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1. Introduction. Ky Fan’s minimax inequality [8, Theorem 1] has
become a versatile tool in nonlinear and convex analysis. In this paper, we
shall first obtain a minimax inequality which generalizes those generaliza-
tions of Ky Fan’s minimax inequality due to Allen [1], Yen [18], Tan [16],
Bae–Kim–Tan [3] and Fan himself [9]. Several equivalent forms are then for-
mulated and one of them, the maximal element version, is used to obtain a
fixed point theorem which in turn is applied to obtain an existence theorem
of an equilibrium point in a one-person game. Next, by applying the mini-
max inequality, we present some fixed point theorems for set-valued inward
and outward mappings on a non-compact convex set in a topological vector
space. These results generalize the corresponding results due to Browder
[5], Jiang [11] and Shih–Tan [15] in several aspects.

2. Preliminaries. Let X be a non-empty set. We shall denote by
2X the family of all non-empty subsets of X, by F(X) the family of all
non-empty finite subsets of X and by R the set of all real numbers. If A
is a subset of a topological vector space E, we shall denote by co(A) the
convex hull of A and by A the closure of A in E. Let X be a topological
space and A ⊂ X; then clXA denotes the closure of A in X. A function
g : X → R ∪ {−∞,∞} is said to be upper (resp. lower) semicontinuous on
A if for each λ ∈ R, the set {x ∈ A : g(x) ≥ λ} (resp. {x ∈ A : g(x) ≤ λ}) is
closed in A. If Y is another topological space, a set-valued map T : X → 2Y

is said to be

(i) upper (resp. lower) semicontinuous at x0 ∈ X if for each open set
G in Y with T (x0) ⊂ G (resp. with T (x0) ∩ G 6= ∅), there exists an open
neighborhood U of x0 in X such that T (x) ⊂ G (resp. T (x)∩G 6= ∅) for all
x ∈ U ;
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(ii) upper (resp. lower) semicontinuous on X if T is upper (resp. lower)
semicontinuous at each point of X;

(iii) continuous on X if T is both lower and upper semicontinuous on X.

If X is a convex subset of a topological vector space, a map P : X →
2X ∪ {∅} is said to be of class LC if for each x ∈ X, x 6∈ co(P (x)), and for
each non-empty compact subset C of X and for each y ∈ X, P−1(y) ∩ C is
open in C.

The following Lemma 1 is Theorem 2.5.1 of Aubin [2, p. 67]:

Lemma 1. Let X and Y be topological spaces. Suppose W : X ×Y → R
is lower semicontinuous on X×Y and G : X → 2Y is upper semicontinuous
at x0 ∈ X such that G(x0) is compact. Then the function U : X → [−∞,∞)
defined by

U(x) = inf
y∈G(x)

W (x, y)

is lower semicontinuous at x0.

The following Lemma 2 is Theorem 2.5.2 of Aubin [2, p. 69]:

Lemma 2. Let X and Y be topological spaces. Suppose W : X ×Y → R
is upper semicontinuous on X×Y and G : X → 2Y is lower semicontinuous
at x0 ∈ X. Then the function V : X → [−∞,∞) defined by

V (x) = inf
y∈G(x)

W (x, y)

is upper semicontinuous at x0.

The proof of Lemma 1 of Fan [7] can be slightly modified to give a proof
of the following

Lemma 3. Let X and Y be non-empty sets in a topological vector space
E and let F : X → 2Y be such that

(i) for each x ∈ X, F (x) is closed in Y ;
(ii) for each A ∈ F(X), co(A) ⊂

⋃
x∈A F (x);

(iii) there exists an x0 ∈ X such that F (x0) is compact.

Then
⋂

x∈X F (x) 6= ∅.

We shall remark here that even although Fan [7] implicitly assumed
all topological vector spaces to satisfy the Hausdorff separation axiom, in
proving Lemma 1 in [7], “Hausdorff” is never needed. We note that the
above Lemma 3 differs from Lemma 1 of Fan [7] in the following ways:
(a) E is not required to be Hausdorff and (b) Y need not be the whole
space E.
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3. A minimax inequality. We shall first prove the following very
general minimax inequality:

Theorem 1. Let X be a non-empty convex subset of a topological vector
space and let f : X ×X → R ∪ {−∞,+∞} be such that

(i) for each fixed x ∈ X, f(x, y) is a lower semicontinuous function of
y on each non-empty compact subset C of X;

(ii) for each A ∈ F(X) and for each y ∈ co(A), minx∈A f(x, y) ≤ 0;
(iii) there exist a non-empty compact convex subset X0 of X and a non-

empty compact subset K of X such that for each y ∈ X \ K, there is an
x ∈ co(X0 ∪ {y}) with f(x, y) > 0.

Then there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ X.

P r o o f. For each x ∈ X, let

K(x) = {y ∈ K : f(x, y) ≤ 0} .

By (i), K(x) is closed in K for each x ∈ X. We claim that the family
{K(x) : x ∈ X} has the finite intersection property. Indeed, let {x1, . . . , xn}
be any finite subset of X and let D = co(X0 ∪ {x1, . . . , xn}); then D is a
compact convex subset of X. First we note that by (ii), f(x, x) ≤ 0 for each
x ∈ X. Define F : D → 2D by F (x) = {y ∈ D : f(x, y) ≤ 0}. Then

(a) for each x ∈ D, F (x) is closed in D by (i), and hence it is compact;
(b) for each A ∈ F(D), co(A) ⊂

⋃
x∈A F (x).

Indeed, if (b) were false, then there would exist A ∈ F(D) and y ∈ co(A)
such that y 6∈

⋃
x∈A F (x). It follows that f(x, y) > 0 for all x ∈ A, which

contradicts (ii).
By Lemma 3,

⋂
x∈D F (x) 6= ∅; that is, there exists y ∈ D such that

f(x, y) ≤ 0 for all x ∈ D. By (iii), we must have y ∈ K, so that y ∈⋂n
i=1 K(xi). This proves that {K(x) : x ∈ X} has the finite intersec-

tion property. By the compactness of K,
⋂

x∈X K(x) 6= ∅. Take any
ŷ ∈

⋂
x∈X K(x); then ŷ ∈ K and f(x, ŷ) ≤ 0 for all x ∈ X.

As an immediate consequence of Theorem 1, we have the following mini-
max inequality, which is essentially Theorem 1 of Bae–Kim–Tan [3], which
in turn generalizes minimax inequalities due to Tan [16, Theorem 1] and
Fan [9, Theorem 6] (and hence also [8, Theorem 1]).

Theorem 2. Let X be a non-empty convex subset of a topological vector
space and let f, g : X ×X → R ∪ {−∞,∞} be such that

(a) f(x, y) ≤ g(x, y) for all x, y ∈ X and g(x, x) ≤ 0 for all x ∈ X;
(b) for each fixed x ∈ X, f(x, y) is a lower semicontinuous function of y

on each non-empty compact subset C of X;
(c) for each y ∈ X, the set {x ∈ X : g(x, y) > 0} is convex ;
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(d) there exist a non-empty compact convex subset X0 of X and a non-
empty compact subset K of X such that for each y ∈ X \ K, there is an
x ∈ co(X0 ∪ {y}) with f(x, y) > 0.

Then there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ X.

P r o o f. By Theorem 1, it is sufficient to show that (a) and (c) imply the
condition (ii) of Theorem 1. Suppose not. Then there exist A ∈ F(X) and
y ∈ co(A) such that minx∈A f(x, y) > 0; but then by (a), minx∈A g(x, y) > 0;
it follows that A ⊂ {x ∈ X : g(x, y) > 0}. By (c), y ∈ co(A) ⊂ {x ∈ X :
g(x, y) > 0}, so that g(y, y) > 0, which contradicts (a).

The following result, which is equivalent to Theorem 2.11 of Zhou–Chen
[19], is also an immediate consequence of Theorem 1.

Corollary 1. Let X be a non-empty compact convex subset of a topo-
logical vector space and let f : X ×X → R∪{−∞,∞} be such that for each
x ∈ X, f(x, y) is a lower semicontinuous function of y on X. Then for each
t ∈ R, one of the following properties holds:

(1) there exists ŷ ∈ X such that f(x, ŷ) ≤ t for all x ∈ X;
(2) there exist A ∈ F(X) and y ∈ co(A) such that minx∈A f(x, y) > t.

P r o o f. Let F (x, y) = f(x, y)− t for all x, y ∈ X; then for each x ∈ X,
F (x, y) is a lower semicontinuous function of y on X. Take X0 = K = X.
Then the condition (iii) in Theorem 1 is satisfied trivially. If for each A ∈
F(X) and for each y ∈ co(A), minx∈A F (x, y) ≤ 0, then by Theorem 1, there
exists ŷ ∈ X such that F (x, ŷ) ≤ 0 for all x ∈ X. It follows that f(x, ŷ) ≤ t
for all x ∈ X, and (1) holds. On the other hand, if there exist A ∈ F(X)
and y ∈ co(A) such that minx∈A F (x, y) > 0, then minx∈A f(x, y) > t, so
that (2) holds.

The following result is essentially Theorem 1 of Yen [18].

Corollary 2. Let X be a non-empty compact convex subset of a topo-
logical vector space and let f, g : X ×X → R ∪ {−∞,∞} be such that

(i) f(x, y) ≤ g(x, y) for all x, y ∈ X;
(ii) for each x ∈ X, f(x, y) is a lower semicontinuous function of y

on X;
(iii) for each y ∈ X, g(x, y) is a quasi-concave function of x on X; i.e. for

each t ∈ R, the set {x ∈ X : g(x, y) > t} is convex.

Then the minimax inequality

min
y∈X

sup
x∈X

f(x, y) ≤ sup
x∈X

g(x, x)

holds.
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P r o o f. It suffices to assume that t = supx∈X g(x, x) < ∞. We shall
show that case (2) of Corollary 1 cannot occur. Indeed, if there exist A ∈
F(X) and y ∈ co(A) such that minx∈A f(x, y) > t, then by (i), we must
have minx∈A g(x, y) > t. It follows from (iii) that g(y, y) > t, contradicting
t = supx∈X g(x, x). Hence the conclusion follows from Corollary 1.

We observe that for t = supx∈X g(x, x) < ∞, the above result also follows
from Theorem 2 by replacing f and g by f − t and g− t respectively and by
taking X0 = K = X.

Next we remark that while Theorem 2 (also Theorem 1 of Tan [13]) is
a generalization of Fan’s minimax inequality [7, Theorem 1] from a single
function on a compact set to a pair of functions on a non-compact set ,
Theorem 1 is a generalization of Theorem 1 of Tan [13] (and hence also of
Theorem 1 of Yen [15]) from a pair of functions to a single function. We
should point out that a function f : X × X → R satisfying the condition
(ii) in Theorem 1 is said to be 0-diagonally quasi-concave in y in [16]. For
other related but not comparable results, we refer to Deguire–Granas [6,
Theorem 1], Granas–Liu [10, Theorem 5.1] and Shih–Tan [12, Theorem 1].

4. Equivalent forms. Following Ky Fan’s idea in [8], we shall now
give various equivalent formulations of Theorem 1:

Theorem 1′ (First Geometric Form). Let X be a non-empty convex
subset of a topological vector space and let N ⊂ X ×X be such that

(i) for each fixed x ∈ X and for each non-empty compact subset C of
X, the set {y ∈ C : (x, y) ∈ N} is open in C;

(ii) for each A ∈ F(X) and for each y ∈ co(A), there exists x ∈ A such
that (x, y) 6∈ N ;

(iii) there exist a non-empty compact convex subset X0 of X and a non-
empty compact subset K of X such that for each y ∈ X \ K, there is an
x ∈ co(X0 ∪ {y}) with (x, y) ∈ N .

Then there exists a point ŷ ∈ K such that {x ∈ X : (x, ŷ) ∈ N} = ∅.
Theorem 1′′ (Second Geometric Form). Let X be a non-empty convex

subset of a topological vector space and let M ⊂ X ×X be such that

(i) for each fixed x ∈ X and for each non-empty compact subset C of
X, the set {y ∈ C : (x, y) ∈ M} is closed in C;

(ii) for each A ∈ F(X) and for each y ∈ co(A), there exists x ∈ A such
that (x, y) ∈ M ;

(iii) there exist a non-empty compact convex subset X0 of X and a non-
empty compact subset K of X such that for each y ∈ X \ K, there is an
x ∈ co(X0 ∪ {y}) with (x, y) 6∈ M .

Then there exists a point ŷ ∈ K such that X × {ŷ} ⊂ M .
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Theorem 1′′′ (Maximal Element Version). Let X be non-empty convex
subset of a topological vector space and let G : X → 2X ∪{∅} be a set-valued
map such that

(i) for x ∈ X and for each non-empty compact subset C of X, G−1(x)∩
C is open in C (where G−1(x) = {y ∈ X : x ∈ G(y)});

(ii) for each A ∈ F(X) and for each y ∈ co(A), there exists x ∈ A such
that x 6∈ G(y);

(iii) there exist a non-empty compact convex subset X0 of X and a non-
empty compact subset K of X such that for each y ∈ X \ K, there is an
x ∈ co(X0 ∪ {y}) with x ∈ G(y).

Then there exists ŷ ∈ K such that G(ŷ) = ∅.
S k e t c h o f p r o o f s. Theorem 1⇒Theorem 1′: Let f : X ×X → R be

the characteristic function on N .

Theorem 1′ ⇒Theorem 1: Define N = {(x, y) ∈ X ×X : f(x, y) > 0}.
Theorem 1′ ⇒Theorem 1′′: Let N = X ×X \M .

Theorem 1′′ ⇒Theorem 1′: Let M = X ×X \N .

Theorem 1′′ ⇒Theorem 1′′′: Let M = {(x, y) ∈ X ×X : x 6∈ G(y)}.
Theorem 1′′′ ⇒Theorem 1′′: Define G : X → 2X ∪ {∅} by G(y) = {x ∈

X : (x, y) 6∈ M} for all y ∈ X.

Theorem 1′ (respectively, Theorem 1′′) generalizes Theorem 3 (respec-
tively, Theorem 4) of Shih–Tan [13].

As an immediate consequence of Theorem 1′′′, the maximal element ver-
sion of our minimax inequality, we have the following result:

Theorem 3. Let X be a non-empty convex subset of a topological vector
space and let G : X → 2X be a set-valued map such that

(i) for each y ∈ X and for each non-empty compact subset C of X,
G−1(y) ∩ C is open in C;

(ii) there exist a non-empty compact convex subset X0 of X and a non-
empty compact subset K of X such that for each y ∈ X \ K, there is an
x ∈ co(X0 ∪ {y}) with x ∈ G(y).

Then there exists ŷ ∈ X such that ŷ ∈ co(G(ŷ)).

P r o o f. Since G(y) 6= ∅ for each y ∈ X, by Theorem 1′′′, there exist
A ∈ F(X) and ŷ ∈ co(A) such that x ∈ G(ŷ) for all x ∈ A. Thus A ⊂ G(ŷ),
so that ŷ ∈ co(A) ⊂ co(G(ŷ)).

The following result is an immediate consequence of Theorem 3:

Theorem 3′. Let X be a non-empty convex subset of a topological vector
space and let G : X → 2X be a set-valued map such that
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(i) for each x ∈ X and for each non-empty compact subset C of X,
G−1(x) ∩ C is open in C;

(ii) there exist a non-empty compact convex subset X0 of X and a non-
empty compact subset K of X such that for each y ∈ X \ K, there is an
x ∈ co(X0 ∪ {y}) with x ∈ G(y);

(iii) for each y ∈ X, G(y) is convex.

Then there exists ŷ ∈ X such that ŷ ∈ G(ŷ).

Theorem 3′ implies the following:

Theorem 3′′. Let X be a non-empty convex subset of a topological vector
space and G : X → 2X be a set-valued map such that

(i) for each x ∈ X and for each non-empty compact subset C of X,
G−1(x) ∩ C is open in C;

(ii) there exist a non-empty compact convex subset X0 of X and a non-
empty compact subset K of X such that for each y ∈ X \ K, there is an
x ∈ co(X0 ∪ {y}) with x ∈ co(G(y)).

Then there exists ŷ ∈ X such that ŷ ∈ co(G(ŷ)).

P r o o f. By Theorem 3′, it remains to show that the map co G : X → 2X

defined by (coG)(x) = co(G(x)) has the property: for each x ∈ X and
for each non-empty compact subset C of X, (co G)−1(x) ∩ C is open in
C. Indeed, if y ∈ (co G)−1(x) ∩ C, then y ∈ C and x ∈ co(G(y)); let
y1, . . . , yn ∈ G(y) and λ1, . . . , λn > 0 with

∑n
i=1 λi = 1 such that x =∑n

i=1 λiyi. For each i = 1, . . . , n, G−1(yi)∩C is open in C and y ∈ G−1(yi)∩
C; let U =

⋂n
i=1 G−1(yi) ∩ C. Then U is an open neighbourhood of y in

C. If z ∈ U , then z ∈ C and yi ∈ G(z) for each i = 1, . . . , n, so that
x =

∑n
i=1 λiyi ∈ co(G(z)) and hence z ∈ (co G)−1(x) ∩ C, for all z ∈ U .

Therefore (coG)−1(x) ∩ C is open in C.

The above proof that (co G)−1(x) ∩ C is open in C is a modification
of the corresponding proof of Lemma 5.1 of Yannelis–Prabhakar [17]. As
the condition (ii) of Theorem 3 implies the condition (ii) of Theorem 3′′,
Theorem 3 follows from Theorem 3′′. Therefore Theorems 3, 3′ and 3′′ are
all equivalent. Theorem 3′ generalizes Theorem 1 of Browder [4].

5. Application to the existence of an equilibrium point. A
quadruple (X, A,B, P ) is a one-person game or a one-agent abstract economy
if X is a non-empty convex subset of a topological vector space, A,B : X →
2X∪{∅} are constraint correspondences and P : X → 2X∪{∅} is a preference
correspondence. An equilibrium point for (X, A,B, P ) is a point x̂ ∈ X such
that x̂ ∈ clXB(x̂) and A(x̂) ∩ P (x̂) = ∅.

As an application of Theorem 3′′, we have the following existence the-
orem of an equilibrium point for a one-person game:
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Theorem 4. Let (X, A,B, P ) be a one-person game such that

(i) P is of class LC ;
(ii) for each x ∈ X, A(x) is non-empty and co(A(x)) ⊂ B(x);
(iii) for each y ∈ X, A−1(y) ∩ C is open in each non-empty compact

subset C of X;
(iv) the map cl B : X → 2X defined by (cl B)(x) = clX B(x) is upper

semicontinuous;
(v) there exist a non-empty compact convex subset X0 of X and a non-

empty compact subset K of X such that for each y ∈ X \K,

co(X0 ∪ {y}) ∩ co(A(y) ∩ P (y)) 6= ∅ .

Then (X, A,B, P ) has an equilibrium point x̂ ∈ K.

P r o o f. Suppose that for each x ∈ X, we have either x 6∈ cl B(x) or
A(x) ∩ P (x) 6= ∅. Define G : X → 2X by

G(x) =
{

A(x) ∩ P (x) if x ∈ clXB(x),
A(x) if x 6∈ clXB(x).

Let y ∈ X; for each non-empty compact subset C of X, we shall prove that
G−1(y) ∩ C is open in C. Let

U1 = {x ∈ C : y ∈ A(x) ∩ P (x)} ,

U2 = {x ∈ C : y ∈ A(x) and x 6∈ clXB(x)} .

Then U1 = C ∩ A−1(y) ∩ P−1(y) is open in C by (ii) and P being of class
LC . Note that

U2 = {x ∈ C : y ∈ A(x)} ∩ {x ∈ C : x 6∈ clXB(x)}
= (C ∩A−1(y)) ∩ [C ∩ (X \ {x ∈ X : x ∈ clXB(x)}] .

By (ii), C ∩ A−1(y) is open in C. By the upper semicontinuity of cl B, the
set {x ∈ X : x ∈ clXB(x)} is closed in X, so that C ∩ (X \ {x ∈ X : x ∈
clXB(x)}) is open in C; it follows that U2 is also open in C. It is clear that
G−1(y) ∩ C = {x ∈ C : y ∈ G(x)} ⊂ U1 ∪ U2. Conversely, if x ∈ U1, then
x ∈ C and y ∈ A(x) ∩ P (x). We consider two cases:

(i) if x 6∈ clXB(x), then y ∈ A(x) ∩ P (x) ⊂ A(x) = G(x);
(ii) if x ∈ clXB(x), then y ∈ A(x) ∩ P (x) = G(x).

Hence x ∈ G−1(y)∩C. If x ∈ U2, then x ∈ C and y ∈ A(x) and x 6∈ clXB(x),
so that y ∈ G(x) and x ∈ G−1(y) ∩ C. Therefore G−1(y) ∩ C = U1 ∪ U2 is
open in C.

By (iv) and the definition of G, for each y ∈ X \ K, there exists x ∈
co(X0 ∪ {y}) such that x ∈ co G(y).

By Theorem 3′′ there exists ŷ ∈ X such that ŷ ∈ co(G(ŷ)). If ŷ ∈
clXB(ŷ), then ŷ ∈ co(A(ŷ) ∩ P (ŷ)) ⊂ co(P (ŷ)), which contradicts the as-
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sumption that P is of class LC . If ŷ 6∈ clXB(ŷ), then ŷ ∈ co(A(ŷ)) ⊂
B(ŷ), which is impossible. Therefore there must exist x̂ ∈ X such that
x̂ ∈ clXB(x̂) and A(x̂) ∩ P (x̂) = ∅; that is, x̂ is an equilibrium point for
(X, A,B, P ). By (v), x̂ is necessarily in K.

For the existence of equilibrium points for an abstract economy with an
infinite set of agents, we refer to Yannelis–Prabhakar [17, Theorem 6.1].

6. Fixed point theorems. In this section, we shall establish sev-
eral fixed point theorems for set-valued inward and outward mappings in
topological vector spaces (which need not be Hausdorff).

Theorem 5. Let X be a non-empty convex subset of a topological vector
space E, and let G : X → 2E be continuous on each non-empty compact
subset C of X and such that for each x ∈ X, G(x) is compact and convex.
Let p : X × E → R be such that

(a) p is continuous on C×E for each non-empty compact subset C of X;
(b) for each x ∈ X, p(x, ·) is a convex function on E.

Suppose that there exist a non-empty compact convex subset X0 of X
and a non-empty compact subset K of X such that

(i) for each y ∈ K with y 6∈ G(y), there exist x ∈ y +
⋃

λ>0 λ(X − y)
and v ∈ G(y) such that

p(y, x− v) < inf
u∈G(y)

p(y, y − u) ;

(ii) for each y ∈ X\K with y 6∈ G(y), there exist x ∈ y +
⋃

λ>0 λ(X0 − y)
and v ∈ G(y) such that

p(y, x− v) < inf
u∈G(y)

p(y, y − u) .

Then G has a fixed point in X.

P r o o f. Assume that G has no fixed point in X. Define the function
f : X ×X → R by

f(x, y) = inf
u∈G(y)

p(y, y − u)− inf
v∈G(y)

p(y, x− v) .

For each fixed x ∈ X, by the continuity of p and G, it follows from Lemmas 1
and 2 that f(x, y) is a lower semicontinuous function of y on each non-empty
compact subset C of X.

The condition (ii) of Theorem 1 holds. Indeed, if it does not hold, then
there exist A = {x1, . . . , xn} ∈ F(X) and y =

∑n
i=1 λixi ∈ co(A) with

λi > 0 for all i = 1, . . . , n and
∑n

i=1 λi = 1 such that

f(x, y) = inf
u∈G(ȳ)

p(y, y − u)− inf
v∈G(ȳ)

p(y, x− v) > 0 for all x ∈ A .
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Hence we have

(6.1) inf
u∈G(ȳ)

p(y, y − u) > inf
v∈G(ȳ)

p(y, xi − v) for all xi ∈ A .

Since G(y) is compact and convex and p is continuous, for each xi ∈ A there
exists vi ∈ G(y) such that

inf
v∈G(ȳ)

p(y, xi − v) = p(y, xi − vi) and v =
n∑

i=1

λivi ∈ G(y) .

From the convexity of the function p(x, ·) and (6.1) it follows that

inf
u∈G(ȳ)

p(y, y − u) ≤ p(y, y − v) = p
(
y,

n∑
i=1

λi(xi − vi)
)

≤
n∑

i=1

λip(y, xi − vi) =
n∑

i=1

λi inf
v∈G(ȳ)

p(y, xi − v)

< inf
u∈G(ȳ)

p(y, y − u) ,

which is a contradiction. Hence the condition (ii) of Theorem 1 holds.
We claim that the condition (iii) of Theorem 1 holds. Indeed, if it were

false, then there would exist y ∈ X \ K such that f(x, y) ≤ 0 for all x ∈
co(X0 ∪ {y}). Hence we have

inf
u∈G(ȳ)

p(y, y − u) ≤ inf
v∈G(ȳ)

p(y, x− v) for all x ∈ co(X0 ∪ {y}) .

Note that co(X0 ∪ {y}) = y +
⋃

0≤λ≤1 λ(X0 − y), so we have

(6.2) inf
u∈G(ȳ)

p(y, y − u) ≤ p(y, x− v)

for all v ∈ G(y) and x ∈ y +
⋃

0≤λ<1

λ(X0 − y) .

Since y 6∈ G(y), by (ii) and the continuity of p(x, ·) there exist x0 ∈ X0,
λ > 0 and v ∈ G(y) such that x = y + λ(x0 − y) and

(6.3) p(y, x− v) < inf
u∈G(ȳ)

p(y, y − u) .

By (6.2), we must have λ > 1 so that

x0 =
λ− 1

λ
y +

1
λ

x .

By the continuity of p(y, ·) and the compactness of G(y), there exists u0 ∈
G(y) such that p(y, y − u0) = infu∈G(ȳ) p(y, y − u). Since G(y) is convex,

w =
λ− 1

λ
u0 +

1
λ

v ∈ G(y) .
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Again from the convexity of p(y, ·) it follows that

p(y, x0 − w) = p

(
y,

λ− 1
λ

(y − u0) +
1
λ

(x− v)
)

≤ λ− 1
λ

p(y, y − u0) +
1
λ

p(y, x− v) < inf
u∈G(ȳ)

p(y, y − u) ,

which contradicts (6.2). Thus the condition (iii) of Theorem 1 also holds.
By Theorem 1, there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ X.

It follows that

(6.4) inf
u∈G(ŷ)

p(ŷ, ŷ − u) ≤ p(ŷ, x− v) for all x ∈ X and v ∈ G(ŷ) .

Since ŷ ∈ K and ŷ 6∈ G(ŷ), by (i) and continuity of p(ŷ, ·), there exist x̂ ∈ X,
λ > 0 and v̂ ∈ G(ŷ) such that x = ŷ + λ(x̂− ŷ) and

(6.5) p(ŷ, x− v̂) < inf
u∈G(ŷ)

p(ŷ, ŷ − u) .

If λ ≤ 1, then x ∈ X so that (6.5) contradicts (6.4). If λ > 1, using a similar
argument to the above proof, we also obtain a contradiction. Therefore G
must have a fixed point in X.

Theorem 5 generalizes Theorem 3.3 of Jiang [11] to the non-compact set-
ting and Theorem 10 of Shih–Tan [15], which in turn generalizes Theorem 1
of Browder [5].

Theorem 5′. Let X be a non-empty convex subset of a topological vector
space E, and let G : X → 2E be continuous on each non-empty compact
subset C of X and such that for each x ∈ X, G(x) is compact and convex.
Let p : X × E → R be such that

(a) p is continuous on C×E for each non-empty compact subset C of X;
(b) for each x ∈ X, p(x, ·) is a convex function on E.

Suppose that there exist a non-empty compact convex subset X0 of X
and a non-empty compact subset K of X such that

(i) for each y ∈ K with y 6∈ G(y), there exist x ∈ y +
⋃

λ<0 λ(X − y)
and v ∈ G(y) such that

p(y, x− v) < inf
u∈G(y)

p(y, y − u);

(ii) for each y ∈ X \K with y 6∈ G(y), there exist x ∈ y +
⋃

λ<0(X0 − y)
and v ∈ G(y) such that

p(y, x− v) < inf
u∈G(y)

p(y, y − u) .

Then G has a fixed point in X.
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P r o o f. Define the maps F : X → 2E and q : X × E → R by F (x) =
2x − G(x) and q(x, y) = p(x,−y). It is easy to check that F and q satisfy
the hypotheses of Theorem 5. By Theorem 5, F has a fixed point in X, so
that G has a fixed point in X.

Theorem 5′ generalizes Theorem 2 of Browder [5] to a set-valued map
on a non-compact set in a topological vector space which is not necessarily
locally convex (as is required in [5]) and Corollary 3.4 of Jiang [11] to the
non-compact setting.

Corollary 3. Let X be a non-empty convex subset of a normed space
E, and let G : X → 2E be continuous on each non-empty compact subset C
of X and such that for each x ∈ X, G(x) is compact convex. Suppose that
there exist a non-empty compact convex subset X0 of X and a non-empty
compact subset K of X such that

(i) for each y ∈ K, G(y) ∩ (y +
⋃

λ>0 λ(X − y)) 6= ∅
(respectively , G(y) ∩ (y +

⋃
λ<0 λ(X − y)) 6= ∅);

(ii) for each y ∈ X \K, G(y) ∩ (y +
⋂

λ>0 λ(X0 − y)) 6= ∅
(respectively , G(y) ∩ (y +

⋃
λ<0 λ(X0 − y)) 6= ∅).

Then G has a fixed point in X.

P r o o f. Since E is a normed space, by setting p(x, y) = ||y|| for all
(x, y) ∈ X × E, it follows from Theorem 5 (respectively, Theorem 5′) that
the conclusion holds.

Corollary 3 generalizes Corollary 2 (resp. Corollary 2′) of Browder [5]
and Corollary 1 of Shih–Tan [15].

Theorem 6. Let X be a non-empty convex subset of a topological vector
space E, and let G : X → 2E be upper semicontinuous on each non-empty
compact subset C of X and such that for each x ∈ X, G(x) is compact. Let
p : X ×E → R be continuous on C ×D for any non-empty compact subsets
C and D of X and E, respectively , such that for each x ∈ X, p(x, ·) is a
convex function on E. Suppose that there exist a non-empty compact convex
subset X0 of X and a non-empty compact subset K of X such that

(i) for each y ∈ K with y 6∈ G(y), there exists x ∈ y +
⋃

λ>0 λ(X − y)
such that p(y, x− u) < p(y, y − u) for all u ∈ G(y);

(ii) for each y ∈ X\K with y 6∈ G(y), there exists x ∈ y+
⋃

λ>0 λ(X0−y)
such that p(y, x− u) < p(y, y − u) for all u ∈ G(y).

Then G has a fixed point in X.

P r o o f. Assume that G has no fixed point in X. Define the function
f : X ×X → R by

f(x, y) = inf
u∈G(y)

[p(y, y − u)− p(y, x− u)] .
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For each non-empty compact subset C of X, by the assumption on G, G(C)
is compact in E. By the continuity assumption on p, for each fixed x ∈ X
the function W (y, u) = p(y, y − u)− p(y, x− u) is continuous on C ×G(C)
so that from Lemma 1 it follows that for each fixed x ∈ X, f(x, y) is a lower
semicontinuous function of y on each non-empty compact subset C of X.

The condition (ii) of Theorem 1 is satisfied: Indeed, otherwise there
would exist A = {x1, . . . , xn} ∈ F(X) and y =

∑n
i=1 λixi ∈ co(A) with λi >

0 for all i = 1, . . . , n and
∑n

i=1 λi = 1 such that minx∈A f(x, y) > 0, so that

(6.6) p(y, y − u) > p(y, x− u) for all x ∈ A and u ∈ G(y) .

Since p(y, ·) is a convex function, we have, for each u ∈ G(y),

p(y, y − u) = p
(
y,

n∑
i=1

λixi − u
)

= p
(
y,

n∑
i=1

λi(xi − u)
)

≤
n∑

i=1

λip(y, xi − u) < p(y, y − u) by (6.6) ,

which is a contradiction. Hence the condition (ii) of Theorem 1 holds.
The condition (iii) of Theorem 1 is also satisfied: Suppose that there

exists y ∈ X \K such that

(6.7) f(x, y) ≤ 0 for all x ∈ co(X0 ∪ {y}) .

Since y ∈ X \ K, by (ii) there exists x ∈ y +
⋃

λ>0 λ(X0 − y), say x =
y + λ(x0 − y) for some λ > 0 and x0 ∈ X0, such that

(6.8) p(y, x− u) < p(y, y − u) for all u ∈ G(y) .

C a s e 1: If 0 < λ ≤ 1, then x = λx0 + (1− λ)y ∈ co(X0 ∪ {y}), so that
by (6.7),

0 ≥ f(x, y) = inf
u∈G(ȳ)

[p(y, y − u)− p(y, x− u)] = p(y, y − u)− p(y, x− u)

for some u ∈ G(y) since G(y) is compact; this contradicts (6.8).

C a s e 2: If λ > 1 then

x0 =
1
λ

x +
λ− 1

λ
y

is a convex combination of x and y; as p(y, ·) is convex, we have, for each
u ∈ G(y),

p(y, x0 − u) = p

(
y,

1
λ

(x− u) +
λ− 1

λ
(y − u)

)
(6.9)

≤ 1
λ

p(y, x− u) +
λ− 1

λ
p(y, y − u)
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<
1
λ

p(y, y − u) +
λ− 1

λ
p(y, y − u) by(6.8)

= p(y, y − u) .

By (6.7), since x0 ∈ X0 ⊂ co(X0 ∪ {y}),
0 ≥ f(x0, y) = inf

u∈G(ȳ)
[p(y, y−u)−p(y, x0−u)] = p(y, y−u0)−p(y, x0−u0)

for some u0 ∈ G(y) as G(y) is compact; this contradicts (6.9). Hence the
condition (iii) of Theorem 1 holds.

By Theorem 1, there exists ŷ ∈ K such that

f(x, ŷ) = inf
u∈G(ŷ)

[p(ŷ, ŷ − u)− p(ŷ, x− u)] ≤ 0 for all x ∈ X .

It follows that for each x ∈ X, there exists ux ∈ G(ŷ) such that

(6.10) p(ŷ, ŷ − ux) ≤ p(ŷ, x− ux) .

Since ŷ ∈ K, by (i) there exists x̂ ∈ ŷ +
⋃

λ>0 λ(X− ŷ), say x̂ = ŷ +λ(x− ŷ)
for some λ > 0 and x ∈ X, such that

(6.11) p(ŷ, x̂− u) < p(ŷ, ŷ − u) for all u ∈ G(ŷ) .

If λ ≤ 1, then x̂ ∈ X, so that (6.11) contradicts (6.10). If λ > 1, then

x =
1
λ

x̂ +
λ− 1

λ
ŷ

and for each u ∈ G(ŷ).

p(ŷ, x− u) = p

(
ŷ,

1
λ

(x̂− u) +
λ− 1

λ
(ŷ − u)

)
≤ 1

λ
p(ŷ, x̂− u) +

λ− 1
λ

p(ŷ, ŷ − u)

< p(ŷ, ŷ − u) by (6.11) ,

which again contradicts (6.10). Therefore G must have a fixed point in X.

Theorem 6 also generalizes Theorem 10 of Shih–Tan [15] and Theorem 1
of Browder [5]. Similar to Theorem 5′, Theorem 6 remains valid if in both
conditions (i) and (ii), “λ > 0” is replaced by “λ < 0”.
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