
A Mininet-based Virtual Testbed for
Distributed SDN Development

Bob Lantz, Brian O’Connor
Open Networking Laboratory, Menlo Park, CA

lantz@onlab.us, bocon@onlab.us

ABSTRACT
The need for fault tolerance and scalability is leading to the
development of distributed SDN operating systems and ap-
plications. But how can you develop such systems and appli-
cations reliably without access to an expensive testbed? We
continue to observe SDN development practices using full
system virtualization or heavyweight containers, increasing
complexity and overhead while decreasing usability. We demon-
strate a simpler and more efficient approach: using Mininet’s
cluster mode to easily deploy a virtual testbed of lightweight
containers on a single machine, an ad hoc cluster, or a ded-
icated hardware testbed. By adding an open source, dis-
tributed network operating system such as ONOS, we can
create a flexible and scalable open source development plat-
form for distributed SDN system and application software
development.

CCS Concepts
•Networks→ Network simulations; •Computing method-
ologies→ Distributed simulation; Interactive simulation; Simu-
lation environments;

Keywords
Mininet; container based emulation; software defined net-
working; SDN; network OS; distributed systems

1. INTRODUCTION
The Fat Testbed Problem. Since 2013, we have observed

that many users, developers, and testers of distributed SDN
controllers and applications have constructed virtual testbeds
using full machine virtualization and/or heavyweight con-
tainers, often for hosting the network OS or applications. This
approach adds complexity and overhead, reducing both the
usability and the scalability of the development platform.

In such a fat testbed, an additional (and, we argue, largely
unnecessary) orchestration system may be required, such as
OpenStack, Vagrant, or Docker. VMs and heavyweight con-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOI: http://dx.doi.org/10.1145/2785956.2790030

tainers consume significant hardware resources and frequently
require complicated management. We believe there is a bet-
ter way: using Mininet [1] to dynamically create virtual testbeds
on the fly.

2. A MININET-BASED VIRTUAL TESTBED
Mininet already has the capability of creating containers as

well as the network from a single, simple Python API. Using
Mininet avoids the need for installing, configuring and ad-
ministering multiple orchestration systems. Moreover, Mininet
hosts do not run unnecessary extra software such as multi-
ple kernels or daemons, and they do not require unwieldy,
bulky virtual file system images. To support configurations
that exceed the resources of a single server, Mininet’s experi-
mental cluster support may be used to easily and seamlessly
distribute the virtual testbed across multiple physical (or vir-
tual) servers.

Just Enough Virtualization. By default, Mininet hosts are
simply process groups connected to virtual Ethernet inter-
faces using Linux’s network namespace feature. (Since Mininet
2.2, private mount namespaces have also been enabled by de-
fault, though this may become optional in the future.)

To make creation of a virtual testbed more convenient, we
add a Server class which extends Mininet’s Host class to en-
able slightly more virtualization on by default, including:

• Copy-on-write directories (e.g. /var/run, /etc) imple-
mented using overlayfs

• A private PID space (PID namespace)
• Private utmp/wtmp/btmp

• Optional customized hostname (UTS namespace)

In addition, Servers can automatically run sshd for remote
login, and we can run dnsmasq to provide DNS service for the
virtual cluster if desired.

Most software can be run on unmodified Mininet hosts by
simply using custom command line arguments (for example,
specifying a local configuration file), but these changes make
it easier and more convenient to deploy software onto the
virtual testbed using the same scripts and configuration files
which are used on a hardware testbed, without adding the
computational, storage, and administrative overhead of vir-
tual disk images, unnecessary daemons, or multiple kernels.
Copy-on-write directories may either be temporary tmpfs file
systems or may persist across runs as desired.

Cluster Support. Several distributed Mininet systems have
been implemented, the most mature of them being Philip

365

http://dx.doi.org/10.1145/2785956.2790030

Wette’s Maxinet [2]. Since version 2.2, Mininet has itself in-
cluded experimental support for simple execution on a clus-
ter, including:

• A single console for control of a distributed experiment
• Support for the existing Mininet API with minimal al-

teration
• A simple --cluster option to create a distributed testbed
• Automatic node placement and tunnel creation
• Pluggable placement algorithms

Figure 1 shows a sample Mininet cluster, and figure 2 shows
the code and/or commands which are used to create it.

Mininet’s experimental cluster support requires minimal
setup and configuration, making it well-suited for ad hoc
networks such as a collection of student laptops or a cluster
of physical or virtual machines that might only be available
for a short time due to sharing or cost constraints.

A Mininet-based virtual testbed can flexibly support a num-
ber of use cases and run on a wide range of hardware config-
urations, anything from a single user’s laptop to an ad hoc
cluster of machines to a dedicated hardware testbed.

3. DEMONSTRATION
For our demonstration, we will show how an ad hoc clus-

ter of rather ordinary computers (laptops and Raspberry Pi
2s) can be easily transformed into a distributed SDN testbed
for development, research, experimentation, demonstration
and other purposes. This simple testbed will contain hun-
dreds of nodes running real application, switch, and network
OS code – a configuration that is linearly larger in capac-
ity than what Mininet supports on a single system. If time

 switches hosts Mininet servers

— cross-server tunnels — virtual Ethernet links

h2s1

localhost

s5

s1

s2

s6 s7

h4

h6

h1

h2

h3

h5

h7

h9

h8

server2

server2

s8

s3

s9

h13

h15

h10

h11

h12

h14

h16

h18

h17

server3

s4

h22

h24

h19

h20

h21

h23

h25

h27

h26

s10 s11 s12 s13

Figure 1: Sample Mininet Cluster

topo = Tree(depth=3, fanout=3)
servers = ['localhost','server2','server3']
net = MininetCluster(topo=topo, servers=servers)
net.start()
CLI(net)
net.stop()

...or via simple command line options:

mn --topo tree,depth=3,fanout=3
 --cluster localhost,server2,server3

Figure 2: Mininet Cluster Python Code & Shell Command

and access permit, we may also add a scale-up demonstra-
tion of execution on a cloud or dedicated cluster as well as

scale-down creation of a distributed testbed and develop-
ment platform on a single machine.

We hope to demonstrate the convenience and speed of us-
ing Mininet and minimal, lightweight containers as a flexible
and scalable platform for distributed SDN development, and
to encourage the community to reserve more complicated
virtualization for where it is actually required.

4. RELATED WORK
Several systems have been built to extend container based

emulation to run on a cluster. Virtual Emulab [3] is a partic-
ularly notable example, and CORE [4] also allows cluster-
based execution. Mininet has itself been extended to dis-
tributed execution in the Maxinet system, the Distributed
OpenFlow Testbed [5], and Mininet’s own experimental clus-
ter support. Testbeds such as Emulab or DOT can be well-
suited to research, teaching, or experimentation, but may in-
troduce issues of contention over shared resources as well as
configuration and administration. Maxinet and CORE have
simpler installation and cluster configuration, and Mininet
avoids configuration files, simplifying ad hoc clustering.

5. DISCUSSION: THE OPEN SOURCE, DIS-
TRIBUTED SDN DEV STACK

By combining free, open source components, we can cre-
ate a complete distributed SDN system and application soft-
ware development stack. At the bottom, we have either a
native Linux server, or a Linux virtual machine running on
a VMM such as VirtualBox or KVM. On top of that, we use
Mininet to create a virtual testbed consisting of a network
of switches as well as virtual Linux servers for both end-
user client/server and network OS applications. For our dis-
tributed control plane, we use a set of ONOS [6] instances
that cooperate to provide fault tolerance as well as scale-out
for capacity. Finally, on top of the ONOS instances, we can
run single-instance applications or distributed applications
which take advantage of ONOS’s abstractions and APIs for
managing shared state.

6. ACKNOWLEDGMENTS
Mininet core developers including Vimal Jeyakumar have

built virtual testbeds using Mininet. Rich Lane submitted
pull requests for mount and UTS namespaces. Brandon Schlinker
also implemented mount and PID namespaces to support
SDX. [7]

7. REFERENCES
[1] Mininet Project. Mininet. http://mininet.org/.
[2] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. Zahraee,

and H. Karl. MaxiNet: Distributed emulation of
software-defined networks. In IFIP Networking ’14, 2014.

[3] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau. Large-scale virtualization in the
Emulab network testbed. In USENIX ATC ’08, 2008.

[4] J. Ahrenholz, C. Danilov, T. Henderson, and J. Kim. CORE: A
real-time network emulator. In MILCOM 2008. IEEE, 2008.

[5] A. R. Roy, M. F. Bari, M. F. Zhani, R. Ahmed, and R. Boutaba.
DOT: Distributed openflow testbed. In SIGCOMM ’14, 2014.

[6] ONOS Project. ONOS. http://onosproject.org/.
[7] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,

N. Feamster, J. Rexford, S. Shenker, R. Clark, and
E. Katz-Bassett. SDX: A software defined internet exchange. In
SIGCOMM ’14, 2014.

366

http://mininet.org/
http://onosproject.org/

	Abstract
	Introduction
	A Mininet-Based Virtual Testbed
	Demonstration
	Related Work
	Discussion: The Open Source, Distributed SDN Dev Stack
	Acknowledgments
	References

