 realizations, we randomly generate and use a new in-¹⁵⁶ put parameter value between their ranges. We generate new ϕ -depth profiles from the ¹⁵⁷ selected ϕ_c . Coordination numbers, bulk densities, and effective pressures change with ¹⁵⁸ ϕ -depth profiles.

159

2.2 Inferring Subsurface Properties From Poisson's Ratio

We infer the volume fraction of cemented grain contacts from the relationship between Poisson's ratio ν_d and f, the volume fraction of rough versus smooth grain contacts. Rough (smooth) grain contacts resist (allow) elastic tangential grain contact slip during seismic wave propagation. We conjecture that, in the absence of cemented grains,

Martian sediments comprise nearly 100% smooth grain contacts. We make this conjec-164 ture because Mars' gravitational acceleration (3.7 m/s^2) is lower than Earth's (9.8 m/s^2) . 165 Gravitational acceleration impacts grain contact forces significantly (Equation 6). As-166 suming 100% smooth grain contacts routinely results in better seismic velocities predic-167 tions in shallow sediments on Earth (up to 600 m below the surface in some cases) (Buckingham, 168 2000; Zimmer et al., 2007; Majmudar & Behringer, 2005; Wright & Hornbach, 2021). Low 169 friction at grain contacts, despite cohesion and possibly partial cementation, appears to 170 have prevented InSight's heatflow probe from penetrating the shallow subsurface (Spohn 171 et al., 2022). Given the assumptions, conjectures, and expectations mentioned, cements 172 are likely one of the main causes for rough grain contacts, making f synonymous with 173 the volume of cemented grain contacts in those cases. We compute f from ν_m and ν_d 174 for an aggregate of identical perfect spheres (Walton, 1987; Bachrach & Avseth, 2008) 175

$$\nu_d = \frac{(2-\nu_m)}{4(2-\nu_m)+2f(1-\nu_m)} - \frac{2f(1-\nu_m)}{4(2-\nu_m)+2f(1-\nu_m)}.$$
(9)

f decreases as ν_d increases (Walton, 1987). We compute ν_d from the measured V_p and V_s

$$\nu_d = \frac{1}{2} \frac{(V_p/V_s)^2 - 2}{V_p/V_s)^2 - 1}.$$
(10)

¹⁷⁸ Our calculation assumes that there is no liquid water within the sediment layers.

179 **3 Results**

180

3.1 Inferred Pore-Filling Media in Sediments

The sediment layers most likely host grains that experience relatively low friction 181 at contacts. Low friction is indicated by the observation that smooth-grained models pro-182 duce better seismic velocity predictions (i.e., lower misfits) than rough-grained models, 183 regardless of assumed pore-filling material (Figure 2). The differences between smooth-184 versus rough-grain model predictions are 0.3-0.4 km/s and 0.1-0.5 km/s for V_s and V_p , 185 respectively. Low friction is also indicated by the Poisson's ratio for sediment layers, 0.33-186 0.41 (Figure 1). These Poisson's ratio values result in negative values (-0.55 to -0.10) for 187 the calculated volume fraction of rough grains (equation 10), which indicates that there 188 are likely no rough grain contacts present, that the model breaks down for such high val-189 ues or both. 190

The pores within the sediment layers are most likely filled with gas (Figure 2). Modeled smooth-grained V_s for gas and liquid water-filled pores are within 0-0.1 km/s of measured V_s . Modeled V_p are within 0.01-0.05 km/s of measured V_p , assuming that gas fills the pores; assuming 100% liquid water in the pores results in V_p overprediction by 0.6-1.0 km/s. Models that assume pores are filled with 2% cement overpredict V_p and V_s by 1.4-3.0 km/s. Assuming that ice fills the pores results in V_p and V_s overpredictions by 2.3-3.2 km/s and 1.7-2.4 km/s, respectively for the sediments.

198

3.2 Inferred Pore-Filling Media in Fractured Basalts

The hypothesized fractured basalt layers could host 100% gas, 100% liquid water, 199 2% calcite cement and 98% air, or 2% calcite cement and 98% water in the fractures; 200 hosting 100% ice is unlikely. A gas-filled basalt requires the narrowest range of aspect 201 ratio and porosity combination to be consistent with the measured seismic velocities. A 202 liquid water-filled basalt is consistent with the measured seismic velocities if the basalts 203 porosities are between 0.13 and 0.47 for aspect ratios between 0.03 and 1; aspect ratios increase with increasing porosities. A basalt hosting 2% calcite cement and 98% gas or 205 liquid water in its fractures could explain the measured velocities if the porosities are 206 0.24-0.5. The range of possible aspect ratios increases with increasing porosities. All com-207 binations of porosities and aspect ratios for a 100% ice-filled basalt results in velocities 208

Figure 2. Measured V_p and V_s (black and grey lines) compared to model predicted V_p and V_s for sediment whose pores are filled with gas, liquid water, 2% calcite cement and 98% gas, 2% calcite cement and 98% liquid water, and ice. Blue and red lines are the smooth-grained and rough-grained model results, respectively. -7-

Comparisons between measured and modeled Vs for fractured basalts with varying pore-filling media

Comparisons between measured and modeled Vp for fractured basalts with varying pore-filling media

Figure 3. Rock physics model templates showing predicted V_s and V_p for a fractured basalt with various pore-filling materials. Shaded regions are the combinations of modeled velocities, porosities, and aspect ratios that match both the measured V_p and V_s for the higher velocity zones. Vertical scale is logarithmic.

that are 1.1-2.8 times higher than measured. Thus, measured V_s and V_p are too low for a 100% ice-filled fractured basalt.

211 4 Discussion

We now discuss our most robust interpretations for the distribution of cements within 212 the upper 300 m beneath InSight, considering the model assumptions and limitations. 213 The cemented and uncemented granular media models assume that grains are identical 214 spheres experiencing equal contact forces, which are idealizations for Martian and other 215 sediments (Makse et al., 1999, 2004; Day-Lewis et al., 2005; Majmudar & Behringer, 2005; 216 Bachrach & Avseth, 2008). These model assumptions sometimes lead to overpredictions 217 in low effective stress environments on Earth (Buckingham, 2000; Zimmer et al., 2007; 218 Majmudar & Behringer, 2005; Wright & Hornbach, 2021). The cementation models pre-219 dict elastic moduli by homogeneously distributing the entire volume of cement within 220 the sediments, which may also be too idealistic for actual sediments (Dvorkin & Nur, 221 1996). Considering the model limitations, we can still make two main interpretations: 222 any shallow cements in Martian sediments likely do not adhere grains, and pores within 223 the layers are not filled with liquid water or ice. 224

225

4.1 Fractured Basalt Layers with up to 20% of its Pores Filled with Ice

A seismically detectable cryosphere likely does not exist within the upper 300 m 226 beneath InSight. This is indicated by the observation that the granular and fractured 227 media models predict velocities that are too high for fully ice-saturated sediments and 228 basalt. Manga & Wright (2021) drew a similar conclusion for the upper 8 km of crust 229 because their modeled $V_{\rm s}$ for an ice-saturated basalt was low compared to measured $V_{\rm s}$. 230 It is unlikely that we misinterpreted a basalt layer for an ice-saturated sediment layer; 231 the predicted V_p for the Amazonian and/or Hesperian basalt layer matches, but V_s is 232 overpredicted by at least 0.5-2.3 km/s (Figures 1-2). A partial cryosphere, with up to 233 20% ice, could exist in the fractured basalt layers. Though the measured velocities are 234 consistent with modeled velocities for a fractured basalt whose pores are filled with up 235 to 40% ice, porosities of basaltic lava flows rarely reach such high values except in thin 236 horizons where vesicles accumulate (Cashman & Kauahikaua, 1997) or when chemical 237 reactions alter the minerals within the basalt and lead to higher porosities (Franzson et 238 al., 2010; Broglia & Ellis, 1990). Moreover, estimated and modelled porosity for exposed 239 Martian basalts and meteorites are less than 40% (Hanna & Phillips, 2005; MacKinnon 240 & Tanaka, 1989). Limiting the range of porosity to up to 40% then implies that mea-241 sured velocities are only consistent with a basalt with less than 20% of the pores filled 242 with ice. We did not model the effects of salinity on ice and seismic velocities; increased 243 salinity may lead to mushy ice in the pores and reduce seismic velocities, depending on 244 the temperatures and wetting behavior (Dou et al., 2017). We also did not consider crustal 245 V_s anisotropy, which may be used to constrain the orientation of cracks (Li et al., 2022). 246 Future studies could explore these possibilities. 247

Our inferences are consistent with findings from the Mars Subsurface Water Ice Map-248 ping (SWIM) project, which used neutron detection, thermal inertia, geomorphology, radar 249 surface mapping, and radar dielectric analysis to search for shallow subsurface ice (Morgan 250 et al., 2021). The SWIM data compilation suggests that shallow ice is unlikely to be present 251 at the near-equatorial landing site of InSight, 4.5 °N. SWIM is most sensitive to the up-252 per few meters, though radar reflection can probe depths greater than 100 m. Our find-253 ing that the shallowest sediment layer, which extends to 20-70 m, likely does not con-254 tain ice that cements grains is consistent with the SWIM map. 255

Comparisons between measured and modeled Vs for basalt with ice in its pores

Comparisons between measured and modeled Vp for basalt with ice in its pores

Figure 4. (A-H) Rock physics model templates showing predicted V_s and V_p for a fractured basalt with varying percentages of ice within the fractures. Shaded regions are the combinations of modeled velocities, porosities, and aspect ratios that match both measured V_s and V_p from Hobiger et al. (2021). Vertical scale is logarithmic. Figure S2 in the Supporting Information contains rock physics model templates showing predicted V_s and V_p for a basalt whose fractures are 50% and 100% filled with ice.

4.2 Mineral Cements as Framework Grains in Sediment Layers

Most mineral cements, if they exist, likely do not adhere grains substantially. Sup-257 port for this interpretation comes from the observation that there are likely no signif-258 icant volumes of rough grain contacts in sediments, as indicated by the high Poisson's 259 ratios. Additional support comes from the observation that the models with calcite ce-260 ment at grain contacts and surrounding the grains overpredict V_p and V_s by 1.4-3.0 km/s. 261 Other mineral cements (e.g., halite, ice, gypsum, or kaolinite) also likely do not adhere 262 grains since the differences in the elastic moduli between calcite and other mineral ce-263 ments would not lead to a 1.4-3.0 km/s increase in seismic velocities (Figure S1). Nodu-264 lar cements and concretions that are a part of the network of framework grains or ce-265 ments that form on grains without adhering to other grains could exist. These cement 266 types would produce roughly the same seismic velocities as gas-filled sediment with the 267 same porosity. Thus, any existing cements likely resulted from mineral alteration, such 268 as hydrating minerals (Scheller et al., 2021; Wernicke & Jakosky, 2021), precipitating 269 salts (Sun et al., 2019), or the formation of concretions or spherules (Squyres et al., 2004, 270 2006). 271

Cements could have formed at the grain contacts of Martian sediments, only to be 272 later broken by impacts and strong marsquakes. For example, the impacts that formed 273 the large Noachian basins create dynamic strains similar to magnitude 10 and 11 quakes 274 and could disrupt sediment globally on Mars (Clifford, 1997; Wang et al., 2005). Strains 275 from smaller, local impacts and impact gardening of the surface might also disrupt ce-276 ments in the younger Amazonian and Hesperian sediments and basalts in the upper few 277 hundred meters. Laboratory experiments show that, depending on the porosity of the 278 sediments and degree of cementation (weakly or strongly cemented), the relatively low 279 strain rates from cyclic shearing (i.e., the type of waves experienced during seismic events) 280 can break weekly cemented bonds (Sharma & Fahey, 2003; Zeghal & El Shamy, 2008; 281 Suzuki et al., 2012; Suazo et al., 2017). 282

283 5 Conclusions

256

The presence, volume, and distribution of ice and other mineral cements in Mar-284 tian sediments and fractured rocks may record and affect geologic processes. Seismic ve-285 locities are sensitive to cement properties, and rock physics models provide one approach 286 to relate cement properties to seismic velocities. Using these models to interpret seis-287 mic velocities derived from InSight data, we find that any cement within the upper 300 288 m beneath InSight likely does not cement grain contacts in sediments. An ice-saturated 289 sediment or fractured basalt layer likely does not exist, but fractured basalts whose pores contain up to 20% ice are possible. The findings support the ideas that some of Mars' 291 past surface liquid water could be incorporated in cements that resulted from mineral 292 alteration, precipitating salts, or the formation of concretions or spherules. Any cement 293 at grain contacts was likely either weak and perhaps broken by impacts or marsquakes. 294 Future studies could revisit these inferences as more constraints become available on the 295 porosity, mineralogy, lithology, density, seismic velocity, and heat flow within the shal-296 lowest sections of the Martian crust. 297

²⁹⁸ 6 Data Availability Statement

No new data was used in this study. The seismic velocity models are available in Hobiger et al. (2021).

301 Acknowledgments

Thanks to NASA and the InSight team for their vision, hard work, and dedication, especially during this time when Covid-19 is real. V. Wright, J. Dasent, and R. Kilburn acknowledge support from NSF grant EAR2136301. M. Manga acknowledges support from NASA grant 80NSSC19K0545 and the CIFAR Earth 4D program.

306 References

307	Bachrach, R., & Avseth, P. (2008). Rock physics modeling of unconsolidated sands:
308	Accounting for nonuniform contacts and heterogeneous stress fields in the ef-
309	fective media approximation with applications to hydrocarbon exploration.
310	Geophysics, 73(6), E197–E209. doi: https://doi.org/10.1190/1.2985821
311	Berryman, J. G. (1980). Long-wavelength propagation in composite elastic media II.
312	Ellipsoidal inclusions. The Journal of the Acoustical Society of America, 68(6),
313	1820–1831. doi: https://doi.org/10.1121/1.385172
314	Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated
315	porous solid. II. Higher frequency range. The Journal of the Acoustical Society
316	of America, 28(2), 179–191. doi: https://doi.org/10.1121/1.1908241
317	Broglia, C., & Ellis, D. (1990). Effect of alteration, formation absorption, and
318	standoff on the response of the thermal neutron porosity log in gabbros and
319	basalts: Examples from Deep Sea Drilling Project-Ocean Drilling Program
320	Sites. Journal of Geophysical Research: Solid Earth, 95(B6), 9171–9188. doi:
321	https://doi.org/10.1029/JB095iB06p09171
322	Brož, P., Bernhardt, H., Conway, S. J., & Parekh, R. (2021). An overview of ex-
323	plosive volcanism on Mars. Journal of Volcanology and Geothermal Research,
324	409, 107125. doi: https://doi.org/10.1016/j.jvolgeores.2020.107125
325	Buckingham, M. J. (2000). Wave propagation, stress relaxation, and grain-
326	to-grain shearing in saturated, unconsolidated marine sediments. The
327	Journal of the Acoustical Society of America, 108(6), 2796–2815. doi:
328	https://doi.org/10.1121/1.1322018
329	Carr, M. H. (1979). Formation of Martian flood features by release of water from
330	confined aquifers. Journal of Geophysical Research: Solid Earth, 84(B6), 2995–
331	3007. doi: https://doi.org/10.1029/JB084iB06p02995
332	Cashman, K. V., & Kauahikaua, J. P. (1997). Reevaluation of vesicle distributions in $1 - \frac{1}{2}$
333	basaltic lava nows. $Geology$, $25(5)$, $419-422$. doi: https://doi.org/10.1130/0091
334	-1013(1997)023(0419:ROVDIB)2.3.CO;2
335	Chinord, S. (1980). Mars: Crustal Pore volume, Cryospheric Depth, and the Global
336	(Vol 500 p. 18)
337	(vol. 599, p. 10). Clifford S (1007) The origin of the Martian interaretor plains The role of liquefactor
338	tion from impact and toctonic induced soismicity. In Lunar and planetary sci
339	ence conference (Vol 28 p. 241)
241	Davis B & Haltigin T (2021) International Mars Ice Mapper Mission: The First
242	Human Exploration Reconnaissance Mission to Mars In Lynar and planetary
342	science conference (p. 2614)
344	Day-Lewis F D Singha K & Binley A M (2005) Applying petrophysical
345	models to radar travel time and electrical resistivity tomograms: Resolution-
346	dependent limitations. Journal of Geophysical Research: Solid Earth, 110(B8).
347	doj: https://doi.org/10.1029/2004JB003569
348	Dou, S., Nakagawa, S., Dreger, D., & Aio-Franklin, J. (2017). An effective-medium
349	model for P-wave velocities of saturated, unconsolidated saline permafrost.
350	Geophysics, 82(3), EN33-EN50. doi: https://doi.org/10.1190/geo2016-0474.1
351	Dundas, C. M., Mellon, M. T., Conway, S. J., Daubar, I. J., Williams, K. E., Oiha.
352	L., Pathare, A. (2021). Widespread exposures of extensive clean shallow
353	ice in the midlatitudes of Mars. Journal of Geophysical Research: Planets.
354	126(3), e2020JE006617. doi: https://doi.org/10.1029/2020JE006617

355	Dvorkin, J., & Nur, A. (1996). Elasticity of high-porosity sandstones: Theory for
356	two North Sea data sets. <i>Geophysics</i> , $61(5)$, 1363–1370. doi: https://doi.org/
357	10.1190/1.1444059
358	Franzson, H., Gufinnsson, G., Helgadottir, H., & Frolova, J. (2010). Porosity, density
359	and chemical composition relationships in altered Icelandic hydroclastites.
360	Gassmann, F. (1951). Über die elastizität poroser medien. Vierteljahrsschrift der
361	Colombol: M. Crott, M. Kongl C. Andrede, I. Merchell, I. Warner, N.
362	Colonibek, M., Grott, M., Kargi, G., Andrade, J., Marshall, J., Warner, N.,
363	tions by the InSight landor $Snage Science Review 21/(5) 1.52 doi:$
364	bttps://doi.org/10.1007/s11214.018.0512.7
365	Colombol: M. Warner, N. Crant, I. Hauber, F. Angan, V. Weitz, C.
366	Banerdt W (2020) Geology of the InSight landing site on Mars Nature Com-
368	<i>munications</i> , 11(1), 1–11, doi: https://doi.org/10.1038/s41467-020-14679-1
369	Hanna, I. C., & Phillips, R. J. (2005). Hydrological modeling of the Martian crust
370	with application to the pressurization of aquifers. Journal of Geophysical Re-
371	search: Planets, 110(E1). doi: https://doi.org/10.1029/2004JE002330
372	Hobiger, M., Hallo, M., Schmelzbach, C., Stähler, S., Fäh, D., Giardini, D.,
373	Banerdt, W. (2021). The shallow structure of Mars at the InSight landing site
374	from inversion of ambient vibrations. Nature Communications, $12(1)$, $1-13$.
375	doi: https://doi.org/10.1038/s41467-021-26957-7
376	Kalapodis, N., Kampas, G., & Ktenidou, OJ. (2020). A review towards the design
377	of extraterrestrial structures: From regolith to human outposts. Acta Astro-
378	nautica, 175, 540-569. doi: https://doi.org/10.1016/j.actaastro.2020.05.038
379	Karl, D., Cannon, K. M., & Gurlo, A. (2021). Review of space resources processing
380	for Mars missions: Martian simulants, regolith bonding concepts and addi-
381	tive manufacturing. Open Ceramics, 100216. doi: https://doi.org/10.1016/
382	j.oceram.2021.100216
383	Lewis, K. W., Peters, S., Gonter, K., Morrison, S., Schmerr, N., Vasavada, A. R., &
384	Gabriel, 1. (2019). A surface gravity traverse on Mars indicates low bedrock density at Cale enstern $Science = \frac{262}{6426} = 525$
385	Li L. Dorhein, C. Weeley, J. Dorig, D. Lermenné, D. Schimmel, M.
386	Banordt W B (2022) Evidence for crustal seismic anisotropy at the in
387	sight lander site Earth and Planetary Science Letters 593 117654 doi:
200	(1)
380	https://doi.org/10.1016/j.eps] 2022.117654
389 390	https://doi.org/10.1016/j.epsl.2022.117654 Liu, L. Li, H., Sun, L., Guo, Z., Harvey, J., Tang, O.,, Jia, M. (2021). In-situ re-
389 390 391	https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ re- sources for infrastructure construction on Mars: A review. <i>International Jour</i> -
389 390 391 392	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. <i>International Journal of Transportation Science and Technology</i>. doi: https://doi.org/10.1016/j
389 390 391 392 393	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. <i>International Journal of Transportation Science and Technology</i>. doi: https://doi.org/10.1016/j.ijtst.2021.02.001
389 390 391 392 393 394	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F.,
389 390 391 392 393 394 395	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure.
389 390 391 392 393 394 395 396	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213–220.
389 390 391 392 393 394 395 396 397	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213–220. doi: https://doi.org/10.1038/s41561-020-0536-y
 389 390 391 392 393 394 395 396 397 398 	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213–220. doi: https://doi.org/10.1038/s41561-020-0536-y MacKinnon, D. J., & Tanaka, K. L. (1989). The impacted Martian crust: Structure.
 389 390 391 392 393 394 395 396 397 398 399 	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213–220. doi: https://doi.org/10.1038/s41561-020-0536-y MacKinnon, D. J., & Tanaka, K. L. (1989). The impacted Martian crust: Structure, hydrology, and some geologic implications. Journal of Geophysical Re-
 389 390 391 392 393 394 395 396 397 398 399 400 	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213–220. doi: https://doi.org/10.1038/s41561-020-0536-y MacKinnon, D. J., & Tanaka, K. L. (1989). The impacted Martian crust: Structure, hydrology, and some geologic implications. Journal of Geophysical Research: Solid Earth, 94(B12), 17359–17370. doi: https://doi.org/10.1029/
 389 390 391 392 393 394 395 396 397 398 399 400 401 	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213-220. doi: https://doi.org/10.1038/s41561-020-0536-y MacKinnon, D. J., & Tanaka, K. L. (1989). The impacted Martian crust: Structure, hydrology, and some geologic implications. Journal of Geophysical Research: Solid Earth, 94 (B12), 17359-17370. doi: https://doi.org/10.1029/JB094iB12p17359
 389 390 391 392 393 394 395 396 397 398 399 400 401 402 	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213-220. doi: https://doi.org/10.1038/s41561-020-0536-y MacKinnon, D. J., & Tanaka, K. L. (1989). The impacted Martian crust: Structure, hydrology, and some geologic implications. Journal of Geophysical Research: Solid Earth, 94(B12), 17359-17370. doi: https://doi.org/10.1029/JB094iB12p17359 Majmudar, T. S., & Behringer, R. P. (2005). Contact force measurements and the international and the international structure in the last of the international data. Nature force measurements and the international structure in the last of the international data. Nature force force data for the international data data data data data data data da
 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213-220. doi: https://doi.org/10.1038/s41561-020-0536-y MacKinnon, D. J., & Tanaka, K. L. (1989). The impacted Martian crust: Structure, hydrology, and some geologic implications. Journal of Geophysical Research: Solid Earth, 94 (B12), 17359-17370. doi: https://doi.org/10.1029/JB094iB12p17359 Majmudar, T. S., & Behringer, R. P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature, 435 (7045), 1079-1082. doi: https://doi.org/10.1028/pature02805
 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 404 	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213–220. doi: https://doi.org/10.1038/s41561-020-0536-y MacKinnon, D. J., & Tanaka, K. L. (1989). The impacted Martian crust: Structure, hydrology, and some geologic implications. Journal of Geophysical Research: Solid Earth, 94 (B12), 17359–17370. doi: https://doi.org/10.1029/JB094iB12p17359 Majmudar, T. S., & Behringer, R. P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature, 435(7045), 1079–1082. doi: https://doi.org/10.1038/nature03805
 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213–220. doi: https://doi.org/10.1038/s41561-020-0536-y MacKinnon, D. J., & Tanaka, K. L. (1989). The impacted Martian crust: Structure, hydrology, and some geologic implications. Journal of Geophysical Research: Solid Earth, 94 (B12), 17359–17370. doi: https://doi.org/10.1029/JB094iB12p17359 Majmudar, T. S., & Behringer, R. P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature, 435 (7045), 1079–1082. doi: https://doi.org/10.1038/nature03805 Makse, H. A., Gland, N., Johnson, D. L., & Schwartz, L. (2004). Granular packings: Nonlinear elasticity sound propagation and collective relayation dy
 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213–220. doi: https://doi.org/10.1038/s41561-020-0536-y MacKinnon, D. J., & Tanaka, K. L. (1989). The impacted Martian crust: Structure, hydrology, and some geologic implications. Journal of Geophysical Research: Solid Earth, 94(B12), 17359–17370. doi: https://doi.org/10.1029/JB094iB12p17359 Majmudar, T. S., & Behringer, R. P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature, 435(7045), 1079–1082. doi: https://doi.org/10.1038/nature03805 Makse, H. A., Gland, N., Johnson, D. L., & Schwartz, L. (2004). Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics. Physical Review E, 70(6), 061302. doi: https://doi.org/10.103/
 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213–220. doi: https://doi.org/10.1038/s41561-020-0536-y MacKinnon, D. J., & Tanaka, K. L. (1989). The impacted Martian crust: Structure, hydrology, and some geologic implications. Journal of Geophysical Research: Solid Earth, 94 (B12), 17359–17370. doi: https://doi.org/10.1029/JB094iB12p17359 Majmudar, T. S., & Behringer, R. P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature, 435 (7045), 1079–1082. doi: https://doi.org/10.1038/nature03805 Makse, H. A., Gland, N., Johnson, D. L., & Schwartz, L. (2004). Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics. Physical Review E, 70(6), 061302. doi: https://doi.org/10.1103/PhysRevE.70.061302
 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 	 https://doi.org/10.1016/j.epsl.2022.117654 Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology. doi: https://doi.org/10.1016/j.ijtst.2021.02.001 Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R. F., Zweifel, P. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213–220. doi: https://doi.org/10.1038/s41561-020-0536-y MacKinnon, D. J., & Tanaka, K. L. (1989). The impacted Martian crust: Structure, hydrology, and some geologic implications. Journal of Geophysical Research: Solid Earth, 94 (B12), 17359–17370. doi: https://doi.org/10.1029/JB094iB12p17359 Majmudar, T. S., & Behringer, R. P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature, 435(7045), 1079–1082. doi: https://doi.org/10.1038/nature03805 Makse, H. A., Gland, N., Johnson, D. L., & Schwartz, L. (2004). Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics. Physical Review E, 70(6), 061302. doi: https://doi.org/10.1103/PhysRevE.70.061302

410	medium theory fails in granular materials. <i>Physical Review Letters</i> , 83(24),
411	5070. doi: https://doi.org/10.1103/PhysRevLett.83.5070
412	Manga, M., & Wright, V. (2021). No Cryosphere-Confined Aquifer Below InSight on
413	Mars. Geophysical Research Letters, 48(8), e2021GL093127. doi: https://doi
414	.org/10.1029/2021GL093127
415	Mindlin, R. D. (1949). Compliance of elastic bodies in contact. American So-
416	ciety of Mechanical Engineers, $16(3)$, $259-268$. doi: https://doi.org/10.1115/1
417	.4009973
418	Moitra, P., Horvath, D. G., & Andrews-Hanna, J. C. (2021). Investigating the
419	roles of magmatic volatiles, ground ice and impact-triggering on a very recent
420	and highly explosive volcanic eruption on Mars. Earth and Planetary Science
421	Letters, 567, 116986. doi: https://doi.org/10.1016/j.epsl.2021.116986
422	Morgan, G. A., Putzig, N. E., Perry, M. R., Sizemore, H. G., Bramson, A. M., Pe-
423	tersen, E. I., Campbell, B. (2021). Availability of subsurface water-ice
424	resources in the northern mid-latitudes of Mars. <i>Nature Astronomy</i> , 5(3).
425	230–236. doi: https://doi.org/10.1038/s41550-020-01290-z
126	Murphy W F (1982) Effects of microstructure and nore fluids on the acoustic
420	nronerties of aranylar sedimentary materials (Unpublished doctoral disserta-
427	tion) Stanford University
428	Don L. Quantin Natof C. Taurin P. Michaut C. Colombol: M. Lornonná
429	D Lucca A (2020) Crust stratigraphy and beta graphics of the first
430	hilemators at the disheterer houndary in wastern Elusium Dianitie and impli
431	knometers at the dichotomy boundary in western Erystum Plaintia and impli-
432	cations for insight lander. $Tcarus, 338, 115511$. doi: https://doi.org/10.1010/
433	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
434	Piqueux, S., Buz, J., Edwards, C. S., Bandfield, J. L., Kleinbohl, A., Kass, D. M.,
435	Ieams, I. (2019). Widespread shallow water ice on Mars at high latitudes $C_{\rm eff}$ is the matrix $L_{\rm eff}$ in the matrix $L_{\rm eff}$ is the
436	and midlatitudes. Geophysical Research Letters, $4b(24)$, $14290-14298$. doi:
437	nttps://doi.org/10.1029/2019GL083947
438	Rivera-Valentin, E. G., Chevrier, V. F., Soto, A., & Martinez, G. (2020). Distribu-
439	tion and nabitability of (meta) stable brines on present-day Mars. Nature As-
440	tronomy, 4(8), 100-101. doi: https://doi.org/10.1038/s41550-020-1080-9
441	Scheller, E., Ehlmann, B., Hu, R., Adams, D., & Yung, Y. (2021). Long-term drying
442	of Mars by sequestration of ocean-scale volumes of water in the crust. Science,
443	372(6537), 56–62. doi: DOI:10.1126/science.abc7717
444	Sharma, S. S., & Fahey, M. (2003). Degradation of stiffness of cemented cal-
445	careous soil in cyclic triaxial tests. Journal of Geotechnical and Geoen-
446	vironmental Engineering, 129(7), 619–629. doi: https://doi.org/10.1061/
447	(ASCE)1090-0241(2003)129:7(619)
448	Smrekar, S. E., Lognonné, P., Spohn, T., Banerdt, W. B., Breuer, D., Christensen,
449	U., Wieczorek, M. (2019). Pre-mission InSights on the interior of
450	Mars. Space Science Reviews, 215(1), 1–72. doi: https://doi.org/10.1007/
451	s11214-018-0563-9
452	Spohn, T., Hudson, T. L., Witte, L., Wippermann, T., Wisniewski, L., Kedziora, B.,
453	Grygorczuk, J. (2022). The InSight-HP $\hat{3}$ mole on Mars: Lessons learned
454	from attempts to penetrate to depth in the Martian soil. Advances in Space
	$P_{\text{assample}} = 60(8) = 2140(2162)$ doi: https://doi.org/10.1016/j.acm.2022.02.000
455	hesearch, bg(8), 5140-5105. doi: https://doi.org/10.1010/j.asi.2022.02.009
455 456	Squyres, S., Aharonson, O., Arvidson, R., Bell, J., Christensen, P., Clark, B.,
455 456 457	 Squyres, S., Aharonson, O., Arvidson, R., Bell, J., Christensen, P., Clark, B., Tosca, N. (2006). Bedrock formation at Meridiani Planum. <i>Nature</i>, 443(7107),
455 456 457 458	Squyres, S., Aharonson, O., Arvidson, R., Bell, J., Christensen, P., Clark, B., Tosca, N. (2006). Bedrock formation at Meridiani Planum. <i>Nature</i> , 443(7107), E1–E2. doi: https://doi.org/10.1038/nature05212
455 456 457 458 459	 Squyres, S., Aharonson, O., Arvidson, R., Bell, J., Christensen, P., Clark, B., Tosca, N. (2006). Bedrock formation at Meridiani Planum. <i>Nature</i>, 443(7107), E1–E2. doi: https://doi.org/10.1038/nature05212 Squyres, S., Arvidson, J., Bell, J., Brückner, N., Cabrol, W., Calvin, M., Yen,
455 456 457 458 459 460	 Squyres, S., Aharonson, O., Arvidson, R., Bell, J., Christensen, P., Clark, B., Tosca, N. (2006). Bedrock formation at Meridiani Planum. <i>Nature</i>, 443(7107), E1–E2. doi: https://doi.org/10.1038/nature05212 Squyres, S., Arvidson, J., Bell, J., Brückner, N., Cabrol, W., Calvin, M., Yen, A. (2004). The opportunity rover's athena science investigation at merid-
455 456 457 458 459 460 461	 Squyres, S., Aharonson, O., Arvidson, R., Bell, J., Christensen, P., Clark, B., Tosca, N. (2006). Bedrock formation at Meridiani Planum. Nature, 443 (7107), E1–E2. doi: https://doi.org/10.1038/nature05212 Squyres, S., Arvidson, J., Bell, J., Brückner, N., Cabrol, W., Calvin, M., Yen, A. (2004). The opportunity rover's athena science investigation at merid- iani planum, mars. Science, 306 (5702), 1698–1703. doi: doi:10.1126/
455 456 457 458 459 460 461 462	 Squyres, S., Aharonson, O., Arvidson, R., Bell, J., Christensen, P., Clark, B., Tosca, N. (2006). Bedrock formation at Meridiani Planum. Nature, 443 (7107), E1–E2. doi: https://doi.org/10.1038/nature05212 Squyres, S., Arvidson, J., Bell, J., Brückner, N., Cabrol, W., Calvin, M., Yen, A. (2004). The opportunity rover's athena science investigation at merid- iani planum, mars. Science, 306 (5702), 1698–1703. doi: doi:10.1126/ science.1106171
455 456 457 458 459 460 461 462 463	 Squyres, S., Aharonson, O., Arvidson, R., Bell, J., Christensen, P., Clark, B., Tosca, N. (2006). Bedrock formation at Meridiani Planum. Nature, 443 (7107), E1–E2. doi: https://doi.org/10.1038/nature05212 Squyres, S., Arvidson, J., Bell, J., Brückner, N., Cabrol, W., Calvin, M., Yen, A. (2004). The opportunity rover's athena science investigation at merid- iani planum, mars. Science, 306 (5702), 1698–1703. doi: doi:10.1126/ science.1106171 Suazo, G., Fourie, A., & Doherty, J. (2017). Cyclic shear response of cemented paste

465	04016082. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001581
466	Sun, V. Z., Stack, K. M., Kah, L. C., Thompson, L., Fischer, W., Williams, A. J.,
467	VanBommel (2019). Late-stage diagenetic concretions in the Murray for-
468	mation, Gale crater, Mars. Icarus, 321, 866–890. doi: https://doi.org/10.1016/
469	j.icarus.2018.12.030
470	Suzuki, M., Umezaki, T., & Takahara, H. (2012). Fast and cyclic shearing of ce-
471	mented sand in Earthquake induced landslide. In Proc. 15th world conference
472	on earthquake engineering, lisboa.
473	Tanaka, K. L., Skinner Jr, J. A., Dohm, J. M., Irwin III, R. P., Kolb, E. J.,
474	Fortezzo, C. M., Trent, M. (2014). Geologic map of Mars.
475	Vanorio, T., Prasad, M., & Nur, A. (2003). Elastic properties of dry clay mineral
476	aggregates, suspensions and sandstones. <i>Geophysical Journal International</i> ,
477	155(1), 319–326. doi: https://doi.org/10.1046/j.1365-246X.2003.02046.x
478	Walton, K. (1987). The effective elastic moduli of a random packing of spheres.
479	Journal of the Mechanics and Physics of Solids, 35(2), 213–226. doi: https://
480	doi.org/10.1016/0022-5096(87)90036-6
481	Wang, Cy., Manga, M., & Wong, A. (2005). Floods on Mars released from ground-
482	water by impact. Icarus, 175(2), 551–555. doi: https://doi.org/10.1016/j
483	.icarus.2004.12.003
484	Warner, N., Golombek, M., Ansan, V., Marteau, E., Williams, N., Grant, J.,
485	Banks, M. (2022). In Situ and Orbital Stratigraphic Characterization of the
486	InSight Landing Site—A Type Example of a Regolith-Covered Lava Plain on
487	Mars. Journal of Geophysical Research: Planets, 127(4), e2022JE007232. doi:
488	https://doi.org/10.1029/2022JE007232
489	Wernicke, L. J., & Jakosky, B. M. (2021). Martian hydrated minerals: A significant
490	water sink. Journal of Geophysical Research: Planets, 126(3), e2019JE006351.
491	doi: https://doi.org/10.1029/2019JE006351
492	Wright, V., & Hornbach, M. (2021). The effects of 180 years of aging on the phys-
493	ical and seismic properties of partially saturated sands. Journal of Geophysical
494	<i>Research: Solid Earth</i> , 126(6), e2020JB021341. doi: https://doi.org/10.1029/
495	2020 JB021341
496	Zeghal, M., & El Shamy, U. (2008). Liquefaction of saturated loose and cemented
497	granular soils. Powder Technology, $184(2)$, $254-265$. doi: https://doi.org/10
498	.1016/j.powtec.2007.11.032
499	Zimmer, M. A., Prasad, M., Mavko, G., & Nur, A. (2007). Seismic velocities of un-
500	consolidated sands: Part 1—Pressure trends from 0.1 to 20 MPa. <i>Geophysics</i> ,
501	72(1), E1–E13. doi: https://doi.org/10.1190/1.2399459
502	Zong, J., Stewart, R. R., Dyaur, N., & Myers, M. T. (2017). Elastic properties of
503	rock salt: Laboratory measurements and Gulf of Mexico well-log analysis. Geo-
504	<i>physics</i> , 82(5), D303–D317. doi: https://doi.org/10.1190/geo2016-0527.1