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ABSTRACT 

 A theoretical and experimental investigation of a magneto hydrodynamic stirrer is presented.  

Such a stirrer can be used to enhance mixing in micro total analysis systems.  The stirrer utilizes 

arrays of electrodes deposited on a conduit's walls.  The conduit is filled with an electrolyte solution.  

By applying alternating potential differences across pairs of electrodes, currents are induced in 

various directions in the solution.  In the presence of a magnetic field, the coupling between the 

magnetic and electric fields induces body (Lorentz) forces in the fluid.  Since the electrodes can be 

patterned in various ways, fairly complex flow fields can be generated.  In particular, in this paper, 

we describe the induction of cellular motion.  This motion can be used to deform and stretch material 

interfaces and to enhance mixing.  The MHD stirrer does not utilize any moving parts.  The 

experimental observations are in good agreement with theoretical predictions. 
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1.  INTRODUCTION 

 In recent years, there has been a growing interest in developing minute laboratories on a "chip".  Often, in 

order to facilitate chemical and biological reactions, one needs to mix various reagents and chemicals.  Although the 

characteristic lengths associated with micro-devices are small, typically on the order of 100μm, in the case of large 

molecules, diffusion alone does not provide a sufficiently rapid means for mixing.  For example, at room 

temperature, myosin's coefficient of diffusion in water is about 10-11m2/s, and the time constant for diffusion along a 

length of 100μm is an intolerably large 103s.  Commonly, one encounters only low Reynolds number flows in micro 

devices, and turbulence is not available to enhance mixing.  Moreover, often it is not feasible to incorporate moving 

components such as stirrers into microdevices.  Thus, one is forced to look for alternatives in order to make the 

mixing process more efficient. 

 In view of the above, it is not surprising that many investigators have studied a variety of schemes to 

enhance mixing.  For example, Stremler et. al. (2000), Liu et. al. (2000), and Yi and Bau (2000) micro-fabricated 

two and three-dimensional "twisted" conduits in polydimethylsiloxane (PMDS), silicon, and low temperature co-

fired ceramic tapes, respectively.  These "mixers" consisted of sequences of short, straight conduits having 

rectangular cross-sections.  Each conduit formed a 90-degree angle with the preceding one.  The bends induced two 

counter-rotating vortices that deformed material lines and enhanced stirring.  For these devices to work effectively, 

the Reynolds number must be on the order of 10.  Unfortunately, many microfluidic systems operate at much lower 

Reynolds numbers than 10.  Moroney et. al. (1991), Selverov and Stone (2000) and Yi, Bau, and Hu (2000) studied 

stirrers in which travelling waves were induced in a cavity's wall(s). These travelling waves induced peristaltic 

motion in the confined liquid that facilitated fluid circulation.  Another idea was put forward by Lee, et. al., (2000) 

and others who used two solenoid valves to generate pressure perturbations in the base flow at a desired frequency 

and amplitude.  Effective mixing has been observed, albeit at relatively high Reynolds numbers (On the order of 10) 

and at fairly significant pressure perturbations. 

 In this paper, we describe a novel, simple magneto hydrodynamic mixer.  Despite their unfavorable scaling 

(the magnitude of the magnetic forces are proportional to the fluid volume), magnetic forces offer many advantages 

for microdevices.  In many cases, one operates with liquids that are at least slightly conductive such as biological 

fluids.  By patterning electrodes in the flow conduits and subjecting these electrodes to potential differences, one can 

induce electric currents in the liquid.  In the presence of a magnetic force, the currents lead to the generation of a 
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Lorentz force in a direction that is perpendicular to both the magnetic and electric fields.  The magnetic field can be 

induced either internally by coils and soft magnetic material or a magnet embedded inside the device or externally 

with the use of electromagnets or permanent magnets.   

The idea of using magneto hydrodynamic forces for pumping and propulsion is not new.  In previous works 

pertaining to microfluidic systems, Jang and Lee (2000), Lemoff and Lee (2000), and Zhong, Yi, and Bau (2001), 

among others, positioned electrodes parallel to the conduit walls.  The conduits were filled with electrolyte solution.  

When the electrodes were subjected to a potential difference in the presence of a magnetic field, the resulting 

Lorentz forces induced fluid motion along the conduit's axis.   

In this paper, we use a slightly different idea.  Instead of positioning electrodes parallel to the conduit walls, we 

deposit arrays of electrodes on the conduit's surface in the transverse direction.  By subjecting these electrodes to 

varying potential differences in the presence of a magnetic field, we generate forces that drive fluid flow in various 

directions in "virtual" wall-less conduits whose geometry is dictated by the positioning of the electrodes.  We utilize 

these idea to generate secondary flows such as may enhance mixing. 

In the first part of the paper, we describe the theory of operation of such a stirrer.  In the second part of the 

paper, we describe a simple prototype of such a mixer.  Although the mixer can be fabricated with different substrate 

materials ranging from silicon to ceramic tapes, we found it particularly advantageous to fabricate our prototype 

with low temperature ceramic tapes (LTCC).  LTCCs offer a rapid and inexpensive means of fabricating small and 

moderate quantities of devices.  

 

2. THEORY 

The stirrer consists of a liquid-filled conduit having a rectangular cross-section.  Figs. 1 and 2 depict, 

respectively, a schematic top view and a cross-section of the conduit. The x-coordinate is parallel to the conduit's 

walls.  Uniformly spaced electrodes (denoted by the letters A, B, C, D, and E in Fig. 1) are deposited perpendicular 

to the conduit's walls.  It is also possible to deposit electrodes on the conduit's top or in different patterns than 

depicted in Fig. 1.  The electrodes are connected alternately to the positive and negative poles of a DC power supply.  

As a result, electric current of density J  flows in the liquid.  The direction of the electric current varies from one 

location to another as indicated by the hollow arrows in the figure.  The liquid is subjected to a uniform magnetic 

field of intensity ( B ) normal to the conduit's bottom and directed out of the page.  The coupling between the 
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magnetic and electric fields induces a body (Lorentz) force, J × B , that is perpendicular to both J  and B  and is 

directed towards the conduit's side wall.  The direction of the force alternates.  For example, in the conduit segment 

between electrodes C and D, the force is directed in the positive y-direction while in the conduit segment between 

the electrodes B and C, the force is directed in the opposite direction.  Consequently, in the conduit segments BC 

and CD, the liquid will, respectively, move upwards and downwards.  The net effect will be the formation of 

convective cells or eddies.  We will show later that these eddies can deform and stretch material lines and stir the 

fluid. 

We denote the conduit's height as 2h, its width as W and the distance between adjacent electrodes as L (see 

Figs. 1 and 2).  When the conduit is relatively long and equipped with a large number of electrodes, we may assume 

that the phenomenon is periodic in the x-direction.  Accordingly, we will analyze a single "cell" containing a single 

electrode, i.e., the region enclosed between the two symmetry lines and containing electrode C in Fig. 1.  The width 

of this cell is L.  

The fluid motion is governed by the Navier-Stokes equation (Batchlor, 1967) with a magnetic body force, 

 ρ
t∂

∂u
+ρ( u •∇) u =-∇P+μ∇2 u + J × B , (1) 

and the continuity equation: 

 ∇• u =0. (2) 

In the above, ρ is the liquid density, u  is the velocity vector, t is time, P is the thermodynamic pressure, and μ is the 

shear viscosity.  We are neglecting gravitational effects.   Ohm's law states that  

 J =σ( E + u × B ), (3) 

where σ is the liquid's conductivity.   

Although this is not always the case in micro devices, for simplicity's sake and to allow us to illustrate the 

phenomenon of interest more clearly, we will assume that L and W are of the same order of magnitude and that 

h<<L.  This latter assumption allows us to use "lubrication theory" or "Hele-Shaw" approximation (Batchlor, 1967, 

p. 222).  When 1<<
L

h
and to the first order of approximation (i.e., neglecting terms of order h/L) the pressure 

4 



Bau, H., H., Zhong, J., and Yi, M., 2001, A Minute Magneto Hydro Dynamic (MHD) Mixer, 
Sensors and Actuators B, 79/2-3, 205-213. 
 

P~P(x, y) is independent of the z-coordinate and the z-component of the velocity, uz=0.  Consequently, the 

horizontal components of the velocity in the x and y directions can be expressed as  

 ( )(ˆ),(ˆ),( ** zfeyxveyxu yx +=u ) , (4) 

where 

2

1)( ⎟
⎠
⎞

⎜
⎝
⎛−=

h

z
zf .   and  are, respectively, unit vectors in the x and y directions.  We substitute xê yê u  

into equation (1) and integrate the equation over the z coordinate.  The resulting dimensionless momentum equations 

are: 
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In the above, the LHS and RHS of the equations represent, respectively, the rate of change in momentum and the 

various forces (pressure, viscous, and magnetic) acting on the fluid.  The Sign(x) function is attached to the 

magnetic force term to reflect the fact that this force is directed in opposite directions when x<0 and x>0.  The 

equations are valid over the domain 
22

L
x

L
≤≤−  and 

22

W
x

W
≤≤− .  The boundary conditions are: 
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In the above, we use, respectively, h, U=σEBh2/μ and μU/h as the length, velocity, and pressure scales.  Re=UL/ν is 

the Reynolds number; 
ν
ω

3

4
hSt =  is the Stanton number; 

μ
σ

hBHa =  is the Hartman number; ω is the 

frequency of time-wise variations in the electric field; and   

 . (8) 
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Since the width of the electrode is typically small compared to the other characteristic dimensions, we assume in the 

analysis that the electrodes have zero width. This assumption can be relaxed at the expense of more cumbersome 

analysis.  In what follows, we find it convenient to expand Sign(x) into the Fourier series, 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛

+∑
∞

= L

x
n

n
xSign

n

π
π

12sin
21

14
~)(

0

. (9) 

Typically, for non-metallic liquids, Ha<<1.  For example, for saline solutions Ha~10-3.  Moreover, consistent with 

our assumption of h/L<<1, we can ignore the nonlinear terms in equations (5) and (6).  Finally, we will consider the 

time-independent case and set St=0.  In terms of the stream function Ψ,  (
y

u
∂
Ψ∂

=  and 
x

v
∂
Ψ∂

−= ), the steady 

state version of equations (5) and (6) can be rewritten compactly as: 
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with the boundary conditions, 
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Equations (10) and (11) are conveniently solved with Mathematica (Wolfram, 1996). 
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The series converges reasonably fast at the rate of n-4.  When L=W=10, Fig. 3 depicts the variations in the stream 

function value, ( ) )0,0(/)0,0()0,0( ee ΨΨ−Ψ ,as a function of the number of terms in the series on a semi-log 
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scale.  In the above, Ψe=1.270 denotes the stream function value when 100 terms are used in the summation.  The 

figure indicates that 9 terms in the series are sufficient to obtain a precision better than 0.1%.  It is an easy matter to 

obtain the two velocity components, u and v, and the pressure field from the stream function.  In the interest of 

conciseness, explicit expressions are not given here.  The Mathematica notebook is available from the lead author 

upon request. 

 When L=W=10, Figs. 4, 5, 6, 7 and 8 depict contours of constant stream lines which also represent particle 

trajectories, the horizontal velocity u(0,y) as a function of y, the vertical velocity v(x,0) as a function of x, constant 

pressure contour lines, and the pressure distribution p(x, y) as a function of x and y.  As is evident from Figs. 4-6, 

the magnetic forces induce circulatory motion in the cell.  Somewhat surprisingly, the vertical velocity v(x,0) 

initially increases as x increases, attains a maximum at x~1.39, and then decreases again. This decrease in the v-

component of the velocity is a result of the increase of pressure at the stagnation point, )
2

,
2

(),(
WL

yx = , as is 

evident in Figs. 7 and 8.  Since the absolute pressure cannot be uniquely determined and it is of no consequence in 

the case of incompressible flow, we normalized the pressure so that p(0,0)=0. 

 In order to evaluate the performance of the device as a stirrer, we compute the stretching rate of material 

interfaces.  Consider a stirrer that is filled with two immiscible fluids; one fluid initially occupies the region y<0 and 

the other fluid occupies the region y>0.  y=0 forms an interfacial line between the two fluids.  We track the 

deformation of this interface.  To this end, we track particles that are initially located on y=0. Using a 4th order 

Runge-Kutta procedure, we integrate the advection equations, 

 ),( yxu
dt

dx
=   and   ),( yxv

dt

dy
= , (13) 

with the initial conditions –L/2<x(0)<L/2, x(0)=x0 and y(0)=0.  Here, we use μ/(σEBh) as the time scale.  Although 

all these particles follow the streamlines, they do so at different rates.  As a result, the interface is being stretched 

and deformed.  The locations of the interface at various times t=0, 10, 20, 30, 40, and 50 are depicted in Fig. 10.  As 

time goes by, the interface elongates and deforms. 
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 Fig. 11 quantifies the stretching of the interface.  The figure depicts the normalized length (
L

t
IL

)(l
= ) as 

a function of time.  In the above,  is the length of the interface at time t.  The symbols and the solid line 

correspond, respectively, to computational data and a line of best fit.  The data correlates well with the formula: 

)(tl

 IL~1+0.03 (t+1) ln(t+1). (14) 

In other words, the length of the interface increases slightly faster than a linear function of time.  This is much better 

than the rate of increase due to diffusion alone (t1/2) but falls short of the exponential rate exhibited by chaotic 

advection. 

 

3. EXPERIMENTS 

 To illustrate that the ideas articulated here can, indeed, be put into practice, we fabricated a crude MHD 

stirrer.  Although the stirrer can be fabricated with various substrate materials ranging from silicon to polymers, we 

chose to construct our prototype with low temperature co-fired ceramic tapes (LTCC).  The tapes facilitate easy, 

inexpensive, layered manufacturing.  They provide a rapid platform for the integration of passive electronics and 

fluidics. 

In their pre-fired (green) state, the ceramic tapes consist of oxide particles, glass frit, and organic binder 

(that can be made from photo-resist).  The tapes are typically cast with a thickness starting at 40μm.  The pre-fired 

tapes can be machined by laser, milling, and photolithography (when the binder is photo-resist).  Metallic paths can 

be either printed or processed photolithographically to form electrodes, resistors, conductors, and thermistors.  

Conduit sizes may range from ~10μm to a few millimeters.  Upon firing, the organic binder burns out, the oxide-

particles sinter, and the tapes solidify.  Many tapes (>80) can be stacked together, aligned, laminated, and co-fired to 

form monolithic structures with complex, three-dimensional mazes of fluidic conduits, electronic circuits, and 

electrodes.  Glass windows and other materials can be readily attached to the tapes to facilitate optical paths.  

Multiple layers of coils can be embedded in the tapes to generate magnetic fields.  For additional details, see Bau et. 

al. (1998) and Kim et. al. (1998). 

 The prototype of the stirrer was fabricated with DuPont, LTCC 951AT tapes that have a nominal thickness 

of ~250μm.  Rectangles of desired size were blanked from the raw material (see Fig. 12).  20μm thick and 700μm 

wide DuPont 5734 gold paste was hand-printed at distances 3.3mm apart to form the electrode pattern on layer (1).  
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Although it is possible to control each electrode independently, here we connected three electrodes to a single 

conductor and two other electrodes to a second conductor.  Five additional layers of type 2 (the layer denoted as 2 in 

Fig. 12) were first laminated and then machined with a numerically controlled milling machine to accommodate an 

inner cavity and vias (the circular holes) for electric leads.  The vias were filled with DuPont 6141 paste and 

terminated with soldering pads (DuPont 6146).  The cavity can be encapsulated with another layer of tape (i.e., layer 

3).  In the actual experiments, to facilitate flow visualization, we left the cavity uncapped.  Subsequent to the 

machining, the various layers were aligned, stacked, laminated, and co-fired to form a monolithic block.  The post-

fired cavity (that was formed from 5 layers of type 2) was 1mm deep, 4.7mm wide, and 22.3 mm long. 

The cross-section of the assembled device is shown in Fig. 13.  In our experiments, we positioned a 

rectangular, permanent Neodymium magnet (Edmund Scientific, serial number CR81-237, load-carrying capacity of 

12-15lb) under the device.  The dimensions of the magnet were significantly larger than the cavity's dimensions so 

that an approximately uniform magnetic field resulted.  The magnetic field can also be generated by other means 

such as an external electromagnet or coils embedded in the ceramic tapes.  In the latter case, soft magnetic material 

such as permalloy can be encapsulated in the tapes to intensify the field. 

 In the experiments, we filled the cavity with deionized water.  The resistance between the electrodes was 

measured in situ and the conductance was estimated to be σ=2.23×10-4 (Ω•m)-1.  This conductance accounts for 

possible dissolution of electrode materials in the water.  The leads were connected to a power supply (HP 6032A) 

that was operated at constant voltage mode.  Due to the extremely low currents, it was not possible to operate this 

power supply at a constant current mode.  The very low specific conductivity liquid allowed us to keep the fluid 

velocity very low and carry out observations using relatively primitive means.  With a syringe, we applied a thin 

trace of dye (Water Soluble Fluorescent Liquid Dye, Model 298-16-Red, Cole Palmer Instrument Company, Niles, 

Illinois, USA) across the cavity (Fig. 14) and then applied 4V across the electrodes.  The current was on the order of 

μA, and well below the resolution level of our power supply (10mA). 

 As a result of the application of a DC potential difference across the electrodes, clearly visible fluid flow 

was induced in the cavity.  The motion consisted of rotating cells with the fluid moving up in one interval between 

two electrodes and down in the adjacent interval.  Figs. 15a, b, c, and d depict the deformation of the dye induced by 

this fluid motion.  Depending on the polarity of the electrodes, the dye either moved upwards or downwards (Fig. 

15a).  This well organized motion could not possibly have been caused by diffusion, and it clearly demonstrates the 
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presence of upward and downward flows in different sections of the cavity.  After a few seconds, the polarity of the 

electrodes was reversed.  Since diffusion is relatively slow and the flow is at a relatively low Reynolds number 

(creeping flow), the dye "retracted its steps" in almost a reversible fashion (Fig. 15b) and then started deforming in 

the opposite direction (Fig. 15c).  When the process was allowed to continue for some time, the dye traced the 

convective cells in good qualitative agreement with the theoretical predictions of the previous section. 

 In order to carry out an order of magnitude comparison with theoretical predictions, we computed the 

approximate time (T) that it takes a segment of dye located midway between the electrodes to move from location 

y= – 0.4W to location y=0.4W.  In order to carry out this calculation, we took into consideration the fact that the 

vertical component of the velocity varies spatially, i.e.,  

∫
−

=
W

W y
L

v

dy
T

4.0

4.0 ),
2

(

. 

Numerical integration leads to T~29 dimensionless time units.  The experimentally measured time corresponded to 

about 40 time units.  This relatively large discrepancy may have been caused because we overestimated the strength 

of the magnetic field.  Moreover, there are a number of differences between the mathematical model and the 

experiment.  For example, the model assumes that the current in the liquid is uniform while in reality there was a 

more complicated current distribution given the fact that the electrodes were located on the conduit's bottom.  If we 

were to use saline solution instead of de-ionized water, the process would have occurred at least ten times faster. 

 At the very low currents that we used in our experiments, we did not observe any bubble generation.  

Bubble generation and electrode deterioration are likely to be a problem when higher voltages or higher conductivity 

solutions are used.  To prevent these undesirable effects, one can employ AC currents.  By appropriate 

synchronization of the electromagnetic field with the AC current, the direction of the Lorentz force would remain 

unaltered (Lemoff and Lee, 2000). 

 

4.  CONCLUSIONS 

 We have demonstrated in theory and experiment that magneto-electric forces can be used to generate 

complex motions in electrolytic solutions.  We have applied time-independent forces to induce cellular convection 

in a conduit.  The cellular motion stretches and deforms material lines.  This process enhances mixing.  The rate of 

deformation as a function of time is slightly faster than linear. 
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Photolithography and screen-printing allow us to form complicated electrode patterns.  The interplay 

between the magnetic and the electric fields provides one with the means of controlling locally the direction and 

magnitude of the volumetric forces and, in turn, inducing desired flow patterns.  In other words, MHD provides the 

designer of microfluidic systems with a great amount of design flexibility.  In this paper, we have described just one 

simple example of inducing cellular convection in a conduit.  The next challenge is to devise time-dependent 

variations in the magnetic forces and/or electric field that will allow us to obtain a faster, perhaps exponential, rate 

of stretching of material lines as is common in the case of chaotic advection.  
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LIST OF CAPTIONS 

 

1. A schematic (top-view) depiction of the stirrer.  The stirrer consists of a capped conduit.  The electrodes, 

denoted with the capital letters A, B, C, D, and E; are deposited on the conduit's bottom and they are aligned 

perpendicular to the conduit's walls. The electrodes are connected alternately to the positive and negative poles 

of a power supply.  The x-coordinate is aligned along the conduit's axis.  The magnetic field (denoted by dots) 

is normal to and points out of the page. 

2. A cross-section of the conduit. 

3. An estimate of the relative error resulting from truncating the infinite series after N terms.  L=W=10. 

4. Contours of constant stream function.  The contours represent the particles' trajectories. L=W=10. 

5. The horizontal component of the velocity, u(0,y), is depicted as a function of y. L=W=10. 

6. The vertical component of the velocity v(x,0) is depicted as a function of x.  L=W=10. 

7. Contours of constant pressure lines.  L=W=10. 

8. The pressure distribution p(x, y) as a function of x and y. W=L=10. 

9. v(L,0) is depicted as a function of L.  W=L. 

10. The location of the interface at various dimensionless times: t=0, 10, 20, 30, 40, and 50.  W=L=10. 

11. The length of the interface as a function of the normalized time. 

12. The various layers of tapes that have been used for the construction of the prototype of the stirrer.  Layer 1 

contains the electrodes.  Layer 2 contains the stirrer cavity and vertical vias for electrical connections.  A few 

layers of type 2 were used to obtain a cavity of desired height.  Layer 3 served as a cover plate.  The figure is 

not drawn to scale. 

13. A cross-section of the MHD stirrer.  The layer numbers are cross-referenced with Fig. 12.  Item (4) is a 

permanent magnet.  The figure is not drawn to scale. 

14. A top view of the stirrer fabricated with ceramic tapes.  The cavity and the transverse electrodes are visible.  At 

the beginning of the experiment, a thin line of dye is laid across the cavity. 

15. The deformation of a dye line resulting from the application of the Lorentz forces (a).  After a few seconds, the 

polarity of the electrodes and the direction of the Lorentz force are reversed, and the dye returns to its initial 

position (b).  As a result of the reversal in the direction of the Lorentz force, the dye continues to deform in the 

opposite direction (c).  When the process is allowed to continue for some time, the formation of eddies become 

apparent (d). 
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Fig. 1: A schematic (top-view) depiction of the stirrer.  The stirrer consists of a capped conduit.  The 

electrodes, denoted with the capital letters A, B, C, D, and E, are deposited on the conduit's bottom, and 

they are aligned perpendicular to the conduit's walls. The electrodes are connected alternately to the 

positive and negative poles of a power supply.  The x-coordinate is aligned along the conduit's axis.  The 

magnetic field (denoted by dots) is normal to and points out of the page. 

Fig. 2: A cross-section of the conduit. 

2h

W

B
r

y 

z

Electrode 

14 



Bau, H., H., Zhong, J., and Yi, M., 2001, A Minute Magneto Hydro Dynamic (MHD) Mixer, 
Sensors and Actuators B, 79/2-3, 205-213. 
 

Fig. 3: An estimate of the relative error resulting from truncating the infinite series after N terms.  

L=W=10. 
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Fig. 4: Contours of constant stream function.  The contours represent the particles' trajectories. L=W=10. 
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Fig. 5: The horizontal component of the velocity, u(0,y), is depicted as a function of y. L=W=10.  
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Fig. 6:  The vertical component of the velocity v(x,0) is depicted as a function of x.  L=W=10.  
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Fig. 7: Contours of constant pressure lines.  L=W=10. 
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Fig. 8: The pressure distribution p(x, y) as a function of x and y. W=L=10.  
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Fig. 9: v(L,0) is depicted as a function of L.  W=L.  
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Fig. 10: The location of the interface at various dimensionless times, t=0, 10, 20, 30, 40, and 50.  W=L=10. 
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Fig. 11:  The length of the interface as a function of the normalized time. 
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1

2

Fig. 12: The various layers of tapes that have been 

used for the construction of the prototype of the stirrer. 

Layer 1 contains the electrodes.  Layer 2 contains the 

stirrer cavity and vertical vias for electrical 

connections.  A few layers of type 2 were used to 

obtain a cavity of desired height.  Layer 3 served as a 

cover plate.  The figure is not drawn to scale. 
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Fig. 13: A cross-section of the MHD stirrer.  The layer numbers are 

cross-referenced with Fig. 12.  Item (4) is a permanent magnet.  The 

figure is not drawn to scale. 

22.3mm

Fig. 14: A top view of the stirrer fabricated with ceramic tapes.  The cavity 

and the transverse electrodes are visible.  At the beginning of the 

experiment, a thin line of dye is laid across the cavity. 
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Fig. 15: The deformation of a dye line resulting from the 

application of the Lorentz forces (a).  After a few 

seconds, the polarity of the electrodes and the direction 

of the Lorentz force are reversed, and the dye returns to 

its initial position (b).  As a result of the reversal in the 

direction of the Lorentz force, the dye continues to 

deform in the opposite direction (c).  When the process 

is allowed to continue for some time, the formation of 

eddies becomes apparent (d). 

 




