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Abstract. This paper presents a novel framework for HMM-based automatic 
phonetic segmentation that improves the accuracy of placing phone boundaries. 
In the framework, both training and segmentation approaches are proposed 
according to the minimum boundary error (MBE) criterion, which tries to 
minimize the expected boundary errors over a set of possible phonetic 
alignments. This framework is inspired by the recently proposed minimum 
phone error (MPE) training approach and the minimum Bayes risk decoding 
algorithm for automatic speech recognition. To evaluate the proposed MBE 
framework, we conduct automatic phonetic segmentation experiments on the 
TIMIT acoustic-phonetic continuous speech corpus. MBE segmentation with 
MBE-trained models can identify 80.53% of human-labeled phone boundaries 
within a tolerance of 10 ms, compared to 71.10% identified by conventional 
ML segmentation with ML-trained models. Moreover, by using the MBE 
framework, only 7.15% of automatically labeled phone boundaries have errors 
larger than 20 ms.  

Keywords: automatic phonetic segmentation, minimum boundary error, 
discriminative training, minimum Bayes risk. 

1   Introduction 

Many areas of speech technology exploit automatic learning methodologies that rely 
on large well-labeled corpora. Phoneme level transcription is especially important for 
fundamental speech research. In recent years, increased attention has been paid to 
data-driven, concatenation-based TTS synthesis because its output is more natural and 
has a high degree of fluency. Both the development of concatenative acoustic unit 
inventories and the statistical training of data-driven prosodic models require a speech 
database that is precisely segmented. In the past, the speech synthesis has relied on 
manually segmented corpora; however, such corpora are extremely hard to obtain, 
since labeling by hand is time consuming and costly. In speech recognition tasks, 
though the use of Hidden Markov Models (HMMs) has made finding precise phonetic 
boundaries unnecessary, it is believed that speech recognition would benefit from 
more precise segmentation in training and recognition. 

To reduce the manual effort and accelerate the labeling process, many attempts 
have been made to utilize automatic phonetic segmentation approaches to provide 



initial phonetic segmentation for subsequent manual segmentation and verification, 
e.g., dynamic time warping (DTW) [1], methods that utilize specific features and 
algorithms [2], HMM-based Viterbi forced alignment [3], and two-stage approaches 
[4]. 

The most popular method of automatic phonetic segmentation is to adapt an 
HMM-based phonetic recognizer to align a phonetic transcription with a speech 
utterance. Empirically, phone boundaries obtained in this way should contain few 
serious errors, since HMMs generally capture the acoustic properties of phones; 
however, small errors are inevitable because HMMs are not sensitive enough to detect 
changes between adjacent phones [4]. To improve the discriminability of HMMs for 
automatic phonetic segmentation, we proposed using a discriminative criterion, called 
the minimum boundary error (MBE), for model training in our previous work [5]. In 
this paper, the MBE criterion is extended to the segmentation stage, i.e., we propose 
an MBE forced alignment to replace the conventional maximum likelihood (ML) 
forced alignment. The superiority of the MBE framework over the conventional ML 
framework for automatic phonetic segmentation is verified by experiments conducted 
on the TIMIT acoustic-phonetic continuous speech corpus. 

The remainder of this paper is organized as follows. Section 2 reviews the 
methodology of the MBE discriminative training approach. In Section 3, we present 
the proposed MBE segmentation approach and discuss its relation to the minimum 
Bayes risk (MBR) criterion. The experiment results are detailed in Section 4. Finally, 
in Section 5, we present our conclusions and suggest some future research directions. 

2   Minimum Boundary Error Training 

Let { }ROO ,..,1=O  be a set of training observation sequences. The objective function 
for MBE training can then be defined as:  
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where  is a set of possible phonetic alignments for the training observation 
utterance ;  is one of the hypothesized alignments in ;  is the 

posterior probability of alignment , given the training observation sequence ; 

and  denotes the “boundary error” of  compared with the manually 

labeled phonetic alignment . For each training observation sequence ,  
gives the weighted average boundary error of all hypothesized alignments. For 
simplicity, we assume the prior probability of alignment  is uniformly distributed, 

and the likelihood  of alignment  is governed by the acoustic model 
parameter set . Therefore, Eq.(1) can be rewritten as: 
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Fig. 1. An illustration of the phonetic lattice for the speech utterance: “Where were they?” 
The lattice can be generated by performing a beam search using some pruning techniques. 
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where α  is a scaling factor that prevents the denominator ∑  
being dominated by only a few alignments. Accordingly, the optimal parameter set 

 can be estimated by minimizing the objective function defined in Eq.(2) as 
follows: 

(∈ Λrr
kS

r
k

r SOpΦ )|

*Λ

∑∑
∑

=Λ
=

∈
∈ Λ

Λ

Λ

R

r

r
c

r
iS

S
r
k

r

r
i

r
SSER

SOp
SOp

rr
i

rr
k

1

* ),(
)|(

)|(minarg Φ
Φ

α

α
. (3) 

The boundary error  of the hypothesized alignment  can be 

calculated as the sum of the boundary errors of the individual phones in , i.e., 
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where  is the number of total phones in ;  and  are the n-th phone in 

 and , respectively; and 
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where  and  are the hypothesized start time and end time of phone , 
respectively; and  and  correspond to the manually labeled start time and end 
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time, respectively. Since  contains a large number of hypothesized phonetic 
alignments, it is impractical to sum the boundary errors directly without first pruning 
some of the alignments. For efficiency, it is suggested that a reduced hypothesis space, 
such as an N-best list [6] or a lattice (or graph) [7], should be used. However, an N-
best list often contains too much redundant information, e.g., two hypothesized 
alignments can be very similar. In contrast, as illustrated in Fig. 1, a phonetic lattice is 
more effective because it only stores alternative phone arcs on different segments of 
time marks and can easily generate a large number of distinct hypothesized phone 
alignments. Although it cannot be guaranteed that the phonetic alignments generated 
from a phonetic lattice will have higher probabilities than those not presented, we 
believe that the approximation will not affect the segmentation performance 
significantly. In this paper, we let  denote the set of possible phonetic 

alignments in the lattice for the training observation utterance . 

rΦ

r
LatΦ

rO

2.1   Objective Function Optimization and Update Formulae  

Eq.(3) is a complex problem to solve, because there is no closed-form solution. In this 
paper, we adopt the Expectation Maximization (EM) algorithm to solve it. Since the 
EM algorithm maximizes the objective function, we reverse the sign of the objective 
function defined in Eq. (3) and re-formulate the optimization problem as, 
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However, the EM algorithm can not be applied directly, because the objective 
function comprises rational functions [8]. The extended EM algorithm, which utilizes 
a weak-sense auxiliary function [9] and has been applied in the minimum phone error 
(MPE) discriminative training approach [10] for ASR, can be adapted to solve Eq.(6). 
The re-estimation formulae for the mean vector mμ  and the diagonal covariance 
matrix  of a given Gaussian mixture m thus derived can be expressed, 
respectively, as: 
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In Eqs. (7) and (8),  is a per-mixture level control constant that ensures all the 
variance updates are positive; 

mD

mμ  and mΣ  are the current mean vector and 



covariance matrix, respectively; and , , and are statistics 
defined, respectively, as: 
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In Eqs. (9), (10), and (11),  is the occupation probability of mixture m on q, 

 is the observation vector at time t, and  is computed by 
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where  is the occupation probability of phone arc q, also referred to as its 

posterior probability;  is the weighted average boundary error of all the 

hypothesized alignments in the lattice; and  is the weighted average boundary 
error of the hypothesized alignments in the lattice that contain arc q. Note that the 
term  reflects the difference between the weighted average boundary error 
of all the alignments in the lattice and that of the alignments containing arc q . When 

 equals , phone arc q makes no contribution to MBE training. However, 

when  is larger than , i.e., phone arc q generates fewer errors than the 

average, then q makes a positive contribution. Conversely, if  is smaller than 

, q makes a negative contribution. The discriminative ability of the MBE training 

approach is thus demonstrated. , , and  are computed by 
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respectively, where Λ  is the current set of parameters. The above three quantities 
can be calculated efficiently by applying dynamic programming to the lattice. 

2.2   I-smoothing Update  

To improve the generality of MBE training, the I-smoothing technique [10] is 
employed to provide better parameter estimates. This technique can be regarded as 
interpolating the MBE and ML auxiliary functions according to the amount of data 
available for each Gaussian mixture. The updates for the mean vector mμ  and the 
diagonal covariance matrix  thus become: mΣ
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respectively, where mτ  is also a per-mixture level control constant; and , 

, and  are computed by 
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respectively. In Eqs. (18), (19), and (20),  is the frame number of , and 

 is the maximum likelihood occupation probability of the Gaussian mixture 
m. 
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3   Minimum Boundary Error Segmentation 

The proposed MBE forced alignment approach is a promising realization of the 
Minimum Bayes-Risk (MBR) classifier for the automatic phonetic segmentation task. 
The latter can be considered as taking an action, ( )OSα , to identify a certain 
alignment, , from all the various phonetic alignments of a given utterance . Let 
function  be the loss incurred when the action 

S O
),( cSSL ( )OSα  is taken, given that 

the true (or reference) alignment is . During the classification stage, we do not 
know the true alignment in advance, i.e., any arbitrary alignment  could be true. 

Suppose the distribution  is known, then the conditional risk of taking the 

action 
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The MBR classifier is designed to select the action whose conditional risk, 
)|( OR Sα , is minimal, i.e., the best alignment based on the MBR criterion can be 

found by 
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When the symmetrical zero-one function, 
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is selected as the loss function, and it is assumed that the prior probability of 
alignment  is uniformly distributed, the MBR classifier is equivalent to the 
conventional forced-alignment method, which picks the alignment with the maximal 
likelihood, i.e., 
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It is clear from Eq. (23) that the zero-one loss function assigns no loss when , 

but assigns a uniform loss of one to the alignments 
jSS =

jSS ≠  no matter how different 

they are from . Thus, such a loss function causes all incorrectly hypothesized 
alignments to be regarded as having the same segmentation risk, which is obviously 
inconsistent with our preference for alignments with fewer errors in an automatic 
segmentation task.  

jS

In our approach, the loss function is replaced by the boundary error function, 
defined in Eq.(4), to match the goal of minimizing the boundary error. Consequently, 
the MBR forced alignment approach becomes the MBE forced alignment approach, 
defined as: 
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where N is the number of phones in utterance O ; and  and  are the n-th 
phone in the alignments  and , respectively.  

nq j
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To simplify the implementation, we restrict the hypothesized space  to , 
the set of alignments constructed from the phone lattice shown in Fig. 1, which can be 
generated by a conventional beam search. Accordingly, Eq. (25) can be re-formulated 
as: 
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Let the cut  be the set of phone arcs of the n-th phone in the utterance. For 
example, in Fig. 1, there are four phone arcs for the second phone, “w”, in  and 
six phone arcs for the third phone, “eh”, in . From the figure, it is obvious that 
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each alignment in  will pass a single phone arc in each cut , n=1,2,…,N. 
According to this observation, Eq. (26) can be rewritten as: 
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where  is the m-th phone arc in . Because  in Eq. 

(27) is equivalent to the posterior probability of  given the utterance , 
denoted as 
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γ  hereafter, the probability can be easily calculated by applying a 

forward-backward algorithm to the lattice. As a result, Eq. (27) can be rewritten as: 
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In this way, MBE forced alignment can be efficiently conducted on the phone lattice 
by performing Viterbi search. 

4   Experiments 

4.1   Experiment Setup  

TIMIT (The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus) [11], a 
well-known read speech corpus with manual acoustic phonetic labeling, has been 
widely used to evaluate automatic speech recognition and phonetic segmentation 
techniques. TIMIT contains a total of 6,300 sentences spoken by 630 speakers from 
eight major dialect regions in the United States; each speaker utters 10 sentences. The 
TIMIT suggested training and testing sets contain 462 and 168 speakers, respectively. 
We discard utterances with phones shorter than 10 ms. The resulting training set 
contains 4,546 sentences, with a total length of 3.87 hours, while the test set contains 
1,646 sentences, with a total length of 1.41 hours. 

The acoustic models consist of 50 context-independent phone models, each 
represented by a 3-state continuous density HMM (CDHMM) with a left-to-right 
topology. 

Each frame of the speech data is represented by a 39-dimensional feature vector 
comprised of 12 MFCCs and log energy, plus their first and second differences. The 
frame width is 20 ms and the frame shift is 5 ms. Utterance-based cepstral variance 
normalization (CVN) is applied to all the training and test speech utterances. 



6.50

7.50

8.50

9.50

10.50

11.50

12.50

13.50

0
(ML)

1 2 3 4 5 6 7 8 9 10 iter

Frame Err
(%)

TrainSet TestSet TrainSet cri

 
Fig. 2. The phonetic segmentation results (FER) for the models trained according to 
ML and MBE criteria, respectively. 

4.2   Experiment Results 

The acoustic models were first trained on the training utterances according to human-
labeled phonetic transcriptions and boundaries by the Baum-Welch algorithm using 
the ML criterion. Then, the MBE discriminative training approach was applied to 
further manipulate the models. The scaling factor α  in Eq.(2) was empirically set to 
0.1 and the I-smoothing control constant mτ  in Eqs.(16) and (17) was set to 20 for 
all mixtures. The results are shown in Fig. 2. In the figure, the line with triangles 
indicates the expected FER (frame error rate) calculated at each iteration of the 
training process. Clearly, the descending trend satisfies the training criterion. The line 
with diamonds and the line with rectangles represent the FER results of the training 
(inside test) and test sets, respectively. We observe that the ML-trained acoustic 
models (at the 0th iteration) yield an FER of 10.31% and 11.77% for the training set 
and test set respectively. In contrast, after 10 iterations, the MBE-trained acoustic 
models yield an FER of 6.88% and 9.25%, respectively. The MBE discriminative 
training approach achieves a relative FER reduction of 33.27% on the training set and 
21.41% on the test set. The results clearly demonstrate that the MBE discriminative 
training approach performs very well and can enhance the performance of the 
acoustic models initially trained by the ML criterion. 

Table 1 shows the percentage of phone boundaries correctly placed within different 
tolerances with respect to their associated manually-labeled phone boundaries. The 
experiment was conducted on the test set. From rows 2 and 3 of Table 1, we observe 
that the MBE-trained models significantly outperform the ML-trained models. Clearly, 
the MBE training is particularly effective in correcting boundary errors in the 
proximity of manually labeled positions. Comparing the results in rows 2 and 4, we 
also observe that MBE segmentation outperforms ML segmentation, though the 



Table 1.  The percentage of phone boundaries correctly placed within different 
tolerances with respect to their associated manually labeled phone boundaries. 

 
Criterion %Correct marks (distance ≦ tolerance) 

Training Segmentation 

Mean 
Boundary 
Distance ≦5ms ≦10ms ≦15ms ≦20ms ≦25ms ≦30ms 

ML ML 9.83 ms 46.69 71.10 83.14 88.94 92.32 94.52 

ML+MBE ML 7.82 ms 58.48 79.75 88.16 92.11 94.49 96.11 

ML MBE 8.95 ms 49.86 74.25 85.38 90.61 93.75 95.67 

ML+MBE MBE 7.49 ms 58.73 80.53 88.97 92.85 95.16 96.64 

absolute improvement 
(ML+MBE,MBE) vs. (ML, ML) 2.34 ms 12.04 9.43 5.83 3.91 2.84 2.12 

 

improvement is not as significant as that of the MBE-trained models over the ML-
trained models. This is because, MBE segmentation, like conventional ML 
segmentation, is still deficient in the knowledge of true posterior distribution, even 
though the MBE criterion accords with the objective of minimizing boundary errors 
very well. The 5th row of Table 1 shows the results obtained when the complete MBE 
framework, including MBE training and MBE segmentation, was applied. We 
observe that these results are superior to those achieved when either the MBE training 
or the MBE segmentation was applied alone. The last row of Table 1 shows the 
absolute improvements achieved by the MBE framework over the conventional ML 
framework. The proposed MBE framework can identify 80.53% of human-labeled 
phone boundaries within a tolerance of 10 ms, compared to 71.10% identified by the 
conventional ML framework. Moreover, by using the MBE framework, only 7.15% 
of automatically labeled phone boundaries have errors larger than 20 ms. 

5   Conclusions and Future Work 

In this paper, we have explored the use of the minimum boundary error (MBE) 
criterion in the discriminative training of acoustic models as well as minimum risk 
segmentation for automatic phonetic segmentation. The underlying characteristics of 
the MBE training and segmentation framework have been investigated, and its 
superiority over conventional ML training and segmentation has been verified by 
experiments. Naturally, the more accurate phonetic segmentation obtained by the 
MBE framework is very useful for subsequent manual verification or further 
boundary refinement using other techniques. It is worth mentioning that the MBE 
training method is not difficult to implement; in particular, minimum phone error 
training has been included in HTK. 

In HMM-based automatic phonetic segmentation and speech recognition tasks, 
duration control is an important issue that must be addressed. We tried to apply the 



MBE criterion in duration model training, but there was no significant improvement 
found in our preliminary work. However, the issue warrants further study. On the 
other hand, well-labeled phonetic training corpora are very scarce. Therefore, the 
unsupervised MBE training approach is also under investigated. Moreover, in our 
current implementation, the phone boundary error function, defined in Eq.(5), is 
calculated in the time frame unit for efficiency. However, more accurate segmentation 
may be achieved by calculating boundary errors in actual time sample marks. In 
addition, we are applying the MBE training and segmentation framework to facilitate 
the phonetic labeling of a subset of speech utterances in MATBN (Mandarin across 
Taiwan − Broadcast News) database [12]. 
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