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ABSTRACT One of the major quantitative trait loci for flowering time in maize, the Vegetative to generative

transition 1 (Vgt1) locus, corresponds to an upstream (70 kb) noncoding regulatory element of ZmRap2.7,

a repressor of flowering. At Vgt1, a miniature transposon (MITE) insertion into a conserved noncoding

sequence was previously found to be highly associated with early flowering in independent studies. Be-

cause cytosine methylation is known to be associated with transposons and to influence gene expression,

we aimed to investigate how DNA methylation patterns in wild-type and mutant Vgt1 correlate with

ZmRap2.7 expression. The methylation state at Vgt1 was assayed in leaf samples of maize inbred and F1
hybrid samples, and at the syntenic region in sorghum. The Vgt1-linked conserved noncoding sequence

was very scarcely methylated both in maize and sorghum. However, in the early maize Vgt1 allele, the

region immediately flanking the highly methylated MITE insertion was significantly more methylated and

showed features of methylation spreading. Allele-specific expression assays revealed that the presence of

the MITE and its heavy methylation appear to be linked to altered ZmRap2.7 transcription. Although not

providing proof of causative connection, our results associate transposon-linked differential methylation

with allelic state and gene expression at a major flowering time quantitative trait locus in maize.
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Methylation of cytosine residues is one of the most extensively studied

epigenetic modifications of DNA. It is widespread in many eukaryotic

organisms ranging from fungi to higher plants (Feng et al. 2010; Jones

2012). To investigate the role of genic and intergenic methylation,

high-resolution DNA methylation analysis has been performed or is

underway in many plant species (Zhang et al. 2006; Zilberman et al.

2007; Cokus et al. 2008; Lister et al. 2008; Zemach et al. 2010; Eichten

et al. 2011; Li et al. 2012; Gent et al. 2013). Many of these have shown

that transposable elements are highly methylated, which supports the

hypothesis that methylation is a strategy to repress TEs mobility

(Lippman et al. 2003; Zhang et al. 2006). Methylation also plays

a major role in regulating gene expression and, in general, methylation

of promoter sequences has been negatively correlated with transcrip-

tional activity (Zhang et al. 2010).

In plants, several studies have highlighted the correlation between

epigenetic modifications and heritable phenotypic variation. The

presence of 853-bp tandem repeats located 100 kb upstream from

the b1 gene is essential for paramutation (Brink 1958) to occur at the

b1 locus in maize; the methylation state of the repeats correlates with

the epigenetic state of the b1 coding region, which also involves an

RNA-mediated mechanism (Stam et al. 2002; Arteaga-Vazquez et al.

2010). In Linaria vulgaris, the methylation state of the Lcyc gene was

shown to be responsible for a naturally available developmental mu-

tant for flower symmetry (Cubas et al. 1999). In melon, the insertion

of a DNA transposon in the CmWIP1 locus, encoding a C2H2 zinc-

finger transcription factor, determines hypermethylation of the gene

promoter, which in turn results in the formation of female flowers

(Martin et al. 2009). Telias et al. (2011) showed that variegation in apple
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skin is dependent on differential methylation of the promoter of a myb

transcription factor (MYB10), which is a key regulator of anthocyanin

biosynthesis. On a larger scale, the development of a population of

epigenetic recombinant inbred lines in Arabidopsis thaliana showed that

stably inherited DNA methylation changes are indeed associated with

heritable variation for two complex traits, namely flowering time and

plant height (Johannes et al. 2009).

Flowering time is a key trait for crop adaptation to different

cultivation environments and maize is no exception. Genetic dissection

of this trait has been the topic of several QTL studies in maize, as the

nature of the variability for flowering time is prevalently quantitative

(Chardon et al. 2004; Buckler et al. 2009; Salvi et al. 2009; Tuberosa

and Salvi 2009). One of the major flowering-time QTL, Vegetative to

generative transition 1 (Vgt1) (Phillips et al. 1992; Vl�adutxu et al. 1999;

Salvi et al. 2002) on chromosome 8, corresponds to a �2-kb intergenic

region upstream of an Ap2-like flowering-time gene, ZmRap2.7 and

appears to act as a cis-regulator of ZmRap2.7 expression (Salvi et al.

2007). A maize–sorghum–rice evolutionarily conserved noncoding se-

quence (CNS) (Freeling and Subramaniam 2009) was identified within

Vgt1; in early Vgt1 alleles, this CNS is interrupted by the insertion of

a miniature transposon (MITE) belonging to the Tourist family (Salvi

et al. 2007), and this insertional polymorphism has been repeatedly

identified as strongly associated with flowering time in independent

studies (Salvi et al. 2007; Ducrocq et al. 2008; Buckler et al. 2009; Hung

et al. 2012; Truntzler et al. 2012).

In this work, we compared the DNA methylation state of two Vgt1

alleles to investigate a possible role for epigenetic changes at Vgt1 in

the regulation of ZmRap2.7 expression in the context of a putative cis-

interaction between the two loci. We focused in particular on the CNS/

MITE region with the objective of improving our understanding of the

involvement of conserved DNA elements in determining phenotypic

variation.

MATERIALS AND METHODS

Plant materials

Seedlings of B73, Gaspé Flint, N28, C22-4, R22, and N28xC22-4 F1
hybrid were grown in a greenhouse at 25� under long-day photoperiod.

B73 is the reference genotype for the maize community (Wei et al. 2007;

Schnable et al. 2009), N28 is a dent line belonging to the Nebraska Stiff

Stalk Synthetic group. The strain C22–4 is nearly isogenic to N28 and

carries the early Vgt1 allele in an �7-cM introgression originating from

the maize variety Gaspé Flint characterized by extreme earliness

(Vl�adutxu et al. 1999). R22 is an N28 nearly isogenic line derived from

the cross between N28 and C22-4 (Salvi et al. 2007). For all experiments

(methylation analysis and expression analysis), leaf tissue was harvested

at four developmental stages: first leaf (V1), third leaf (V3), fifth leaf

(V5), and seventh leaf (V7), fully expanded, according to the classifica-

tion reported in (Ritchie et al. 1993); after the collection of leaves, ligule,

leaf tip, and midrib vein were removed to keep only leaf blade; tissues

from 15 different plants were pooled for each genotype and stage of

development. For each genotype and stage of development, two biolog-

ical replicates were grown and harvested. One additional N28-nearly

isogenic line, R66 (as described in Salvi et al. 2007) was grown and

sampled to be included in methylation analysis (see File S1).

Sorghum B.Tx623 seedlings (seeds kindly provided by William

Rooney, Texas A&M University) were grown in a growth chamber in

controlled conditions (25�, 16-hr photoperiod). Leaves were harvested

from 15 seedlings grown in two reps, at two developmental stages

(first leaf, V1 and seventh leaf, V7, fully expanded), and only leaf

blades were collected.

ZmRap2.7 expression analysis

Total RNA was isolated from leaf tissues by use of TRI Reagent (Sigma-

Aldrich, St. Louis, MO). Complementary (c)DNA was synthesized with

the High Capacity cDNA Reverse Transcription Kit (Applied Biosys-

tems, Foster City, CA). Real-Time polymerase chain reactions (PCRs)

were set up using cDNA as template and Platinum SYBR Green

qPCR SuperMix-UDG (Invitrogen, Carlsbad, CA) and performed on

a 7500 Fast Real-Time PCR System (Applied Biosystems, Foster

City, CA) with the following thermocycling conditions: 40 cycles at

95� for 10’’ and 64� for 1’; primers for the target gene ZmRap2.7

(Salvi et al. 2007) and the housekeeping gene aat (alanine amino-

transferase, housekeeping gene) (Woodhouse et al. 2006) were used

(Table S1). Relative gene expression was calculated following the

DDCt method (Livak and Schmittgen 2001).

Bisulfite treatment

Genomic DNA was extracted following a standard CTAB method as

described in (Saghai-Maroof et al. 1984). For each sample, 500 ng of

genomic DNA from N28, C22-4, and N28 x C22-4 F1 leaves at V1,

V3, V5, and V7 stages and from sorghum B.Tx623 leaves at V1 and

V7 stages was treated using EZ DNA Methylation-Gold kit (Zymo

Research, Orange, CA) following the manufacturer’s instructions.

Amplicon ultra-deep sequencing

Degenerate primers targeting the CNS/MITE region in maize (Figure 1

and Table S1) and the CNS region in sorghum B.Tx623 (Table S1)

were designed using the Kismeth software (Gruntman et al. 2008). For

maize samples, 4 mL of bisulfite-treated genomic DNA was PCR-

preamplified with AmpliTaq Gold DNA Polymerase (Applied Biosys-

tems). All the 16 PCR products were quantified by Nanodrop 3300

Fluorospectrometer (Thermo Scientific, Wilmington, DE) using the

Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen). The MITE and

CNS amplicons were pooled according to the stage of development,

and eight different libraries were generated employing the GS-FLX

Titanium Rapid Library Preparation Kit following the manufacturer’s

recommendations (454 Life Sciences, Branford, CT). To overcome the

limitation in the number of samples that can be sequenced in parallel,

the Multiplex Identifier was used. For sorghum, after a first pream-

plification on bisulfite-treated genomic DNA, 1 mL of nonpurified

PCR product was used as template in a second nested amplification

performed with fusion primers composed of three parts: (i) 454-specific

adaptors (A and B), (ii) 10-bp Multiplex Identifier to barcode the

samples, and (iii) sequence-specific primers (Table S1); the thermo-

cycling conditions were 30 cycles at 95� for 30”, 49� for 30”, and 72�

for 45”. The final double-stranded DNA libraries were quantitated via

quantitative (q)PCR using Library quantification kit–Roche 454 Tita-

nium (KAPA Biosystems, Boston, MA) prior to emulsion PCR am-

plification. Pyrosequencing was performed on a GS FLX instrument

(454; Life Sciences) according to the manufacturer’s recommenda-

tions. Processed and quality-filtered reads were analyzed with the

Kismeth software (Gruntman et al. 2008), and statistical significance

was tested with analysis of variance. The achieved average depth of

sequencing was 1591X for the CNS region in N28, 857X for the CNS/

MITE region in C22-4, and 108X for the CNS region in sorghum

B.Tx623. Raw data were deposited in the Sequence Read Archive under

accession numbers: maize SRX469305 and sorghum SRX469306.

Methylation quantification with Mutation Surveyor

Two different genomic regions within Vgt1 (Ampl Bis-Sanger from

N28 and C22-4 and CNS/MITE from N28 x C22-4 F1, Figure 1 and
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Table S1) were PCR-amplified, and the final PCR products were run

on a 1.5% agarose gel, purified with Wizard SV Gel and PCR Clean-

Up System (Promega, Madison, WI) and then sequenced following

standard Sanger method. The electropherograms were analyzed with

Mutation Surveyor software (Softgenetics, State College, PA) to de-

termine the percentage of methylation for every cytosine residue.

Allele-specific expression assay

A custom TaqMan SNP Genotyping assay (Applied Biosystems) was

designed to discriminate N28 and C22-4 alleles at ZmRap2.7. To pro-

duce a standard curve, genomic DNAs of N28 and C22-4 were mixed

with the following ratios: 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, and 1:4 (N28 allele/

C22-4 allele). Following the manufacturer’s protocol, PCRs were per-

formed on these DNA mixes; the log of [FAM intensity (C22-4 allele)/

VIC intensity (N28 allele)] was calculated at the last PCR cycle (cycle

40). The standard curve was then generated by linear regression (y = a +

bx), where y is the log of (FAM intensity/VIC intensity) at a given

mixing ratio, x is the log of mixing ratio, a is the intercept, and b is

the slope. After RNA extraction from the leaves of N28xC22-4 F1
hybrids with the TRI Reagent (Sigma-Aldrich) and cDNA synthesis

with the High Capacity cDNA Reverse Transcription Kit (Applied Bio-

systems), PCRs using the custom TaqMan SNP were performed on

cDNA samples; the allele ratio was calculated by intercepting log of

(FAM intensity/VIC intensity) on the standard curve (Lo et al. 2003).

RESULTS

Temporal profile of ZmRap2.7 expression

Leaf tissues sampled at four different developmental time points (V1,

V3, V5, and V7) were used to determine ZmRap2.7 expression by means

of qPCR in five different maize lines: B73, N28, R22 (late flowering,

carrying the late Vgt1 allele) and Gaspé Flint and C22-4 (early flowering,

early Vgt1 allele). The lines B73, N28, and R22, carrying the late Vgt1

allele, shared a common expression trend, characterized by a peak of

ZmRap2.7 expression at the stage V3, followed by a drop in the levels of

ZmRap2.7 transcripts in ensuing stages (Figure 1). Differently, C22-4

and Gaspé Flint showed maximum ZmRap2.7 expression at V1. At V3,

expression was significantly higher (Fisher’s LSD test P , 0.05) in

N28 compared with R22 and B73, whose expression levels were in

turn significantly greater than in C22-4 and Gaspé Flint.

Bisulfite sequencing of portions of Vgt1 in N28 and
C22-4 reveals differential methylation and methylation
spreading From the MITE transposon

To investigate the dynamics of Vgt1 DNA methylation levels, we

performed a preliminary analysis based on restriction with the meth-

ylation-dependent enzyme McrBC followed by qPCR, which showed

a constant in time methylation peak in the central region of Vgt1.

However, the analysis did not show any methylation difference be-

tween the early and late alleles (see File S1, Figure S1, Figure S2, Figure

S3, Figure S4, Figure S5, Figure S6). Given the results obtained with

this approach, we moved to bisulfite-based methylation analysis. We

first focused on the Vgt1 region encompassing the nucleotides

157021921 (Ampl bis-Sanger, see Figure 2). The results showed that

the C22-4 (early) Vgt1 allele is completely unmethylated at all devel-

opmental stages, because 54 of the 54 cytosines in the investigated

region were converted to thymine. Conversely, for the N28 allele,

a single cytosine residue (C-1761) was progressively more methylated

during development (10% at stage V1, 16.7% at V3, 30.8% at V5, and

61.5% at V7) (Figure 3).

We next investigated a region surrounding the CNS sequence (for

the N28 allele, 6172920 bp) or the CNS/MITE insertion (for the C22-

4 allele, 292 bp corresponding to the sequence 6432792 bp of the N28

allele plus the MITE) (Figure 3). In both alleles, the region upstream

the CNS or CNS/MITE insertion was scarcely methylated; cytosine

methylation of the CNS sequence (7432761 bp) was extremely low

(1.1%) whereas the MITE itself showed a very high level (85.8%) of

average methylation (Average methylation for the three cytosine con-

texts: 88.8% CG, 89.0% CHG and 85.0% CHH) (Figure 4). N28 and

C22-4 showed significant methylation differences among develop-

mental stages; in particular, methylation of the N28 region was higher

at V3, compared with earlier and later stages, whereas for C22-4 the

Figure 1 ZmRap2.7 expression analysis across four developmental
stages (V1, V3, V5, and V7) on five maize lines used in this study. Gene
expression levels (mean values) are expressed relatively to the aat
housekeeping gene. Standard deviation values are shown as bars; dif-
ferent letters (a2c) indicate significant difference (P , 0.01, Fisher LSD)

Figure 2 Schematic representation of the Vgt1-ZmRap2.7
locus (Salvi et al. 2007) and of the polymerase chain re-
action amplicons used for the bisulfite sequencing DNA
methylation analysis. MITE, miniature transposon.
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most methylated stage corresponded to V7 (P , 0.01). The N28 and

C22-4 amplicons overlap for 149 nucleotides and among the 31

shared cytosines, 11 showed a significantly different degree of methyl-

ation between N28 and C22-4 (P , 0.01). Interestingly, the four

shared cystosines included in the CNS sequence were differentially

methylated between N28 and C22-4 and significantly higher methyl-

ation was observed in C22-4 (P , 0.01) (Figure 4 and Figure S7).

Methylation patterns at Vgt1 are stably maintained

Allele specific methylation analysis of the CNS/MITE region was

determined at four developmental stages (V1, V3, V5, and V7) in F1
plants obtained by crossing N28 and C22-4. The pattern of methyl-

ation of the two allelic forms strongly resembled what was observed in

the parental inbred lines: the region upstream the MITE insertion (for

the C22-4 allele) or the CNS sequence (in N28) showed weak methylation

Figure 4 Results of the ultra-
deep amplicon bisulfite sequenc-
ing at the conserved noncoding
sequence/miniature transposon
(CNS/MITE) region for the lines
N28 and C22-4 at the V3 stage.
Mean values are shown; standard
deviation values are shown as
bars. Methylation data points are
represented in different colors,
according to cytosine context:
red for CG, blue for CHG, green
for CHH. Top: methylation level
(% of cytosine methylation as esti-
mated by the Kismeth software,
black vertical bars) for each cyto-
sine within the sequence 6172920
bp of theN28 (late) allele. The gray
block represents the site of MITE
insertion (not present in the N28
allele). The orange dotted lines
highlight the CNS sequence. Mid-
dle: the green bar represents the
N28-Vgt1 locus, with black dotted
lines indicating the regions for
which methylation has been ex-
plored in this experiment. Bottom:
methylation level estimated for
each cytosine of the C22-4
(early) allele within the region
corresponding to the sequence

6432792 bp of the N28 allele. The gray blocks define regions within Vgt1 that have not been tested in this analysis for the C22-4 allele with
respect to N28. The light blue dotted lines delimitate the MITE insertion, which is present in C22-4 only. The black � indicates a significantly
differentially methylated cytosine between N28 and C22-4 (P , 0.01, LSD). The orange � indicates significant difference in methylation at the
cytosine included in the CNS region.

Figure 3 Portion of bisulfite se-
quencing (Sanger) chromatograms
for the ‘Ampl bis-Sanger’ amplicon
(157021921 bp) showing the dif-
ferentially methylated cytosine
C-1761.
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and the CNS was completely unmethylated (0%), whereas cytosines

in all the three possible context were heavily methylated within the

MITE transposon (average 84.6% with 85.1% CG, 88.7% CHG, and

84.0% CHH) (Figure 5 and Figure S8). Among the 26 cytosines

shared between the two alleles and surveyed in this experiment, eight

are more methylated in the C22-4 allele (two tailed t-test, P , 0.01),

this being more evident for the residues adjacent to the MITE trans-

poson. The four cytosines within the CNS displayed a higher level of

methylation in C22-4 (P , 0.01), as observed in the inbred line-

based experiment.

ZmRap2.7 allele-specific expression assay

In a previous work, Vgt1 was shown to be a cis-regulator of ZmRap2.7

transcription (Salvi et al. 2007). To test the correlation between cyto-

sine methylation at Vgt1 and expression of the two alleles of

ZmRap2.7, we performed an allele-specific TaqMan expression assay

on the same N28 · C22-4 F1 plants analyzed for methylation. At all

stages, the N28 transcript was more abundant than C22-4; moreover,

the ratio of allele expression N28/C22-4 significantly increased during

development (two-tailed t-test, P , 0.05. Table 1).

Methylation at the CNS within Vgt1 is conserved
between maize and sorghum

By means of bisulfite sequencing, we analyzed cytosine methylation at

the sorghum 438-bp region including the CNS sequence which is

syntenic to the maize Vgt1-associated CNS. DNA methylation was no-

tably low at the four cytosines contained in the CNS itself (2.1%, on

average) and at nearby cytosines, with values comparable with those

detected at the CNS in N28 (1.1%). Moving away from the CNS, the

level of methylation increased substantially on both sides (Figure 6 and

Figure S9). Comparing the two stages of development, we observed that

average methylation was higher in the V7 phase (P , 0.01).

DISCUSSION

Vgt1 pattern of methylation

Methylation analysis at Vgt1 revealed that the N28 (late) and C22-4

(Gaspé Flint-originated, early) alleles differ significantly in cytosine

methylation patterns. In particular, sequencing of the region encom-

passing the CNS/MITE sequence showed that the MITE transposon is

heavily methylated and that this state is also present (at least at short

Figure 5 Results of the Sanger
bisulfite sequencing at the CNS/
MITE region within Vgt1 for the
N28xC22-4 F1 hybrid line at
the V3 stage. Mean values
are shown; standard deviation
values are shown as bars.
Methylation data points are
represented in different col-
ors, according to cytosine con-
text: red for CG, blue for CHG,
green for CHH. Top: methy-
lation level (% of cytosine
methylation as estimated by
the Mutation Surveyor soft-
ware, black vertical bars) esti-
mated for each cytosine of
the N28 (late) allele. Middle:
the green bar represents the
N28-Vgt1 locus with black
dotted lines indicating the
regions for which methylation
has been explored in this exper-
iment. Bottom: methylation level
estimated for each cytosine of
the C22-4 (early) allele. The
two light blue dotted lines indi-
cate the MITE insertion; the or-
ange dotted lines highlight the
CNS sequence. The black � indi-
cates a significantly differentially

methylated cytosine between N28 and C22-4 (P , 0.01, two tailed t-test). The orange � indicates a significant difference in methylation at the
cytosine included in the CNS region. CNS/MITE, conserved noncoding sequence/miniature transposon.

n Table 1 Allele-specific expression assay

First Leaf Third Leaf Fifth Leaf Seventh Leaf

N28 expression proportion 0.52 (a) 0.57 (ab) 0.61 (b) 0.62 (b)

Results of allele specific expression assay, performed on the N28xC22-4 F1 hybrid line at four developmental stages. The values represent the proportion of the N28
allele transcript abundance over C22-4 transcript abundance. Different letters (a2b) indicate significant difference (P , 0.01, Fisher LSD). Letters shared between two
groups (i.e., a, ab) indicate a nonsignificant difference.
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distance) at cytosine residues lying outside the boundaries of the TE

itself, including cytosines belonging to the CNS sequence in the early

Vgt1 allele. Furthermore, the methylation state of the two alleles is

stably maintained, as the methylation pattern of single alleles did not

change when assayed in F1 hybrid plants.

MITE insertions can alter methylation at adjacent sites
and impact gene expression

MITE transposon insertions such as the one observed at Vgt1 have

been repeatedly shown to be associated with QTL for agronomic traits

in crops (Guillet-Claude et al. 2004; Magalhaes et al. 2007; Studer et al.

2011; Hou et al. 2012; Zerjal et al. 2012). In most cases, the MITE

insertion seemed to act by disrupting a regulatory element of a nearby

gene. The detailed molecular mechanisms by which a MITE insertion

affects gene expression have not been elucidated and could include,

besides the interruption of a transcription factor recognition sequence,

the production of stable secondary chromatin structure (Bureau and

Wessler 1992) and/or change in chromatin state due the action of

siRNA, as shown by the fact that MITEs can be both target and source

of siRNA (Kuang et al. 2009; Lu et al. 2011). Methylation changes

induced by siRNA could also directly or indirectly affect the expression

of nearby genes.

In plants, small interfering heterochromatic RNAs (24 nt in

length) are involved in the formation of heterochromatin by guiding

the action of the RNAi machinery against target DNA sequences

(typically repeats and transposable elements), which as a result become

methylated (Matzke et al. 2007; Daxinger et al. 2009; Hale et al. 2009;

Simon and Meyers 2011). We looked for siRNA potentially targeting

the Vgt1 region using available small RNA libraries from the inbred

line B73 (GEO accession number GSE17339) and the mop1-1 mutant

(GEO accession number GSE12173) (Nobuta et al. 2008); we aligned

the reads using both Vgt1 N28 and Vgt1 C22-4 as reference sequences.

A negligible number of hits were found when Vgt1 N28 was the

reference. As an example, with the B73 tassel library we observed that

1537 of the 1786 distinct sequences matching Vgt1 C22-4 are 24-mers

reads. In particular, the reads corresponding to the small RNA

AAUCCACAUGGAUUGAGAGCUAAC, whose putative target se-

quence lies within the MITE transposon, represent over half of the

sequences aligning against Vgt1 C22-4. As expected, the abundance

of such 24-mer is dramatically reduced in the mop1-1 mutant. A

siRNA directed against the same sequence was found to potentially

target another MITE whose insertion at the ZmV1-9 locus on chro-

mosome 1 is associated to late male flowering phenotypes (Zerjal

et al. 2012). This small RNA has hundreds of matches to many

genomic locations, which precludes establishing an unambiguous

connection to the Vgt1 locus. This notwithstanding, it might play

an important role in silencing and in accordance with our results we

hypothesize that the binding of the small RNA is responsible for the

heavy methylation of its target site within Vgt1 and possibly of the

methylation spreading to the adjacent sequences. As a supporting

evidence to this hypothesis, our data showed that asymmetric CHH

methylation, which is established and maintained via the RdDM pathway

(Law and Jacobsen 2010), is extremely high across the MITE transposon.

Spreading of methylation from the MITE insertion to other

regulatory sequences could be part of the molecular mechanism

involved in translating the effect of MITE insertion in promoters and/

or enhancers of Vgt1. In fact, heterochromatin spreading has been

proposed as one of the mechanisms impacting gene regulation on a

genome-wide scale as a consequence of transposon insertion in maize

(Eichten et al. 2011).

Propagation of DNA methylation from transposons to adjacent

regulatory sequences has been observed for at least another locus in

maize, the p1 gene, which is involved in the biosynthesis of phloba-

phene pigments (Grotewold et al. 1994). In this case, the differential

expression of the two epialleles P1-rr and P1-pr appears to arise from

different cytosine methylation patterns at a distal enhancer located

upstream the TSS, caused by a leakage of methylation from the hyper-

methylated nearby hAT and MULE elements that affects only the P1-

pr silenced allele (Goettel and Messing 2013). Interestingly, also in this

example spreading of methylation seemed to occur from transposons

belonging to the MITE family, although this phenomenon did not

contribute to obvious phenotypic variation.

A complex network controls ZmRap2.7 expression

The lack of a perfect correlation between levels of ZmRap2.7 gene

expression and genotype (and methylation state) at Vgt1 is likely

due to the complexity of ZmRap2.7 gene expression regulation. Indeed,

besides Vgt1, ZmRap2.7 expression is likely to be under control of

miR172 (given the presence of miR172 target sequence in ZmRap2.7),

one of the most important and evolutionary ancient noncoding micro-

RNAs (Park et al. 2002; Chen 2004), which seems to act by targeting

mRNAs both by cleavage and translational repression (Zhu and Helliwell

Figure 6 Results of the ultra-deep
amplicon bisulfite sequencing of
a region spanning the nucleotides
2,212,717 - 2,213,154 on sorghum
chromosome 9 (JGI, v1.4) sur-
rounding the CNS sequence in
sorghum B.Tx623 at the V1
stage. On the y-axis, % of cyto-
sine methylation as estimated
by the Kismeth software. Methyl-
ation data points (mean values)
are represented in different col-
ors, according to cytosine con-
text: red for CG, blue for CHG,
green for CHH. The orange
dotted lines highlight the CNS
sequence. CNS, conserved non-
coding sequence.
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2011). In our case, a different genotypic architecture for the miR172

family among B73 (five miR172 loci are present in the B73 genome.

Zhu and Helliwell 2011), N28 and R22 could be responsible for

differential effects on ZmRap2.7 expression. Additionally, the ex-

pression of ZmRap2.7 could be under feedback regulation as shown

for the related gene AP-2 in Arabidopsis (Schwab et al. 2005). More-

over, in addition to the CNS/MITE region, other sites within Vgt1

might as well be involved in controlling ZmRap2.7 expression: in-

deed, our results highlight at least one site, nucleotide C-1761, that

shows not only differential methylation between the two alleles but

also an increasing methylation during development in the N28 allele.

Evolutionary conserved sequences share
common features

Vgt1-ZmRap2.7 was previously shown to correspond to a syntenic flow-

ering time QTL in sorghum (short arm of chr. 9) with relatively high

map resolution (1.9 cM, Mace et al. 2013; see also Brown et al. 2006 and

Feltus et al. 2006). We previously found that a CNS was shared between

maize Vgt1 and the syntenic region in sorghum and rice (Salvi et al.

2007). Our methylation results now showed that the maize and sorghum

Vgt1-related CNSs shared the same hypomethylation profile relative to

surrounding regions, a distinguished feature of chromatin regions in-

volved in the binding of transcription factors (Stadler et al. 2011;

Thurman et al. 2012). Moreover, a survey of the DNAmethylation maps

of four rice cultivars (Li et al. 2012) revealed that a similar pattern of low

methylation characterizes the CNS in this species as well (not shown).

A model for Vgt1 regulation of ZmRap2.7 expression

Although our results do not provide conclusive evidence of a causal

connection between differential methylation and Vgt1 effect, they show

a clear association between the MITE transposon insertion and hyper-

methylation at Vgt1. Based on these results, we propose a model in

which, in the Gaspé-Flint allele, (i) the interruption of the CNS se-

quence by the insertion of the MITE transposon, (ii) the hypermethy-

lation resulting from the presence of the MITE, or (iii) a combination

of both these features can influence the interaction between Vgt1 and

ZmRap2.7. This alteration, in early stages of development prior to

meristem transition, could reduce ZmRap2.7 transcription, which

eventually leads to early flowering. Further experimental evidence is

needed to support the present hypothesis. One possibility is to inves-

tigate Vgt1 function in an altered methylation context (e.g., by the use

of mutants in the methylation machinery, and/or by chemical modu-

lators. Baubec et al. 2009; Law and Jacobsen 2010). Additionally, the

study of DHS (DNaseI hypersensitivity) (Cockerill 2011) and histone

modifications such as dimethylation of H3 lysine 9 or trimethylation of

H3 lysine 27 (Locatelli et al. 2009) in the Vgt1-ZmRap2.7 region would

help to clarify if differential methylation observed at the two alleles is

related to the level of chromatin compaction at Vgt1 and how this state

could be transmitted to the ZmRap2.7 locus. The study of the three-

dimensional architecture of the Vgt1-ZmRap2.7 locus and long-range

interactions between DNA sequences by chromosome conformation

capture (Louwers et al. 2009; Crevillén et al. 2013) could also contrib-

ute to the understanding of the mechanism of action of Vgt1.
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