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Abstract

In this paper we prove C1,α regularity (near flat points) of the free
boundary ∂{u > 0} ∩ Ω in the Alt-Caffarelli type minimum problem for
the p-Laplace operator:

J(u) =

∫
Ω

(
|∇u|p + λpχ{u>0}

)
dx → min (1 < p < ∞.)

1 Introduction

For a given domain Ω in Rn consider the problem of minimizing the energy
functional

J(u) =
∫

Ω

(|∇u|p + λpχ{u>0}
)
dx (1 < p < ∞)(1.1)

among all functions u ∈ W 1,p(Ω) with u−u0 ∈ W 1,p
0 (Ω) for a prescribed u0 ≥ 0.

We assume that λ is a positive constant. Then the minimizer u satisfies (in a
certain weak sense, see Theorem 2.1) the following overdetermined system

∆pu = 0 in {u > 0}, u = 0, |∇u| = c on ∂{u > 0} ∩ Ω(1.2)

with c = λ/(p− 1)1/p. Here ∆pu = div(|∇u|p−2∇u) is the p-Laplace operator.
We are interested in regularity properties of the so-called free boundary

Γ = ∂{u > 0} ∩ Ω.

Problems of this kind, known as Bernoulli-type problems, appear for instance
in two dimensional flows [5], heat flows [1], electrochemical machining [13], etc.
Also, the same free boundary condition appears under simplifying assumptions
in the limit of high activation energy in combustion theory, see e.g. [4].
For p = 2 the problem was studied in the by now classical paper of Alt

and Caffarelli [2]. Our objective in this paper is to prove the regularity of
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the free boundary for any 1 < p < ∞. The difficulty of the problem and its
main difference from [2] is that the governing operator, the p-Laplacian, is not
uniformly elliptic (degenerate for p > 2 and singular for 1 < p < 2.) The case
of uniformly elliptic quasilinear equations has been treated by Alt, Caffarelli
and Friedman [3]. The main result of [3], similar to the one of [2], states that
near flat free boundary points the free boundary is C1,α regular. On the other
hand, the regularity of the free boundary in (1.2) will imply nondegeneracy of
|∇u| near the free boundary, which will make the p-Laplacian uniformly elliptic.
Hoverer, it appears not to be easy to establish the nondegeneracy up to the free
boundary without the regularity. We overcome this difficulty by proving both
properties, nondegeneracy of the gradient and regularity of the free boundary,
simultaneously.
Finally, we have to mention that under suitable convexity assumptions, one

can establish the existence and uniqueness of classical solutions to the free
boundary problem (1.2) by using a Perron-type method, see [10], [11]. For
general configurations, certain weak solutions can be obtained in the limit of a
singular perturbation problem related to combustion theory

∆pu
ε =
1
ε
β

(
uε

ε

)
as ε → 0, where β ≥ 0 and suppβ = [0, 1], see [6].
The structure of the paper is as follows. In Sections 3 and 4 we establish

the uniform Lipschitz continuity and a certain nondegeneracy of the minimiz-
ers at any free boundary point. As a consequence, we obtain in Section 5
that the free boundary has locally finite perimeter. Section 6 contains the key
flatness-nondegeneracy theorems (Theorems 6.3 and 6.4), which together with
Sections 7– 8 imply our main result, Theorem 9.1, that the free boundary is
C1,α regular near flat free boundary points.

2 Preliminaries

The existence of minimizers of (1.1) as well as their relation with the free bound-
ary problem (1.2) can be established precisely as in [2].

Theorem 2.1 If J(u0) < ∞, then there exists an absolute minimizer u of J in
the class K = {v ∈ W 1,p(Ω) : v − u0 ∈ W 1,p

0 (Ω)}, i.e. a function u ∈ K such
that

J(u) ≤ J(v) for any v ∈ K.

Any absolute minimizer u is nonnegative, ∆pu = 0 in {u > 0} and, moreover,
it satisfies the free boundary condition (1.2) in the following very weak sense:

lim
ε↘0

∫
∂{u>ε}∩Ω

((p− 1)|∇u|p − λp)η · ν = 0

for any η ∈ W 1,p
0 (Ω)

n and where ν is the outward normal. ✷
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Note that every absolute minimizer u is p-subharmonic in Ω, since J(u) ≤
J(u− εη) and χ{u−εη>0} ≤ χ{u>0} for any nonnegative η ∈ C∞

0 (Ω) and ε > 0.
In particular, ∆pu is a nonnegative Radon measure with support in Ω∩∂{u > 0}.
Also observe that, if u0 ≥ 0 is uniformly bounded in Ω, then

0 ≤ inf
Ω

u ≤ sup
Ω

u ≤ sup
Ω

u0

(here inf and sup are understood in the essential sense.)
Most of the results in this paper are proved also for so-called local minimizers

u ∈ K such that J(u) ≤ J(v) for any v ∈ K with

‖∇u−∇v‖Lp(Ω) + ‖χ{u>0} − χ{v>0}‖L1(Ω) < ε

for some ε > 0.
Next, we remark that if u is a (local) minimizer of J in Ω, then the rescaling

of u around x0 by a factor of r

ur(x) :=
1
r
u(rx+ x0)

is a (local) minimizer in Ωr := {(x − x0)/r : x ∈ Ω}. Rescalings are especially
useful since, as we prove in Section 3, the (local) minimizers are uniformly
Lipschitz continuous and therefore we can extract a subsequence ur converging
as r → 0 to a function u0 in Rn. The latter process is referred to as blow-up.
Finally, throughout the paper, without loss of generality, we assume that

λ = λp := (p− 1)1/p

in the functional (1.1) so that we have c = 1 in (1.2).

3 Lipschitz continuity

In this section we establish the Lipschitz continuity of minimizers.
Let u be an absolute (local) minimizer of J in Ω. Hence u is p-subharmonic

and we can assume that u is upper semicontinuous. For any (small) B =
Br(y) ⊂⊂ Ω denote by v = vB the solution of the Dirichlet problem

∆pv = 0 in B, v − u ∈ W 1,p
0 (B).

From the minimality of u in B we have∫
B

(|∇u|p + λp χ{u>0}
) ≤

∫
B

(|∇v|p + λp),

or ∫
B

(|∇u|p − |∇v|p) ≤ λp

∫
B

χ{u=0}.

Set now
us(x) = s u(x) + (1− s)v(x), 0 ≤ s ≤ 1.
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Clearly u0 = v and u1 = u. We thus obtain∫
B

(|∇u|p − |∇v|p) = p

∫ 1

0

ds

∫
B

|∇us|p−2∇us · ∇(u− v)

= p

∫ 1

0

ds

∫
B

(|∇us|p−2∇us − |∇v|p−2∇v) · ∇(u− v)

= p

∫ 1

0

ds

s

∫
B

(|∇us|p−2∇us − |∇v|p−2∇v) · ∇(us − v),

where in the second step we used that
∫
B
|∇v|p−2∇v · ∇(u− v) = 0.

Next, we apply the well-known inequality

(|ξ|p−2ξ − |η|p−2η) · (ξ − η) ≥ γ

{ |ξ − η|2(|ξ|+ |η|)p−2, 1 < p ≤ 2
|ξ − η|p p ≥ 2

for any nonzero ξ, η ∈ Rn and a constant γ = γ(n, p) > 0.
For p ≥ 2 we obtain∫

B

(|∇u|p − |∇v|p) ≥ γp

∫ 1

0

ds

s

∫
B

|∇(us − v)|p = γp

∫ 1

0

sp−1ds

∫
B

|∇(u− v)|p

and consequently ∫
B

|∇(u− v)|p ≤ C

∫
B

χ{u=0}.(3.1)

In the case 1 < p ≤ 2 we have∫
B

(|∇u|p − |∇v|p) ≥ γp

∫ 1

0

ds

s

∫
B

|∇(us − v)|2(|∇us|+ |∇v|)p−2

≥ c

∫ 1

0

s ds

∫
B

|∇(u− v)|2(|∇u|+ |∇v|)p−2

≥ c

∫
B

|∇(u− v)|2(|∇u|+ |∇v|)p−2.

On the other hand, using the Hölder inequality, we have∫
B

|∇(u−v)|p ≤
(∫

B

|∇(u− v)|2(|∇u|+ |∇v|)p−2

)p/2 (∫
B

(|∇u|+ |∇v|)p
)1−p/2

,

hence ∫
B

|∇(u− v)|p ≤ C

(∫
B

χ{u=0}

)p/2 (∫
B

|∇u|p
)1−p/2

,(3.2)

where C = C(n, p) > 0 and we have used that
∫
B
|∇v|p ≤ ∫

B
|∇u|p.

We are now ready to prove the first result on the regularity of minimizers.

Lemma 3.1 Let u be a bounded absolute minimizer in B1. Then u is Cα regular
in B7/8 for some α = α(n, p) ∈ (0, 1) and

‖u‖Cα(B7/8) ≤ C(n, p, ‖u‖L∞(B1)).
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Proof. Let M = ‖u‖L∞(B1) and B = Br(y) with y ∈ B7/8 and 0 < r ≤ 1/16.
Since u is a p-subsolution, a Caccioppoli type inequality (see [9], Lemma 3.27)
implies that ∫

B

|∇u|p ≤ C

rp

∫
2B

up ≤ CMp rn−p,

where αB = Bαr(y). On the other hand, if v = vB is the p-harmonic function
with u− v ∈ W 1,p

0 (B), we have

sup
1
2B

|∇v| ≤
(
C

rn

∫
B

|∇v|p
)1/p

≤ CM

r

Now, let us take a small ε > 0, to be specified below, and 0 < r ≤ r0(ε) such
that rε ≤ 1/2. Then
‖∇u‖Lp(Br1+ε (y)) ≤ ‖∇(u− v)‖Lp(Br1+ε (y)) + ‖∇v‖Lp(Br1+ε (y))

≤ ‖∇(u− v)‖Lp(Br(y)) + Cr(1+ε)(n/p)‖∇v‖L∞(Br/2(y))

≤ C(M,n, p)
{

rn/p−(1−p/2) + r(1+ε)(n/p)−1, for 1 < p ≤ 2
rn/p + r(1+ε)(n/p)−1, for p ≥ 2 .

Thus, for ρ = r1+ε, we have

‖∇u‖Lp(Bρ(y)) ≤ C(M,n, p)ρn/p−(1−α),(3.3)

where α = α(n, p) > 0, if we take ε = ε(n, p) > 0 sufficiently small. Applying
Morrey’s theorem, see e.g. [14], Theorem 1.53, we conclude the proof of the
lemma. ✷

The next lemma is the main step in proving the Lipschitz regularity of
minimizers.

Lemma 3.2 Let u be a bounded absolute minimizer in B1 and u(0) = 0. Then
there exists a constant C = C(n, p) > 0 such that

‖u‖L∞(B1/4) ≤ C.

Proof. Indeed, assume the contrary. Then there exists a sequence of bounded
absolute minimizers uk in B1, k = 1, 2, . . ., such that

max
B1/4

uk(x) > k.

Set
dk(x) = dist(x, {uk = 0}) in B1

and define
Ok = {x ∈ B1 : dk(x) ≤ (1− |x|)/3}.

Observe that B1/4 ⊂ Ok. In particular

mk := sup
Ok

(1− |x|)uk(x) ≥ 34 maxB1/4

uk(x) >
3
4
k.
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Since uk(x) is bounded (for fixed k), we will have (1−|x|)uk(x)→ 0 as |x| → 1,
and therefore mk will be attained at some point xk ∈ Ok:

(1− |xk|)uk(xk) = max
Ok

(1− |x|)uk(x).(3.4)

Clearly,

uk(xk) =
mk

1− |xk| ≥ mk >
3
4
k.

Since xk ∈ Ok, by the definition we will have

dk := dk(xk) ≤ (1− |xk|)/3.(3.5)

Let now yk ∈ ∂{uk > 0} ∩B1 be such that

|yk − xk| = dk.(3.6)

The two inclusions

B2dk
(yk) ⊂ B1 and Bdk/2(yk) ⊂ Ok,

both follow from (3.5)-(3.6). In particular, for z ∈ Bdk/2(yk)

(1− |z|) ≥ (1− |xk|)− |xk − z| ≥ (1− |xk|)− (3/2)dk ≥ (1− |xk|)/2.
This, in conjunction with (3.4), implies that

max
Bdk/2(yk)

uk ≤ 2uk(xk).

Next, since Bdk
(xk) ⊂ {uk > 0}, uk satisfies ∆puk = 0 in Bdk

(xk). By the
Harnack inequality for p-harmonic functions there is a constant c = c(n, p) > 0
such that

min
B3dk/4(xk)

uk ≥ cuk(xk).

In particular,
max

Bdk/4(yk)
uk ≥ cuk(xk).

Consider now

wk(x) =
uk(yk + (dk/2)x)

uk(xk)
.

From the properties of uk above, we obtain

max
B1

wk ≤ 2, max
B1/2

wk ≥ c > 0, wk(0) = 0.(3.7)

We will also have that wk is an absolute minimizer of

Jk(w) =
∫

|∇w|p + λp
kχ{w>0}, λp

k =
dkλ

p

2uk(xk)
→ 0,
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in B1. Let now vk be such that vk − wk ∈ W 1,p
0 (B3/4) and ∆pvk = 0 in B3/4.

From the minimality of wk,∫
B3/4

(|∇wk|p + λp
kχ{wk>0}

) ≤
∫
B3/4

(|∇vk|p + λp
k).(3.8)

Arguing as in the proof of (3.1)–(3.2) and Lemma 3.1, we obtain that∫
B3/4

|∇(wk − vk)|p ≤ C(λp
k)→ 0(3.9)

and that wk and vk are uniformly Cα in B5/8. Thus we can extract subsequences
(still denoted by wk and vk) such that wk → w0 and vk → v0 in uniformly on
B5/8. Observe that ∆pv0 = 0 in B5/8 and that (3.9) implies that w0 ≡ v0 + c.
Hence ∆pw0 = 0 in B5/8. By the strong minimum principle w0 = 0 in B5/8,
since w0 ≥ 0 and w0(0) = 0. On the other hand, (3.7) implies

max
B1/2

w0 ≥ c > 0,

a contradiction.
The lemma is proved. ✷

Theorem 3.3 If u is a local minimizer in Ω, then u ∈ Lip (Ω). Moreover,
for every K ⊂⊂ Ω such that K ∩ ∂{u > 0} �= ∅ there exist a constant C =
C(n, p,dist (K, ∂Ω)) > 0 such that

‖∇u‖L∞(K) ≤ C.

Proof. The statement follows easily from Lemma 3.2. We refer to the proof of
Theorem 2.3 in [3] for more details. See also the proof of Theorem 2.1 in [6]. ✷

4 Nondegeneracy

As a simple corollary of Theorem 3.3 we obtain the following statement.

Lemma 4.1 For every K ⊂⊂ Ω there exists a constant C = C(n, p,dist (K, ∂Ω)) >
0 such that for any absolute (local) minimizer u

1
r
−
∫
∂Br

u > C implies u > 0 in Br

for any (small) ball Br ⊂ K.

Proof. Indeed, otherwise we will have that Br ⊂ K contains a free boundary
point and therefore, by Theorem 3.3, u ≤ Cr on ∂Br, a contradiction. ✷

Next we prove a key nondegeneracy lemma.
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Lemma 4.2 For any γ > p − 1 and 0 < κ < 1 there exists a constant c =
c(κ, γ, n, p) > 0 such that for every absolute (local) minimizer u and for any
(small) ball Br ⊂ Ω

1
r

(
−
∫
Br

uγ

)1/γ

< c implies u = 0 in Bκr.

Proof. Without loss of generality we may consider the case r = 1. Set

ε =
1√
κ
sup
B√

κ

u.

By the Harnack inequality for p-subharmonic functions (see Theorem 1.3 in [15])

ε ≤ C

(
−
∫
B1

uγ

)1/γ

.

Let φ(x) = φκ(|x|) be the solution of
∆pφ = 0 in B√

κ \Bκ, φ = 0 on ∂Bκ, φ = 1 on ∂B√
κ

and put φ = 0 on Bκ. Set v = ε
√
κφ in B√

κ. Then v ≥ u on ∂B√
κ and

w = min(u, v) is an admissible function. Therefore J(u) ≤ J(w), or equivalently∫
B√

κ

(|∇u|p + λpχ{u>0}
) ≤

∫
B√

κ\Bκ

(|∇w|p + λpχ{w>0}
)
.

Hence ∫
Bκ

(|∇u|p + λpχ{u>0}
) ≤

∫
B√

κ\Bκ

(|∇w|p − |∇u|p)

≤ p

∫
B√

κ\Bκ

|∇w|p−2∇w · ∇(w − u)

= −p

∫
∂Bk

|∇w|p−2(w − u)∇w · ν

= p

∫
∂Bκ

u|∇v|p−2∇v · ν.

Since also |∇v| ≤ Cε on ∂Bκ we find that∫
Bκ

(|∇u|p + λpχ{u>0}
) ≤ Cεp−1

∫
∂Bκ

u.

On the other hand∫
∂Bκ

u ≤ C(n, κ)
(∫

Bκ

u+
∫
Bκ

|∇u|
)

≤ C(n, κ, p)
(∫

Bκ

ε λpχ{u>0} +
∫
Bκ

(|∇u|p + λpχ{u>0}
))

≤ C(n, κ, p)(1 + ε)
∫
Bκ

(|∇u|p + λpχ{u>0}
)
.
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Therefore, if ε is small enough, we obtain u = 0 in Bκ. ✷

Corollary 4.3 For any K ⊂⊂ Ω there exist constants c, C > 0 such that if
Br(x) ⊂ K ∩ {u > 0} touches ∂{u > 0} then

cr ≤ u(x) ≤ Cr.

✷

Theorem 4.4 For any K ⊂⊂ Ω there exist a constant c = c(n, p,K,Ω), 0 <
c < 1 such that for any absolute (local) minimizer u and for any (small) ball
Br = Br(x) ⊂ K with x ∈ ∂{u > 0},

c <
Ln (Br ∩ {u > 0})

Ln(Br)
< 1− c.

Proof. By Lemma 4.2 there exists y ∈ Br/2 such that u(y) ≥ cr > 0. By
Lipschitz continuity, u > 0 in Bκr(y), for a small κ > 0, and thus the estimate
from below follows.
To prove the estimate from above, it is enough to consider the case r = 1.

Assume the contrary. Then there exists a sequence of absolute minimizers uk

in B1(0), such that 0 ∈ ∂{uk > 0} and
Ln({uk = 0}) =: εk → 0.

Let vk be such that vk −uk ∈ W 1,p
0 (B1/2) and ∆pvk = 0 in B1/2. Arguing as in

the proof (3.1)– (3.2), we obtain that∫
B1/2

|∇vk −∇uk|p ≤ C(εk)→ 0.

Since uk and vk are uniformly Lipschitz continuous in B1/4 we may assume that
uk → u0 and vk → v0 uniformly in B1/4. Observe that ∆pv0 = 0 and that the
estimate above implies that u0 = v0 + c. Hence ∆pu0 = 0 in B1/4 and from
the strong minimum principle it follows that u0 ≡ 0 in B1/4, since u0 ≥ 0 and
u0(0) = 0. On the other hand we know(

−
∫
B1/4

uγ
k

)1/γ

≥ c > 0, for γ > p− 1,

which implies a similar inequality for u0, a contradiction.
The theorem is proved. ✷

Remark 4.5 Theorem 4.4 implies that the free boundary ∂{u > 0} has Lebesgue
measure zero for every local minimizer. Moreover, it implies that for every
K ⊂⊂ Ω, the intersection ∂{u > 0} ∩K has Hausdorff dimension less than n.
In fact, to prove these statements, it is enough to use only the left-hand side
estimate in Theorem 4.4.
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5 The measure Λ = ∆pu

The main objective of this section is to show that for any absolute (local) min-
imizer u the free boundary is locally of finite perimeter. For that purpose, set

Λ = ∆pu.

Then Λ is a nonnegative Radon measure.

Theorem 5.1 For any K ⊂⊂ Ω there exist constants c, C > 0 such that for
any (local) minimizer u

crn−1 ≤
∫
Br

dΛ ≤ Crn−1

for any (small) ball Br = Br(x) ⊂ K with x ∈ ∂{u > 0}.
Proof. Let ζ ∈ C∞(Ω), ζ ≥ 0, be a test function. Then∫

Br

ζdΛ = −
∫
Br

|∇u|p−2∇u · ∇ζ.

Approximating χBr
by suitable test functions ζ we get that (for almost all r > 0)∫
Br

dΛ =
∫
∂Br

|∇u|p−2∇u · ν ≤ Crn−1,

where in the last step we used that u is Lipschitz continuous.
To prove the estimate from below, is enough to consider the case r = 1.

Assume the contrary. Thus there exists a sequence of absolute minimizers uk in
the unit ball B1(0) such that 0 ∈ ∂{uk > 0} and for the measures Λk = ∆puk∫

B1

dΛk =: εk → 0.

Since the functions uk are uniformly Lipschitz continuous, we may assume that
uk → u0 uniformly on B1/2, where u0 is Lipschitz continuous as well. Consider
then the uniformly bounded sequence gk = |∇uk|p−2∇uk. We may extract a
subsequence (still denoted by gk) such that gk → g0 star-weakly in B1/2. We
claim that g0 = |∇u0|p−2∇u0. Indeed, if Bρ = Bρ(y) ⊂ {u0 > 0} then one
can extract a subsequence of uk locally converging to u0 in C1,α(Bρ). Hence
g0 = |∇u0|p−2∇u0 in Bρ. Next, if Bρ ⊂ {u0 = 0}, uk = 0 in Bρ(1−δ) for
sufficiently large k ≥ k(δ); otherwise we will have

∫
Bρ

uγ
0 ≥ c(δ) for γ > p − 1.

Thus, g0 = 0 = |∇u0|p−2∇u0 in Bρ in this case as well. Finally, we show
that ∂{u0 > 0} ∩ B1/2 has vanishing Lebesgue measure. Indeed, every point
x0 ∈ ∂{u0 > 0} ∩ B1/2 is a limit of a sequence xk ∈ ∂{uk > 0} ∩ B1/2. Using
this we can prove that u0 satisfies the nondegeneracy condition(∫

Br(x0)

uγ
0

)1/γ

≥ crn
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for any ball Br(x0) ⊂ B1/2. Along with the Lipschitz continuity this is enough
to prove that Ln (Br(x0) ∩ {u0 > 0}) ≥ cLn (Br(x0)) for c > 0. This implies
that Ln(∂{u0 > 0}) = 0, see Remark 4.5.
Now, recall that |∇uk|p−2∇uk converges star-weakly to |∇u0|p−2∇u0 in

B1/2. Hence for every ζ ∈ C∞
0 (B1/2), ζ ≥ 0, one has∫

B1/2

|∇u0|p−2∇u0 · ∇ζ = − lim
k→∞

∫
B1/2

|∇uk|p−2∇uk · ∇ζ

or ∫
B1/2

ζdΛ0 = lim
k→∞

∫
B1/2

ζdΛk ≤ ‖ζ‖L∞(B1/2) limk→∞
εk = 0

Thus, Λ0 = 0 in B1/2, which means that u0 is p-harmonic. From the facts
u0 ≥ 0, u0(0) = 0, and the strong minimum principle, we infer u0 = 0 in
B1/2. On the other hand, since 0 ∈ ∂{uk > 0}, by nondegeneracy we have(∫

B1/4
uγ
k

)1/γ

≥ c > 0 and γ > p − 1, and therefore a similar inequality holds
for u0. Hence, we have reached a contradiction.
The theorem is proved. ✷

Theorem 5.2 Let u be a local minimizer in Ω. Then

(i) Hn−1(K ∩ ∂{u > 0}) < ∞ for every K ⊂⊂ Ω.
(ii) There is a Borel function qu such that

∆pu = quHn−1|−∂{u > 0},

that is for every ζ ∈ C∞
0 (Ω)

−
∫

Ω

|∇u|p−2∇u · ∇ζ =
∫

Ω∩∂{u>0}
ζ qudH

n−1.

(iii) For any K ⊂⊂ Ω there exist constants c, C > 0 such that

c ≤ qu(x) ≤ C, crn−1 ≤ Hn−1(Br(x) ∩ ∂{u > 0}) ≤ Crn−1

for every ball Br(x) ⊂ K with x ∈ ∂{u > 0}.
Proof. This follows easily from Theorem 5.1. For more details see the proof of
Theorem 4.5 in [2]. ✷

From (i) in Theorem 5.2 it follows that the set A = Ω ∩ {u > 0} has finite
perimeter locally in Ω, see [7], Chapter 4, in the sense that

µu = −∇χA

is a Borel measure and the total variation |µu| is a Radon measure. We define
the reduced boundary of A by

∂redA = {x ∈ Ω : |νu(x)| = 1},
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where νu(x) is the unique unit vector with∫
Br(x)

∣∣χA − χ{y:(y−x)·νu(x)<0}
∣∣ = o(rn),

if such vector exists, and νu(x) = 0 otherwise. In what follows, we will use some
results about sets of finite perimeter, mainly from [7], Chapter 4, such as

µu = νuHn−1|−∂red{u > 0}.

To proceed we will need the some properties of so-called blow-up limits. Let
u be a local minimizer in Ω, K ⊂⊂ Ω and Bρk

(xk) ⊂ K be a sequence of balls
with ρk → 0, xk → x0 ∈ Ω and u(xk) = 0. Consider then the blow-up sequence

uk(x) =
1
ρk

u(xk + ρkx).(5.1)

Since uk are uniformly Lipschitz continuous, for a subsequence,

uk → u0 in Cα
loc(R

n) for every 0 < α < 1,(5.2)
∇uk → ∇u0 star-weakly in L∞

loc(R
n),(5.3)

∂{uk > 0} → ∂{u0 > 0} locally in the Hausdorff distance,(5.4)
χ{uk>0} → χ{u0>0} in L1

loc(R
n).(5.5)

Moreover, if xk ∈ ∂{uk > 0} then x0 ∈ ∂{u0 > 0}. For the proof we refer to
Section 4.7 in [2] and pp. 19–20 in [3]; see also our proof of Theorem 5.1.
The following lemma is an analogue of Lemma 3.3 in [3], with the same

proof.

Lemma 5.3 The limit u0 of a blow-up sequence of u with respect to balls
Bρk
(xk), u(xk) = 0, is an absolute minimizer of J in any ball. ✷

Lemma 5.4 Let u be a local minimizer and x0 ∈ ∂{u > 0}. Then

lim sup
x→x0,u(x)>0

|∇u(x)| = 1.

Proof. Denote the lim sup by / and let the sequence yk → x0, u(yk) > 0, be such
that |∇u(yk)| → /. Set ρk = dist(yk, ∂{u > 0}) and let xk ∈ ∂Bρk

(yk) ∩ ∂{u >
0}. Consider then the blow-up sequence (5.1) and assume that (5.2)–(5.5) hold.
Also, assume that ek := (xk − yk)/|xk − yk| converges to the unit vector en.
Now, observe that 0 ∈ ∂{u0 > 0}, B1(−en) ⊂ {u0 > 0}, and

|∇u0| ≤ / in {u0 > 0}, |∇u0(−en)| = /.

This implies / > 0. Since u0 is also p-harmonic in {u0 > 0}, it is locally C1,α

there. In particular, there exists a small δ > 0 such that |∇u0| > //2 in Bδ(−en).
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If e denotes a unit vector such that ∇u0(−en) = |∇u0(−en)|e, the directional
derivative v = Deu0 will satisfy in Bδ(−en) an uniformly elliptic equation

Di(aijDjv) = 0, aij = |∇u0|p−2

(
δij + (p− 2)Diu0Dju0

|∇u0|2
)
.

By the strong maximum principle, we must have Deu0 = / in Bδ(−en), implying
that ∇u0 = /e. By continuation, we can prove that this is true in the whole
B1(−en). Therefore

u0(x) = /(x · e) + C in B1(−en).

Since u0(0) = 0 and u0 > 0 in B1(−en), we obtain that C = 0 and e = −en.
Thus,

u0(x) = −/ xn in B1(−en).

Using the continuation method one more time, we see that

u0(x) = −/ xn in {xn < 0}.(5.6)

Next, we claim that
u0 = 0 in {0 < xn < ε0}(5.7)

for some ε0 > 0. Indeed, let

s = lim sup
xn → 0+, x′ ∈ Rn

u(x′, xn) > 0

Dnu0(x′, xn).

Then s < ∞ since u0 is uniformly Lipschitz. Assume that s > 0. Consider a
sequence (zk, hk), hk → 0+, such that Dnu0(zk, hk)→ s. Arguing as above one
can show that the blow-up limit u00 of u0 with respect to the balls Bhk

(zk, 0)
satisfies

u00(x) = s xn in {xn > 0}.
On the other hand we have

u00(x) = −/ xn in {xn < 0}.

We have reached a contradiction, since by Lemma 5.3 u00 is a minimizer and
therefore by Theorem 4.4 the set {u00 = 0} must have positive density. Thus
s = 0 and consequently u0(x′, xn) = o(xn). Hence, for every ε > 0

1
r

(
−
∫
Br(x0)

uγ
0

)1/γ

< ε

for any x0 = (z0, h0), r = h0, if h0 is small enough. But then the nondegeneracy
lemma (Lemma 4.2) implies that u0 = 0 in some strip {0 < xn < ε0}.
Having proved (5.6) and (5.7), we deduce from Theorem 2.1 that / = 1. ✷
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Theorem 5.5 Let x0 ∈ ∂red{u > 0} and suppose that the upper Hn−1-density
satisfies

Θ∗n−1
(
Hn−1|−∂{u > 0}, x0

)
≤ 1.

Then the topological tangent plane Tan(∂{u > 0}, x0) of ∂{u > 0} at x0 is given
by {x : x · νu(x0) = 0}. If, in addition,∫

Br(x0)∩∂{u>0}
|qu − qu(x0)|dHn−1 = o(rn−1), as r → 0,

then qu(x0) = 1 and

u(x0 + x) = (−x · νu(x0))+ + o(|x|), as x → 0.

For definitions of Θ∗m(µ, a) and Tan(S, a) see [7], 2.10.19 and 3.1.21.

Proof. Without loss of generality assume νu(x0) = en. Consider then the blow-
up limit u0 of u with respect to the sequence of balls Bρk

(x0), ρk → 0. Using
that x0 ∈ ∂red{u > 0} and that the upper Hn−1-density of ∂{u > 0} at x0 does
not exceed 1, precisely as in the proofs of Theorem 4.8 in [2] and Theorem 3.5
in [3], one can show that u0 > 0 in {xn < 0} and u0 = 0 on {xn > 0}. As a
consequence, {xn = 0} is the tangent space to ∂{u > 0} at x0.
To prove the second part of the theorem, we again repeat the arguments

from [3] and obtain that

|∇u0|p−2∇u0 · en = qu(x0) on {xn = 0}

in the sense that

−
∫
Br∩{xn<0}

|∇u0|p−2∇u0 · ∇ζ = qu(x0)
∫
B′

r

ζ(x′, 0) dHn−1

for every ζ ∈ C1
0 (Br). Since ∆pu0 = 0 in {xn < 0}, from the boundary regularity

it follows that the boundary condition above is satisfied in the classical sense.
Hence from the Lemma 5.4 we obtain qu(x0) = 1.
Finally, we need to show that u0 = (−xn)+. Define the function w0 by

w0(x) =
{

u0(x) in {xn < 0}
−u0(x∗) in {xn > 0},

where x∗ = (x′,−xn) for x = (x′, xn). It is easy to see that w0 is p-harmonic in
the whole Rn. Observe now, since |∇u0| ≤ 1 in {xn < 0} by Lemma 5.4,

|∇w0| ≤ 1 in Rn.

On the other hand,
Dnw0 = −1 on {xn = 0}.
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In a small ball Bδ(0), we have |∇w0| > 1/2, hence Dnw0 satisfies a uniformly
elliptic equation in divergence form and from the strong comparison principle
we infer that

Dnw0 = −1 in Bδ(0).

By continuation, we can prove that, in fact,

Dnw0 = −1 in Rn.

This implies that w0 = −xn in Rn, or equivalently, u0 = (−xn)+ in Rn. The
proof is complete. ✷

Theorem 5.6 For Hn−1 a.e. x in ∂red{u > 0}
qu(x) = 1.

Since also Hn−1(∂{u > 0}\∂red{u > 0}) = 0 (from the positive density property)

∆pu = Hn−1|−∂red{u > 0}

for any local minimizer u in Ω.

Proof. Just observe that the condition on qu in Theorem 5.5 is satisfied for
Hn−1 a.e. x0 ∈ ∂red{u > 0}. This follows from [7], 4.5.6(2) and [7], 2.9.8, 2.9.9
applied to Hn−1 on ∂{u > 0} and the Vitali relation

{(x,Br(x)) : x ∈ ∂{u > 0} and Br(x) ⊂⊂ Ω}.
✷

6 Flatness and nondegeneracy of the gradient

We define the relevant flatness classes as in [3], Definition 5.1.

Definition 6.1 Let 0 ≤ σ+, σ− ≤ 1 and τ > 0. We say that u belongs to
the class F (σ+, σ−; τ) in Bρ = Bρ(0) if u is a local minimizer in Bρ with
0 ∈ ∂{u > 0}, and

u(x) = 0 for xn ≥ σ+ρ,
u(x) ≥ −(xn + σ−ρ) for xn ≤ −σ−ρ,
|∇u| ≤ 1 + τ in Bρ.

(6.1)

More generally, changing the direction en by ν and the origin by x0 in the
definition above, we obtain the flatness class F (σ+, σ−; τ) in Bρ(x0) in direction
ν.

Remark 6.2 If x0 ∈ ∂red{u > 0} ∩ Ω then u ∈ F (σρ, 1;∞) in Bρ(x0) in direc-
tion ν0 = νu(x0) with σρ → 0 as ρ → 0. This follows from the fact that any
blow-up u0 at x0 vanishes on {x : x · ν0 ≥ 0}.
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The following two theorems play an important role in the iteration process
of proving the C1,α regularity of the free boundary.

Theorem 6.3 There exists σ0 > 0 and C0 > 0 such that

u ∈ F (σ, 1;σ) in B1 implies u ∈ F (2σ,C0σ;σ) in B1/2

for 0 < σ < σ0.

Theorem 6.4 For every δ > 0 there exists σδ > 0 and Cδ > 0 such that

u ∈ F (σ, 1;σ) in B1 implies |∇u| ≥ 1− δ in B1/2 ∩ {xn ≤ −Cδσ}
for 0 < σ < σδ.

We first prove the following weak forms of the theorems.

Lemma 6.5 For every ε > 0 there exists σε > 0 such that

u ∈ F (σ, 1;σ) in B1 implies u ∈ F (2σ, ε;σ) in B1/2

for 0 < σ < σε.

Lemma 6.6 For every ε > 0 and δ > 0 there exists σε,δ > 0 such that

u ∈ F (σ, 1;σ) in B1 implies |∇u| ≥ 1− δ in B1/2 ∩ {xn ≤ −ε}
for 0 < σ < σε,δ

Proof of Lemma 6.5. We use the following construction from [2, 3]. Let

η(y) = exp
(
− 9|y|2
1− 9|y|2

)
for |y| < 1/3 and η(y) = 0 for |y| ≥ 1/3, and choose s ≥ 0 maximal such that

B1 ∩ {u > 0} ⊂ D := {x ∈ B1 : xn < σ − sη(x′)},
where x = (x′, xn). Hence there exists a point

z ∈ B1/2 ∩ ∂D ∩ ∂{u > 0}.
Observe also that s ≤ σ since 0 ∈ ∂{u > 0}.
Now, let ξ ∈ ∂B3/4 and ξn ≤ −1/2. We want to prove an estimate for u(ξ)

from below. Consider the solution v = vκ,ρ of

∆pv = 0 in D \Bρ(ξ),
v = 0 on ∂D ∩B1,
v = (1 + σ)(σ − xn) on ∂D \B1,
v = −(1− κσ)xn on ∂Bρ(ξ),
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where κ > 0 is a large and ρ > 0 is a small constant to be chosen later. We
claim that for large κ = κ(ρ)

u(xξ) ≥ v(ξ) for some xξ ∈ ∂Bρ(ξ).(6.2)

Indeed, otherwise u ≤ v on ∂(D \Bρ(ξ)) and, by the comparison principle, also
u ≤ v on D \ Bρ(ξ). Then the contradiction follows from the following two
statements, applied at the point z.

Claim 6.7 If B is a ball in {u = 0} touching ∂{u > 0} at x0, then

lim sup
x→x0

u(x)
dist (x,B)

= 1.

Claim 6.8 The function v = vκ constructed above satisfies

|∇v(z)| ≤ 1 + Cσ − cκσ for z ∈ B1/2 ∩ (∂D \ ∂B1)

for some positive constants C = C(ρ) and c = c(ρ) and if 0 < σ < σ(κ, ρ).

We postpone the proofs of these claims for a moment.

Now, choose κ = κ(ρ) > C(ρ)/c(ρ) and σ < σ(κ(ρ), ρ). Then (6.2) holds
and

u(ξ) ≥ u(xξ)− ρ(1 + σ) ≥ v(xξ)− ρ(1 + σ)
= −(1− κσ)(xξ)n − ρ(1 + σ) ≥ −(xξ)n − κσ − 2ρ ≥ −ξn − 4ρ

for σ < σ(ρ) sufficiently small. That is, we get

u(ξ) ≥ −ξn − 4ρ on {ξ ∈ ∂B3/4, ξn < −1/2}.(6.3)

Integrating along vertical lines and using that |∇u| ≤ 1 + σ we obtain

u(ξ + αen) ≥ u(ξ)− α(1 + σ) ≥ −ξn − 4ρ− α− ασ ≥ −(ξn + α)− 5ρ
for σ < σ(ρ). Choosing ρ = ε/10, we complete the proof of Lemma 6.5. ✷

Proof of Lemma 6.6. Assume the contrary. Then there exists a sequence
uk ∈ F (1/k, 1; 1/k) such that

|∇uk(xk)| ≤ 1− δ for some xk ∈ B1/2 ∩ {xn ≤ −ε}.
Letting k → ∞ we obtain from Lemma 6.5 that

uk(x)→ u0(x) = −xn uniformly on B3/4.

Moreover, on the positivity set {u0 > 0} = {xn < 0} the convergence is locally
C1,α. This implies that if a subsequence of xk converges to x0 ∈ B1/2 ∩ {xn ≤
−ε}, then |∇u0(x0)| ≤ 1− δ, which contradicts to the fact that |∇u0| = 1. ✷
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Proof of Theorem 6.3. We revisit the proof of Lemma 6.5. Choose ρ = 1/10
and κ = κ(ρ) so that (6.2) holds. We can refine the estimate (6.3) as follows.
Set

w(x) = (1 + σ)(σ − xn)− u(x).

Then u ∈ F (σ, 1;σ) implies that w(x) ≥ 0 in B2ρ(ξ) and

w(xξ) ≤ −(xξ)n − v(xξ) + Cσ ≤ Cσ.

For σ sufficiently small we know from Lemma 6.6 that |∇u| > 1/2, so u will
satisfy the linearized equation

Luu = aijDiju = 0,

where
aij = δij + (p− 2)DiuDju

|Du|2
Observe that the ellipticity constant of Lu is λ = λ(p) = max{p− 1, 1/(p− 1)}.
As a consequence w will satisfy the equation

Luw = 0.

Applying the Harnack inequality we obtain that

w(ξ) ≤ Cw(xξ) ≤ Cσ

or
u(ξ) ≥ −ξn − Cσ on {ξ ∈ ∂B3/4, ξn ≤ −1/2}.

Integrating along vertical lines and using that |∇u| ≤ 1 + σ, we conclude that

u(ξ + αen) ≥ u(ξ)− (1 + σ)α ≥ −(ξn + α)− Cσ,

which implies that u ∈ F (2σ,Cσ;σ) in B1/2. ✷

Proof of Theorem 6.4. Assume the contrary. Then there exists a sequence
σk → 0 and uk ∈ F (σk, 1;σk) such that

|∇uk(xk)| ≤ 1− δ for some xk ∈ B1/2 ∩ {xn ≤ −kσk}.

Let dk = dist (xk, ∂{uk > 0}) and yk ∈ ∂{uk > 0} be such that |xk − yk| = dk.
From Theorem 6.3 it follows that dk ≥ (k − C0)σk. Define now

ũk(x) =
uk(yk + 2dkx)

2dk
, x̃k =

xk − yk

2dk
.

Then one can easily verify that

ũk ∈ F ((C0 + 1)/2(k − C0), 1;σk) in B1,
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|x̃k| = 1
2
, (x̃k)n ≤ −1

2
(1− (C0 + 1)/(k − C0)),

and
|∇ũk(x̃k)| ≤ 1− δ.

This contradicts to Lemma 6.6. The proof is complete. ✷

We now prove the claims stated in the proof of Lemma 6.5.

Proof of Claim 6.7. Denote

/ = lim sup
x→x0

u(x)/dist (x,B)

and let the sequence xk → x0 be such that u(xk) > 0 and

u(xk)
dk

→ /,

where dk = dist (xk, B). Moreover, let yk ∈ ∂B be such that |xk − yk| = dk. By
nondegeneracy / > 0. Consider now a blow-up sequence

uk(x) =
u(yk + dkx)

dk

and assume that for a subsequence

(xk − yk)/dk → e, uk → u0.

We claim that
u0(x) = /(x · e)+.

Indeed, by construction u0(x) = 0 when x·e ≤ 0, u0(x) ≤ /(x·e) when x·e > 0,
and u0(e) = /. Both u0(x) and /(x · e)+ are p-harmonic in {u0 > 0} and from
the strong maximum principle (applicable here since / > 0) it follows that they
must coincide.
The only constant / for which u0 can have the form /(x · e)+ is / = 1 and

the proof is complete. ✷

Proof of Claim 6.8. The idea of the proof is to construct an explicit p-
superharmonic function w in D \Bρ(ξ) to estimate v. Observe that if |∇w| > 0,
then w will be p-superharmonic if we can verify that

aijDijw ≤ 0
for any positive matrix aij of ellipticity λ = λ(p) = max{1/(p− 1), p− 1}, i.e. if

λ−1|ζ|2 ≤ aijζiζj ≤ λ|ζ|2 for every ζ ∈ Rn.

Indeed, taking

aij = δij + (p− 2)DiwDjw

|Dw|2 ,
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we obtain that w satisfies Lw(w) ≤ 0 for the linearized p-Laplacian and hence
w is p-superharmonic.
We construct w in the form v1 − κσv2 with v1, v2 defined as follows. First

v1 =
γ1

µ1
(1− exp(−µ1d1)) in D,

where
d1(x) = −xn + σ − sη(x′),

and with positive constants µ1, γ1 depending on σ. Then

1 ≤ |∇d1| ≤ 1 + Cσ, |D2d1| ≤ Cσ.

Hence, if aij is a positive matrix of ellipticity λ(p)

aijDijv1 = γ1 exp(−µ1d1)aij(Dijd1 − µ1Did1Djd1)
≤ γ1 exp(−µ1d1)(Cσ − cµ1) < 0(6.4)

if
µ1 = C1σ, C1 large enough.

Next, if γ1 = 1 + C2σ, C2 large enough and σ small, we obtain for x ∈ D

v1(x) ≥ γ1d1(x)(1− Cµ1) ≥ (1 + 2σ)d1(x),(6.5)

(1 + 2σ)d1(x) ≥ v(x) for x ∈ ∂(D \Bρ(ξ)),

and
|∇v1(x)| = γ1 exp(−µ1d1)|∇d1| ≥ γ1(1− 2µ1) ≥ 1.(6.6)

The inequality (6.4) implies that v1 is p-superharmonic in D and therefore the
maximum principle yields

v1 ≥ v in D \Bρ(ξ).

At the point z ∈ B1/2 ∩ (∂D \ ∂B1) we compute

|∇v1(z)| = γ1|∇d1| ≤ 1 + Cσ.

We define v2 depending on Bρ(ξ) by

v2 =
γ2

µ2
(exp(µ2d2)− 1) in D̃ \Bρ(ξ),

with constants γ2, µ2 to be specified later. Here D̃ ⊂ D is a domain with smooth
boundary containing

D \B1/10(∂B′
1 × {0}),

and d2 is a function in C2(D \Bρ(ξ)) satisfying

d2 = 0 on ∂D̃,
d2 = 1 on ∂Bρ(ξ),

C ≥ |∇d2| ≥ c > 0 in D̃ \Bρ(ξ).



Danielli and Petrosyan, A minimum problem with free boundary 21

Thus, for any matrix aij of ellipticity λ(p)

aijDijv2 = γ2 exp(µ2d2)aij(Dijd2 + µ2Did2Djd2)
≥ γ2 exp(µ2d2)(−C + cµ2) > 0(6.7)

if µ2 is large enough. Then choose γ2 such that

v2 = 1 on ∂Bρ(ξ),

or explicitly
γ2 =

µ2

exp(µ2)− 1 .

In D̃ \Bρ(ξ) we have

|∇v2| = γ2 exp(µ2d2)|∇d2| ≤ C

and at the point z
|∇v2(z)| = γ2|∇d2(z)| ≥ c > 0.

Thus the function
w = v1 − κσv2

satisfies aijDijw ≤ 0 in D̃ \Bρ(ξ) with

w = v1 ≥ v on ∂D̃,

and for x ∈ ∂Bρ(ξ)

w(x) ≥ d1(x)− κσ ≥ −(1− κσ)xn = v(x).

Also, the gradient of w is not degenerate since

|∇w| ≥ |∇v1| − κσ|∇v2| ≥ 1− Cκσ > 0

if σ < σ(κ) is small enough. We conclude that w is p-superharmonic and the
comparison principle yields w ≥ v in D̃ \Bρ(ξ). In particular,

|∇v(z)| ≤ |∇w(z)| = |∇v1(z)| − κσ|∇v2(z)| ≤ 1 + Cσ − cκσ.

The claim is proved. ✷

7 Gradient estimates

Theorem 7.1 Let u be a local minimizer. For any D ⊂⊂ Ω and a ball Br(x) ⊂
D such that Br(x) ∩ ∂{u > 0} is nonempty,

sup
Br(x)

|∇u| ≤ 1 + Crα

with C > 0, 0 < α < 1 (depending only on D, Ω, n, p.)



22 Danielli and Petrosyan, A minimum problem with free boundary

Proof. For any ε > 0 consider the function

Uε = (|∇u|2 − 1− ε)+

Observe that it vanishes in a neighborhood of the free boundary. Since Uε > 0
implies |∇u| > 1 + ε, the closure of {Uε > 0} is contained in {|∇u| > 1 + ε/2}.
The function u satisfies the linearized p-Laplace equation

Lu(u) = aij(∇u)Diju ≥ 0, aij(∇u) = δij + (p− 2)DiuDju

|∇u|2 ,

which is λ(p)-uniformly elliptic in {|∇u| > 1+ε/2}. Hence, by [8], Section 13.3,
the function v = |∇u|2 satisfies

M(v) = Di(eγvaij(∇u)Djv) ≥ 0 in {|∇u| > 1 + ε/2},
where γ = γ(p, ‖∇u‖L∞(Ω)) is some positive constant, and so Uε satisfies

M(Uε) ≥ 0 in {|∇u| > 1 + ε/2}.
Extending the operator M with the uniformly elliptic divergence-form operator

M̃(w) = Di(ãij(x)Djw) in Ω

with measurable coefficients such that

ãij(x) = eγv(x)aij(∇u(x)) in {|∇u| > 1 + ε/2},
we obtain

M̃(Uε) ≥ 0 in Ω.
For any r > 0 set

hε(r) = sup
Br

Uε

where the origin is taken to be on the free boundary. Then hε(r) − Uε is M̃ -
supersolution in Br, and

hε(r)− Uε ≥ 0 in Br

= hε(r) in Br ∩ {u ≡ 0}.
By [8], Theorem 8.18, with 1 ≤ q < n/(n− 2),

inf
Br/2

(hε(r)− Uε) ≥ cr−n/q‖hε(r)− Uε‖Lq(Br) ≥ chε(r),

since |Br ∩ {u ≡ 0}| ≥ crn by the positive density property. Taking ε → 0 we
get

inf
Br/2

(h0(r)− U0) ≥ ch0(r) (0 < c < 1)

or
sup
Br/2

U0 ≤ (1− c)h0(r).
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In conclusion
h0(r/2) ≤ (1− c)h(r)

and by a standard argument we deduce that h0(r) ≤ Crα for some C > 0 and
0 < α < 1. This completes the proof of the theorem.

✷

8 Nonhomogeneous blow-up

Lemma 8.1 Let uk ∈ F (σk, σk; τk) in Bρk
with σk → 0, τkσ

−2
k → 0. For

y ∈ B′
1, set

f+
k (y) = sup{h : (ρky, σkρkh) ∈ ∂{uk > 0}},
f−
k (y) = inf{h : (ρky, σkρkh) ∈ ∂{uk > 0}}.

Then, for a subsequence,

f(y) := lim sup
z → y
k → ∞

f+
k (z) = lim inf

z → y
k → ∞

f−
k (z) for all y ∈ B′

1.

Further, f+
k → f , f−

k → f uniformly, f(0) = 0, and f is continuous.

This is the analogue of Lemma 5.3 in [3]. The proof is based on Theorem 6.3
and is identical to the one of Lemma 7.3 in [2].

Lemma 8.2 f is subharmonic.

The proof is identical to the one of Lemma 5.4 in [3].

Lemma 8.3 There exists a positive constant C such that, for any y ∈ B′
r/2,∫

0

1
r2

(
−
∫
∂B′

r(y)

f − f(y)

)
≤ C

Proof. The proof below is a modification of that of Lemmas 5.6–5.7 in [3]. It
should be pointed out that Theorem 6.4 is used in an essential way.
With no loss of generality we assume ρk = 1. Also, it suffices to prove the

lemma for y = 0, since uk ∈ F (8σk, 8σk; τk) in B1/4(y, σkf
+
k (y)).

Set

wk(y, h) =
uk(y, h) + h

σk
.

Since the free boundary of uk lies in the strip |xn| ≤ σk, |∇uk| ≤ 1+τk, τk ≤ σk,
and we have wk ≤ C in B−

1 . The flatness assumption also implies that wk ≥ −C
in B−

1 , and thus
|wk| ≤ C in B−

1 .
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Claim 8.4 For a subsequence,

lim
k→∞

wk =: w exists everywhere in B−
1 .

The convergence is uniform in compact subsets of B−
1 , and w satisfies

aij(en)Dijw =
n−1∑
i=1

Diiw + (p− 1)Dnnw = 0 in B−
1 ,(8.1)

w(0, h) ≤ 0,(8.2)

w(y, 0) = f(y)(8.3)

in the sense that limh→0− w(y, h) = f(y),

|w| ≤ C.(8.4)

Once we prove this claim, the lemma will follow by Lemma 5.5 in [3] after
applying an affine transformation. ✷

Proof of Claim 8.4. By Theorem 6.4 we know that

|∇uk| ≥ 1/2 in B1 ∩ {h ≤ −C0σk}(8.5)

for σk sufficiently small. Then uk satisfies

aij(∇uk)Dijuk = 0, aij(∇uk) = δij + (p− 2)DiukDjuk

|∇uk|2

for h ≤ −C0σk. Therefore, we have

aij(∇uk)Dijwk = 0 in B1 ∩ {h ≤ −C0σk}.
From the flatness assumption it is clear that, for a subsequence,

uk(y, h)→ −h

in C2 in compact subsets of B−
1 . Also, we may assume

wk → w

in C2 in compact subsets of B−
1 and that w satisfies (8.1). Clearly, (8.4) is also

valid. Also, since

−Dnwk = − 1
σk
(Dnuk + 1) ≤ |∇uk| − 1

σk
≤ τk

σk
(8.6)

and wk(0, 0) = 0, we obtain for h ≤ 0

wk(0, h) ≤ |h| τk
σk

→ 0.
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Thus w(0, h) ≤ 0 and (8.2) follows.
It remains to prove (8.3). First we show that for any small δ > 0 and a large

constant K

wk(y, hσk)→ f(y) uniformly for y ∈ B′
1−δ, −K ≤ h ≤ −1.(8.7)

By Lemma 8.1 it suffices to prove that

wk(y, hσk)− f+
k (y)→ 0.(8.8)

From (8.6) we obtain

wk(y, hσk)− f+
k (y) ≤ wk(y, σkf

+
k (y))− f+

k (y) + (f
+
k (y)− h)

τk
σk

= (f+
k (y)− h)

τk
σk

≤ (1 +K)
τk
σk

→ 0.

To show (8.8) from below, take a sequence yk ∈ B′
1−δ, −K ≤ hk ≤ −C0 and

consider uk in BRσk
(xk), where xk is the free boundary point

xk = (yk, σkf
+
k (yk))

and R is a large constant. We know that

uk ∈ F (δ̃k, 1; τk) in BRσk
(xk),

if
δ̃k =

1
R
sup

B′
Rσk

(yk)

(f+
k − f+

k (yk)).

Notice that δ̃k → 0 by Lemma 8.1. From Theorem 6.3 we have

uk ∈ F (2δk, Cδk; τk) in B(R/2)σk
(xk)

for
δk = max(δ̃k, τk).

Hence for any h with |h| ≤ R/2

uk(xk + hσken) ≥ −(hσk + Cδk(R/2)σk)

for h ≤ −C(R/2)δk. In other words,

wk(xk + hσken)− f+
k (yk) =

uk(xk + hσken) + hσk

σk
≥ −C(R/2)δk → 0.

This proves (8.8). Next, for ε > 0 choose a C3 function gε such that

f − 2ε ≤ gε ≤ f − ε on B′
1,(8.9)
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and let uε solve

aij(en)Dijuε = 1 in B−
1 ,

uε = gε on ∂B−
1−δ ∩ {h = 0},

uε = inf
B−

1

w on ∂B−
1−δ ∩ {h < 0},

with δ as in (8.7). By (8.7) and (8.9),

wk > uε on ∂(B−
1−δ ∩ {h < −Kσk})(8.10)

for any large K (independent of ε and δ) and k ≥ k(ε, δ,K) sufficiently large.
Assume also K > C0, where C0 is as in (8.5). The function wk is bounded and
satisfies a λ(p)-uniformly elliptic equation in B−

1 ∩ {h ≤ −C0σk}. By elliptic
estimates we deduce that

|∇wk| ≤ C

(K − C0)σk
in B−

1−δ ∩ {h ≤ −Kσk},

where C is independent of k, K. Hence

aij(∇uk)Dijuε = (aij(∇uk)− aij(−en))Dijuε + 1

≥ 1− C

K
‖uε‖C1,1(B−

1−δ
) > 0 in B

−
1−δ ∩ {h < −Kσk},

if K = K(δ, ε) is sufficiently large. Thus

aij(∇uk)Dijuε > aij(∇uk)Dijwk in B−
1−δ ∩ {h < −Kσk},

and recalling (8.10) we obtain that uε ≤ wk in B−
1−δ ∩{h < −Kσk} if k is large

enough. It follows now that w(y, h) ≥ uε(y, h) in B−
1−δ and consequently,

lim inf
h→0−

w(y, h) ≥ f(y)− 2ε.

Similarly, working with the solution of

aij(en)Dij ũε = 1 in B−
1 ,

ũε = g̃ε on ∂B−
1−δ ∩ {h = 0},

ũε = sup
B−

1

w on ∂B−
1−δ ∩ {h < 0}

for g̃ε satisfying f + ε < g̃ε < f + 2ε, we obtain

lim sup
h→0−

w(y, h) ≤ f(y) + 2ε.

Since ε is arbitrary, (8.3) follows. ✷
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9 Regularity of the free boundary

Everything is now ready to prove the C1,α regularity of the free boundary near
flat points.

Theorem 9.1 Suppose u is a local minimizer and D ⊂⊂ Ω. Then there exist
positive constants α, β, σ0, τ0, C such that if

u ∈ F (σ, 1;∞) in Bρ(x0) ⊂ D in direction ν

with σ ≤ σ0, ρ ≤ τ0 σ
2/β, then

Bρ/4(x0) ∩ ∂{u > 0} is a C1,α surface.

More precisely, Bρ/4(x0)∩∂{u > 0} is a graph in direction ν of a C1,α function,
and for any x1, x2 on this surface,

|ν(x1)− ν(x2)| ≤ Cσ

∣∣∣∣x1 − x2

ρ

∣∣∣∣α .

Proof. The proof follows the same scheme as the proof of Theorem 8.1 in [2].
Assume for a moment that Bρ(x0) = B1 and ν = en. Then Lemma 8.3 implies
C(n, p)-Lipschitz regularity and then “better than” Lipschitz regularity of f ,
precisely as in [2], Lemmas 7.7 and 7.8. Namely, we have that there exists a large
constant C = C(n, p) < ∞ and for any θ > 0 a small constant cθ = cθ(n, p) > 0
such that we can find a ball B′

r and a vector l ∈ Rn−1 with

cθ ≤ r ≤ θ, |l| ≤ C and f(y) ≤ l · y + (θ/2)r, for y ∈ B′
r.

This, in conjunction with Theorem 6.3 and the proof of Theorem 7.1, implies
the flatness improvement in a smaller ball: if

u ∈ F (σ, 1; τ) in Bρ(x0) in direction ν

with σ < σ0 and τ ≤ σ0 σ
2 for sufficiently small σ0, then

u ∈ F (θσ, θσ; θ2τ) in Bρ̄(x0) in direction ν̄

for some ρ̄, ν̄ with cθρ ≤ ρ̄ ≤ ρ/4 and |ν̄ − ν| < Cθ, see Lemmas 7.9 and
7.10 in [2]. Finally, using Theorem 7.1 and iteratively applying the flatness
improvement, we conclude the proof as in Theorem 8.1 in [2]. ✷

Corollary 9.2 Let u be a local minimizer. Then ∂red{u > 0} is an analytic
surface locally in Ω and the remainder of ∂{u > 0} has Hn−1 measure 0.

Proof. The C1,α regularity of ∂red{u > 0} follows from Theorem 9.1 and Re-
mark 6.2. Once we have C1,α regularity, it follows that ∆pu = div(|∇u|p−2∇u)
is uniformly elliptic locally near ∂red{u > 0} and we obtain the analyticity by
[12]. ✷
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