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A mitophagy‑related 
gene signature associated 
with prognosis and immune 
microenvironment in colorectal 
cancer
Cong Zhang1, Cailing Zeng1, Shaoquan Xiong1, Zewei Zhao2 & Guoyu Wu1*

Colorectal cancer (CRC) is a heterogeneous disease and one of the most prevalent malignancies 
worldwide. Previous research has demonstrated that mitophagy is crucial to developing colorectal 
cancer. This study aims to examine the association between mitophagy‑related genes and the 
prognosis of CRC patients. Gene expression profiles and clinical information of CRC patients were 
obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. 
Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) regression 
analysis were applied to establish a prognostic signature using mitophagy related genes. Kaplan–
Meier and receiver operating characteristic (ROC) curves were used to analyze patient survival and 
predictive accuracy. Meanwhile, we also used the Genomics of Drug Sensitivity in Cancer (GDSC) 
database and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to estimate the sensitivity 
of chemotherapy, targeted therapy and immunotherapy. ATG14 overexpression plasmid was used to 
regulate the ATG14 expression level in HCT116 and SW480 cell lines, and cell counting kit‑8, colony 
formation and transwell migration assay were performed to validate the function of ATG14 in CRC 
cells. A total of 22 mitophagy‑driven genes connected with CRC survival were identified, and then 
a novel prognostic signature was established based on 10 of them (AMBRA1, ATG14, MAP1LC3A, 
MAP1LC3B, OPTN, VDAC1, ATG5, CSNK2A2, MFN1, TOMM22). Patients were divided into high‑risk 
and low‑risk groups based on the median risk score, and the survival of patients in the high‑risk 
group was significantly shorter in both the training cohort and two independent cohorts. ROC curve 
showed that the area under the curves (AUC) of 1‑, 3‑ and 5‑year survival were 0.66, 0.66 and 0.64, 
respectively. Multivariate Cox regression analysis confirmed the independent prognostic value of 
the signature. Then we constructed a Nomogram combining the risk score, age and M stage, which 
had a concordance index of survival prediction of 0.77 (95% CI 0.71–0.83) and more robust predictive 
accuracy. Results showed that CD8+ T cells, regulatory T cells and activated NK cells were significantly 
more enriched in the high‑risk group. Furthermore, patients in the high‑risk group are more sensitive 
to targeted therapy or chemotherapy, including bosutinib, elesclomol, lenalidomide, midostaurin, 
pazopanib and sunitinib, while the low‑risk group is more likely to benefit from immunotherapy. 
Finally, in vitro study confirmed the oncogenic significance of ATG14 in both HCT116 and SW480 
cells, whose overexpression increased CRC cell proliferation, colony formation, and migration. In 
conclusion, we developed a novel mitophagy‑related gene signature that can be utilized not only as 
an independent predictive biomarker but also as a tool for tailoring personalizing treatment for CRC 
patients, and we confirmed ATG14 as a novel oncogene in CRC.

Colorectal cancer (CRC) is the third most common malignancy worldwide and is considered the second leading 
cause of cancer-related death, causing an estimated more than 800,000 deaths in  20181. It is a heterogeneous 
disease that develops as a result of the accumulation of mutations brought on by a combination of environmental, 
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genetic, and other risk factors over  time2. The main strategy for treating unresectable metastatic CRC is systemic 
therapy, including cytotoxic chemotherapy, biological therapy such as EGFR antibody, chemotherapy, immuno-
therapy and combination therapy. Among newly diagnosed colorectal cancer patients, 20% of them presented 
with metastatic disease, and another 25% with localized disease will develop metastases  later3. Although timely 
treatment can be initiated based on early detection results, the prognosis of patients with metastatic CRC (mCRC) 
remains poor, with a 5-year survival rate of only 12.5% for CRC patients in the United  States4,5. Therefore, disease 
metastasis and recurrence seriously affect CRC patients’  prognosis6. Even though immune checkpoint inhibitors 
have been reported to have achieved significant efficacy in a cohort of CRC  patients7–9, however, they remain 
ineffective in mismatch repair-proficient (pMMR) patients, including those with microsatellite stable (MSS) 
or microsatellite instability-low (MSI-L)10. Therefore, it is of clinical importance to determine CRC patients’ 
prognosis and which patients will benefit from immunotherapy.

Mitophagy, a selective autophagy process, is a fundamental mechanism controls the quality and quantity of 
mitochondria by degrading dysfunctional mitochondria, conserved from yeast to  humans11,12. It plays a crucial 
role in the survival of cancer cells by influencing the metabolic reprogramming of mitochondria in tumors 
and the accumulation/elimination rate of damaged mitochondria through different mechanisms to maintain 
mitochondrial  homeostasis12. On the other hand, previous studies have identified mutations or downregulation 
in the expression of some mitophagy adaptors in certain kinds of cancer, thus demonstrating the suppressive 
role for mitophagy on  tumors13. Recently, Chen et al. found that DJ-1 (Parkinson’s disease-associated protein 7, 
PARK7) activated mitophagy can remove dysfunctional mitochondria and inhibit the apoptosis of metastatic 
colorectal adenocarcinoma cells, thereby promoting the progression of CRC 14. Additionally, prior research has 
shown that Tanshinone IIA (Tan IIA) could modulate mitochondrial homeostasis by altering mitophagy, which 
has suppressive effects on CRC 15. Although previous research had revealed a link between genes associated with 
mitophagy and the prognosis in several cancer types, it had mostly concentrated on the function of a single gene.

In this study, we comprehensively assessed the prognostic value of mitophagy-related genes in CRC based on 
the expression profiles of the TCGA-CRC, GSE17536 and GSE24551 datasets. We finally screened 10 mitophagy-
related genes by Least absolute shrinkage and selection operator (LASSO) regression analysis, and built a risk 
model based on them to predict the prognosis of CRC. We also analyzed the clinical characteristics, gene muta-
tion profiles, tumor immune microenvironment, and drug sensitivity of CRC patients with different risk levels, 
and the results showed that the two risk groups of patients showed significantly different characteristics in these 
aspects. In conclusion, this model is helpful in predicting the prognosis of CRC patients and provide a reference 
for clinical chemotherapy and immunotherapy.

Materials and methods
Data curation. RNA sequencing (RNA-seq), clinicopathological information, and somatic mutation data 
of 354 CRC patients were retrieved and downloaded from The Cancer Genome Atlas program (TCGA, https:// 
portal. gdc. cancer. gov/) through cBioPortal for Cancer Genomics (https:// cbiop ortal. org/). Meantime, RNA-seq 
and clinicopathological information of 337 CRC patients (GSE17536 and GSE24551) were downloaded from the 
Gene Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/) database as two independent external 
validation cohorts. Forty-six mitophagy-related genes were obtained from the GO (http:// geneo ntolo gy. org/) 
and KEGG (https:// www. genome. jp/ kegg/) database.

Construction and validation of the prognostic gene signature. Univariate Cox proportional haz-
ard regression analysis was used to screen mitophagy-related genes associated with overall survival in the TCGA 
cohort (p < 0.1). To (indirectly) reduce the risk of a Type II error ("false negative"), we set the significance level 
as 0.1. The least absolute shrinkage and selection operator (LASSO) Cox regression model was performed to 
find the best gene signature from the genes obtained in univariate analysis by using the “glmnet” R package. The 
coefficient and expression of mitophagy related genes in the risk model were obtained, and the risk score of each 
patient was calculated. The formula is as follows: risk score = 

∑n
j=1

Exprgenej ∗ Coef genej , with Expr indicating the 
level of gene expression and Coef  representing the coefficient of gene. The median risk score was selected as the 
cutoff value to divide TCGA-CRC patients into high-risk group and low-risk group. Survival analysis between 
groups was conducted based on the overall survival data, and p < 0.05 was considered as statistically significant. 
Kaplan–Meier survival curves were plotted by the “survival” and “survminer” packages. To verify the accuracy 
and validity of signatures, “timeROC” R package was used to calculate the area under the curve (AUC) values 
at 1-, 3-, and 5-years derived from receiver operating characteristic (ROC) analysis. Prognostic gene signature 
was validated in two independent cohorts from GEO (GSE17536 and GSE24551). Univariate and multivariate 
Cox regression analyses were performed using clinical parameters and risk scores to assess the independent 
prognostic value of the signature.

Enriched pathway analysis. To analyze the potential functions of differential expressed genes of 
mitophagy-related signature, “clusterProfiler” R package was used for functional annotation of Gene Ontology 
(GO) and pathway enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG)16–18. GO enrich-
ment was carried out at three levels: cellular component (CC), biological process (BP) and molecular function 
(MF). To reveal biological process in the high-risk and low-risk groups, Gene Set Enrichment Analyses (GSEA) 
was performed by “ClusterProfiler” package in R studio. The false discovery rate (FDR) q < 0.01 was considered 
statistically significant.

Development of a nomogram. Then, a Nomogram prognostic prediction model was constructed based 
on risk scores, age, and M stage using the “rms” R package. AUC of the ROC curve, Harrell’s concordance index 
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(C-index), and calibration plots to compare predicted and observed overall survival were used to assess the 
prognostic performance of the established Nomogram. The closer the C-index is to 1, the higher the accuracy of 
the results predicted by the  model19.

Evaluation of infiltrating immune cells. CIBERSORT algorithm was used to calculate the tumor-infil-
trating immune  cells20. The algorithm is built on normalized gene expression data and a gene signature matrix 
(LM22) that annotates 22 different subtypes of immune cells, which data could be downloaded from The CIBER-
SORT web portal (https:// ciber sort. stanf ord. edu/). When p < 0.05, the immune cell infiltration abundance was 
considered statistically different between tumor samples from the two risk groups.

Mutation analysis. To explore somatic mutations in CRC patients between low- and high-risk group, 
we obtained the mutation annotation format (MAF) for TCGA-CRC from the TCGA database, and used the 
“maftools” R package for analysis and  visualization21.

Prediction of response to immunotherapy, chemotherapy, targeted therapy. Using the 
Genomics of Drug Sensitivity in Cancer (GDSC, https:// www. cance rrxge ne. org/) database to estimate the sensi-
tivity of each patient to chemotherapy drugs. Screening method for candidate small molecule drugs referred to 
previously published  article22. The  IC50 was quantified via “pRRophetic” R package. Tumor Immune Dysfunc-
tion and Exclusion (TIDE) algorithm (http:// tide. dfci. harva rd. edu/ login/)23 was used to evaluate the responses 
of ICB therapies in two groups.

In vitro analysis of the function of ATG14 in CRC . ATG14 overexpression. To regulate the expres-
sion level of ATG14 in CRC cells (HCT116 and SW480), pCMV plasmid was transfected using Lipofect8000 
(Thermo Fisher, MA, USA) to induce gene overexpression. pCMV-ATG14-GFP vectors and cDNAs for human 
ATG14 were obtained from COBIOER (Nanjing, China) and Sino Biological Inc (Beijing, China), respectively. 
Then, the expression level of ATG14 in normal and ATG-overexpressed HCT116 and SW480 cell lines were 
determined by western blotting. Anti-ATG14 primary antibody (#5504) and anti-β-actin primary antibody 
(#3700) were obtained from Cell Signaling Technology Co. (MA, USA).

Cell proliferation assay. Cell Counting Kit-8 was utilized to measure cellular proliferation (CCK8, Solarbio, 
China). In a 96-well plate, 2 ×  103 vector- or ATG14-overexpressed HCT116 and SW480 cells were planted per 
well. After 0, 24, 48, and 72 h of culture, samples were incubated with a 10% CCK-8 solution for three hours. 
Microplate reader was used to measure absorbance at 450 nm (Thermo Fisher, MA, USA).

Colony formation and transwell assay. Vector or ATG14 overexpressed HCT116 and SW480 cells were patented 
in a 6-well plate (5 ×  102 cells/well, Corning, USA) containing Roswell Park Memorial Institute 1640 complete 
culture medium. After 10 days, colonies (> 50 cells) were stained with crystal violet, and counted under a low 
magnification microscope (Leica, Germany). 5 ×  104 vector and ATG14 overexpressed cells were seeded in a 
transwell chamber (8 μm, Thermo Fisher, MA, USA) containing 300 μl culture medium (with 10% fetal bovine 
serum, FBS). Then, 1 ml FBS-free culture medium was added to a 24-well plate and after 24 h, the chamber was 
fixed with paraformaldehyde and stained with crystal violet. Migrating cell numbers were counted under the 
microscope (Leica, Germany).

Statistical analysis. Data were processed, analyzed and presented using the R software (v.4.0.3) and related 
software packages. Kaplan–Meier curves were used to describe the relationship between patient survival time 
and survival probability. We visualized the risk-related information through charts, including risk score distri-
bution, risk-related survival status, heat maps of prognostic genes, etc. The ROC analysis was used to analyze 
the sensitivity and specificity of survival prediction using the gene signature risk score, and using AUC as an 
indicator of prognostic accuracy. Univariate and multivariate Cox regression analysis were used to verify the 
independence of signatures. In addition, we assessed the correlation between the signature and clinical param-
eters. p < 0.05 was considered statistically significant.

Results
Construction of the prognostic signature based on mitophagy‑related genes. The flow of this 
study is shown in Supplementary Fig. 1. In order to identify prognostic mitophagy related genes, we performed 
univariate Cox regression analysis on these genes, and a total of 22 genes were identified have correlation with 
the OS of TCGA-CRC (Fig. 1A). Then, LASSO Cox regression analysis was applied, and 10 most prognostic 
genes (AMBRA1, ATG14, MAP1LC3A, MAP1LC3B, OPTN, VDAC1, ATG5, CSNK2A2, MFN1, TOMM22) asso-
ciated with mitophagy were screened out (Fig. 1B). Notably, the expression of ATG14, OPTN, MAP1LC3A, 
and MFN1 was significantly downregulated in tumors compared to normal controls, but the expression of 
AMBRA1, VDAC1, ATG5, and TOMM22 was significantly upregulated (p < 0.0001, Fig.  1C). The risk score 
was calculated according to their expression levels and Cox regression coefficients and the formula for cal-
culation is as follows: risk score = expression level of AMBRA1 * (− 0.0666731) + expression level of ATG14 * 
0.26819842 + expression level of MAP1LC3B * 0.03411786 + expression level of OPTN * 0.26292307 + expression 
level of VDAC1 * (− 0.16993759) + expression level of ATG5 * (− 0.31642485) + expression level of CSNK2A2 * 
0.07033702 + expression level of MAP1LC3A * 0.09318544 + expression level of MFN1 * (− 0.27707284) + expres-
sion level of TOMM22 * (-0.02760961). The characteristics of these genes were shown in Table 1.

https://cibersort.stanford.edu/
https://www.cancerrxgene.org/
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In order to categorize patients from the TCGA-CRC cohort into high and low risk groups, the median risk 
score was used as the threshold value. To distinguish prognostic differences between the high and low risk groups, 
a Kaplan–Meier curve based on a log-rank test was applied. The result demonstrated a statistically significant 
difference in OS between the two TCGA-CRC cohort groups, with patients in the high-risk group having a worse 
prognosis than that of patients in the low-risk group (median OS 67.3 months vs. not reached, p = 0.00059) 
(Fig. 2A). Then time-dependent ROC curve was used to verify the accuracy of the mitophagy gene signature 
and showed that the AUC of 1-, 3- and 5-year survival were 0.66, 0.66 and 0.64, respectively (Fig. 2B), indicating 

Figure 1.  Establishment of the prognostic gene signature based on 10-mitophagy-related genes. (A) The 
mitophagy related genes associated with CRC survival were selected by univariate Cox regression analysis. (B) 
Cross-validation for tuning parameter (lambda) screening in the least absolute shrinkage and selection operator 
(LASSO) regression model based on minimum criteria for OS. (C) Differential expression of the 10 selected 
genes between normal and CRC tissues.

Table 1.  General characteristics of genes in the prognostic gene signature.

Gene symbol Full name Hazard ratio p value Risk coefficient

AMBRA1 Autophagy and beclin 1 regulator 1 0.665151 0.071512 − 0.0666731

ATG14 Autophagy related 14 1.753384 0.014580 0.26819842

MAP1LC3A Microtubule associated protein 1 light chain 3 alpha 1.817103 0.017146 0.09318544

MAP1LC3B Microtubule associated protein 1 light chain 3 beta 2.245661 0.000424 0.03411786

OPTN Optineurin 1.698439 0.043684 0.26292307

VDAC1 Voltage dependent anion channel 1 0.531979 0.005017 − 0.16993759

ATG5 Autophagy related 5 0.504291 0.002621 − 0.31642485

CSNK2A2 Casein kinase 2 alpha 2 1.577459 0.069813 0.07033702

MFN1 Mitofusin 1 0.685683 0.093788 − 0.27707284

TOMM22 Translocase of outer mitochondrial membrane 22 0.549266 0.007467 − 0.02760961
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that the mitophagy signature possessed a reliable ability for predicting the prognosis of CRC patients. We then 
analyzed the relationship between risk score distribution and survival status of CRC patients in the TCGA cohort 
(Fig. 2C). Patient survival time reduced and the rate of survival rose as the patient’s risk score increased. The 
heatmap showed the expression profile of mitophagy related genes in high-risk and low-risk groups (Fig. 2D). 
Genes with HR > 1 was regarded as risk genes (ATG14, MAP1LC3B, OPTN, CSNK2A2, MAP1LC3A), whereas 
those with HR < 1 were considered as protective genes (AMBRA1, VDAC1, ATG5, MFN1, TOMM22). Samples 
from the high-risk group tended to overexpress risk genes; Patients in the low-risk category, however, have higher 
levels of protective gene expression.

Validation of the prognostic gene signature in the independent CRC cohorts. To validate the 
accuracy of this signature, we next evaluated the predictive ability of the mitophagy-related gene signature in 
different CRC cohorts (GSE17536 and GSE24551) from the GEO database. Similarly, the median risk score was 
used as a cutoff to classify patients in each dataset into high-risk and low-risk groups, respectively. Kaplan–Meier 
curves based on the log-rank test showed that the high-risk group had a worse prognosis than the low-risk 
group in both datasets (GSE17536, median OS 54.0 months vs. not reached, p = 0.0082; GSE24551, median OS 

Figure 2.  The prognostic value of the signature in the TCGA cohort. (A) Kaplan–Meier survival analysis for 
TCGA-CRC patients with high and low risk scores. (B) Time dependent ROC curve analysis of the risk score in 
TCGA cohort. (C) Risk score distribution and survival status for TCGA-CRC patients in high-risk and low-risk 
groups. (D) Heatmap of the mitophagy related genes expression profile for TCGA-CRC patients in high-risk 
and low-risk groups.
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7.7 months vs. not reached, p = 0.025; Fig. 3A,B). The relationship between the distribution of risk score and 
survival status for the two GEO-CRC cohorts were shown in Fig. 3C,D, which were similar to the results of 
TCGA-CRC cohort. In general, the mitophagy gene signature could stably and accurately predict the prognosis 
of CRC patients.

Independent prognostic value of the prognostic gene signature. Subsequently, we assessed the 
independent prognostic value of mitophagy gene signature. Univariate and multivariate Cox regression analyses 
were performed to evaluate whether signature-generated risk scores were independent of other clinical param-
eters (age, MSIsensor score, T, N, M stage) as prognostic factors for CRC patients. Univariate Cox regression 
analysis showed that in TCGA-CRC cohort, risk score, age, T, N, and M stage were significantly correlated with 
OS (Table 2). Multivariate Cox regression analysis showed that risk score was independently associated with OS 
in TCGA-CRC cohort (HR = 2.77, 95% CI 1.27–6.04, p < 0.05) (Table 2). These results further confirmed the high 
predictive accuracy of mitophagy gene signature, suggesting that the signature could be independently used to 
predict the prognosis of CRC patients.

Figure 3.  Validation of the prognostic signature in GSE17536 and GSE24551 cohort. (A, B) Kaplan–Meier 
survival analysis for GEO-CRC patients with high and low risk scores. (C, D) Risk score distribution and 
survival status for GEO-CRC patients in high-risk and low-risk groups.
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Relationships between the prognostic gene signature and clinical features. The CRC cohort 
from TCGA include a total of 354 patients whose demographic and clinical features were listed in Supplemen-
tary Table 1. We further analyzed the relationship between the gene signature and clinical parameters of the 
TCGA-CRC patients. The results showed that the risk scores of patients with positive lymph node metastasis 
(N1&2) were significantly higher than those without lymph node metastasis (p = 0.0029, Fig. 4A). Similar results 
were also observed in T stage (p = 0.048, Fig. 4B). However, the risk score was not significantly associated with 
age and M stage (Fig. 4C,D). Based on these clinical features, patients were stratified with different clinical fea-
ture to verify the effectiveness of the prognostic signature. The results showed that the signature could be well 
applied to each subgroup of N stage (Fig. 4E,F), age (Fig. 4G,H). However, under T and M stage stratification, 
the signature was only effective for patients with T 3&4 and or M0 stage (Fig. 4I–L), which may be attributed by 
limited the sample size. Additionally, in each stratum of these clinical characteristics, the OS of patients in the 
high-risk group was lower than that of patients in the low-risk group. In order to further explore the relationship 
between gene signature and microsatellite status in TCGA-CRC patients, we analyzed the correlation between 
risk score and microsatellite instability status in 347 CRC patients with this data, and the results showed that 
there was no difference in the risk score between MSI and non- MSI group (Fig. 4M). Meanwhile, regardless of 
whether patients were MSI or not, high-risk group showed significantly worse prognosis than the low-risk group 
(Fig. 4N,O). These results suggested that mitophagy related gene signature remained an important prognostic 
factor when stratifying CRC patients according to different clinical parameters.

Enrichment analysis of the mitophagy signature. We performed enrichment analysis of differen-
tially expressed genes (DEGs) in the high-risk and low-risk groups of the TCGA-CRC cohort. DEGs between 
high-risk and low-risk groups were determined by the cutoff  log2|FC| > 1 and FDR < 0.05, and annotated GO 
enrichment analysis and KEGG pathway analysis were then performed. GO analysis showed that the enrich-
ment results of DEGs mainly involved GOBP and GOCC (Fig. 5A). First, for GOBP, DEGs were significantly 
enriched in biological processes such as chromosome segregation, DNA replication; for GOCC, DEGs were 
significantly enriched in chromosomal regions, condensed chromosomes, centromeres, ribosomes, etc. KEGG 
analysis showed that DEGs were significantly enriched in pathways such as cell cycle, DNA replication, and Par-
kinson’s disease (Fig. 5B). In addition, we further performed protein–protein interaction network analysis on the 
DEGs (Fig. 5C). We found that DEGs exhibited close associations, among which the centrally located CCNB1 
and KPNA2 may have potential roles in tumor progression. GSEA analysis was performed based on high-risk 
and low-risk groups. As shown in Fig. 5D, the high-risk group was significantly correlated with extracellular 
matrix structural constituent (NES = 3.2) and ECM receptor interaction (NES = 2.48).

Construction and validation of the prognostic prediction Nomogram. To better predict the 
prognosis of CRC patients, we constructed a Nomogram combining the risk score, age and M stage (Fig. 6A). 
Calibration curves showed that for the TCGA-CRC cohort, actual and predicted survival matched very well 
(Fig. 6B). The C-index of the Nomogram was 0.77 (95% CI 0.71–0.83). The AUC of the 1-, 3- and 5-year overall 
survival predictions for the Nomogram were 0.81, 0.75, and 0.68, respectively (Fig. 6C).

Relationship between mitophagy signature and immune cell infiltration. To further explore the 
relationship between mitophagy-related gene signatures and antitumor immunity in CRC patients, we used 
the CIBERSORT algorithm to identify the immune cell infiltration of patients in TCGA-CRC. The proportion 
of each typical immune cell in the two risk groups is shown in Fig. 7A. Subsequently, we further compared the 
infiltrating abundance of immune cells in the high- and low-risk groups to explore whether there were differ-
ent immune patterns in the two risk groups. Results showed that the high-risk group had significantly more 
enriched CD8+ T cells, regulatory T cells, and activated NK cells, while the low-risk group had significantly 
more resting memory CD4+ T cells and resting mast cells instead (Fig. 7B).

Somatic mutation analysis of high‑ and low‑risk groups. By analyzing somatic mutation data from 
TCGA-CRC patients, we explored the differences in genomic alterations between high-risk and low-risk groups. 
The oncoprint map showed the top 20 genes with the highest prevalence in high-risk and low-risk groups, 
respectively (Fig. 8A,B). Missense mutations were the most common mutation type in both groups. Mutation 
frequency of APC, TP53, TTN, KRAS, MUC16 and SYNE1 were all over 30% in both the two groups.

Table 2.  Univariate and multivariate Cox regression analysis of overall survival in TCGA.

UniCox MultiCox

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Age 2.58 (1.59–4.19) 1.23E − 04 3.70 (2.05–6.68) 1.41E − 05

T stage 2.21 (1.02–4.82) 4.52E − 02 1.59 (0.55–4.56) 3.90E − 01

N stage 2.44 (1.55–3.85) 1.18E − 04 1.78 (0.98–3.23) 5.65E − 02

M stage 3.38 (1.98–5.78) 8.75E − 06 3.54 (1.87–6.70) 1.00E − 04

MSIsensor score 1.00 (0.98–1.02) 8.57E − 01 1.00 (0.97–1.02) 9.08E − 01

Risk score 4.51 (2.32–8.75) 8.44E − 06 2.77 (1.27–6.04) 1.05E − 02
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Prediction of sensitivity to chemotherapy drugs and immune checkpoint blockade (ICB). We 
compared the differences in the  IC50 levels of chemotherapy drugs or targeted drugs such as cisplatin, gemcit-
abine, sorafenib, and camptothecin in the high-risk group and the low-risk group. Data showed that the  IC50 lev-
els of bleomycin, cisplatin, etoposide, gemcitabine and sorafenib in the high-risk group were significantly higher 
than those in the low-risk group (Fig. 9A, p < 0.05). On the contrary, there were significantly lower  IC50 levels of 
bosutinib, elesclomol, lenalidomide, midostaurin, pazopanib, sunitinib in the high-risk group compared with 
the low-risk group (Fig. 9A, p < 0.05), indicating that the high-risk group was more sensitive to these drugs. In 
addition, the TIDE score of high-risk patients was higher than that of low-risk patients (Fig. 9B).

In summary, the high-risk group is more sensitive to bosutinib, elesclomol, lenalidomide, midostaurin, pazo-
panib, sunitinib, while the low-risk group is more likely to benefit from immunotherapy. In order to explore 
potential small-molecule drugs with inhibitory effects on colorectal cancer and promote the development of new 
drugs, we used the Connectivity Map (CMap) database to analyze the DEGs (divided into upregulated and down-
regulated groups) between the high-risk and low-risk groups. CMap is a gene expression profiling  database24. 
It is a biological application database established by an expert team based on the differentially expressed genes 
of human cells treated with small molecule drugs to reveal the correlation between small molecule drugs, gene 
expression and diseases. Finally, 14 small molecule drugs with anti-CRC progression effects were screened, 

Figure 4.  Association between pathologic characteristics and the prognostic signature in the TCGA cohort. 
(A–D, M) Distribution of the risk score in TCGA-CRC patients stratified by N stage, T stage, age, M stage and 
MSI. (E–L, N, O) The high-risk group showed a poor prognosis than the low-risk group in different clinical 
stratification.
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including adiphenine, atractyloside, bepridil, estradiol, genistein, gliclazide, isoflupredone, isoxicam, LY-294002, 
medrysone, nadolol, sirolimus, thioridazine, and trifluoperazine, involving 15 effects mechanism (Fig. 9C).

In vitro validation of the oncogenic function of ATG14 in CRC cells. As no prior study has eluci-
dated the precise function of ATG14 in CRC, we performed in vitro investigation to confirm if it is an oncogene 
in CRC as suggested by silicon analysis. By using the pCMV plasmid plasmid, we successfully introduced CRC 
cell lines with ATG overexpression (Fig. 10A). In both HCT116 and SW480 cells, ATG14 overexpression signifi-
cantly promoted cell proliferation than those control cells (Fig. 10B). Meanwhile, we tested the effect of ATG14 
overexpression on the colony formation ability in HCT116 and SW480 cells, and found that upregulation of 
ATG14 significantly induced CRC colony formation (Fig. 10C). Furthermore, ATG14 overexpression also pro-
moted CRC migration which was revealed by the transwell migration assay in Fig. 10D.

Discussion
CRC is one of the most prevalent malignant tumors in the world, and its high recurrence and metastasis rates, but 
low early detection rate and limited therapy options, have garnered great  interest25,26. Mitophagy-related genes are 
a promising therapeutic target and prognostic indicator for colorectal cancer revealed by the growing evidence 
that mitophagy is inherently related to the progression and therapy of CRC 27–29. However, the comprehensive 
involvement of mitophagy-related genes in the prognosis of CRC remains poorly understood.

Figure 5.  GO, KEGG, protein–protein interaction (PPI) network and GSEA analysis. (A) GO and (B) KEGG 
analysis of 10 mitophagy related genes. (C) PPI network of mitophagy related genes, revealing their intrinsic 
connections. (D) GSEA analysis of the mitophagy related genes between high and low risk groups.
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In this study, we analyzed mitophagy related genes and identified 22 genes associated with CRC survival. 
Through LASSO regression analysis, 10 mitophagy related genes (AMBRA1, ATG14, MAP1LC3A, MAP1LC3B, 
OPTN, VDAC1, ATG5, CSNK2A2, MFN1, TOMM22) were screened out. Previous evidence has supported that 
some of these mitophagy-related genes involving in the development of CRC. For example, AMBRA1 is a key 
regulator of autophagy and apoptosis in CRC cells, maintaining the balance between autophagy and apoptosis 
by interacting with  Beclin130. Du et al. found that OPTN can be used to predict the prognosis of CRC  patients31. 
Except that, VDAC1 mRNA and protein were significantly upregulated in CRC, and inhibition of VDAC1/
AMPK/mTOR pathway could significantly inhibit the proliferation, metastasis and invasion of CRC  cells32. 
ATG5 depletion can inhibit or promote CRC tumor  growth33. A recent study suggested that ATG5 acts as a tumor 
promoter in CRC metastasis and drug  resistance34. CSNK2A2 suppresses apoptosis in CRC by desensitizing 
cells to TRAIL in a caspase-dependent manner but NF-κβ  independent35. ATG14, MAP1LC3A and MAP1LC3B 
have also been confirmed to be abnormally expressed in CRC and affect the development of CRC  tumors36–38. 
However, there is no previous study investigating the role of MFN1 and TOMM22 in the progression of CRC, 
we are the first study revealing the tumor suppressor role of these two genes, Especially TOMM22 which was 

Figure 6.  The Nomogram for predicting overall survival of CRC patients. (A) The Nomogram integrating 
the signature risk score with the pathologic characteristics for predicting OS. (B) The calibration curve for the 
Nomogram in TCGA cohort. (C) Time dependent ROC curve analysis of the Nomogram in TCGA cohort.
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overexpressed in the tumor samples. Enrichment analysis of DEGs also showed that these genes were enriched in 
“ECM structural constituent” and “ECM receptor interaction” pathways. Studies have shown that the abnormal 
expression of ECM protein is associated with the carcinogenesis and poor prognosis of CRC 39,40.

The prognostic signature constructed based on the expression of the 10 genes above showed accurate and 
robust prognostic prediction capacity in TCGA-CRC and external independent GEO-CRC cohort. Patients with 
high-risk scores had significantly worse outcomes. When patients were stratified by traditional risk features 
such as age, TNM stage and MSI, mitophagy-related signature still retained its predictive ability to distinguish 
high-risk patients. Compared with the traditional risk features of age and M stage, the mitophagy-related sig-
nature was more accurate in predicting the prognosis of CRC patients (Supplementary Fig. 2). In addition, we 

Figure 7.  The association of the prognostic signature and immune cell infiltration. (A) The distribution of 22 
immune cells in each TCGA-CRC patient. (B) Boxplots showed the differences in immune cell infiltrations 
between high-risk and low-risk groups.
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generated a Nomogram to quantify the risk assessment and survival probability based on risk score, age and 
M stage. Compared to the above factors, the Nomogram exhibited the highest accuracy and discrimination in 
survival prediction.

CRC patients will finally develop resistance to  chemotherapy41, thus novel therapeutic strategies are needed. 
Our analysis showed that high risk patients were more sensitive to bosutinib, elesclomol, lenalidomide, midos-
taurin, pazopanib, and sunitinib. Among them, bosutinib (SKI-606) could reduce the growth and motility of 
CRC cells by preventing pp60(c-Src)-dependent β-catenin tyrosine phosphorylation and its nuclear signaling, 
and may be a promising choice for the treating CRC 42. Additional in vitro studies have shown that elesclomol-
induced copper chelation inhibits CRC by targeting ATP7A and modulating  ferroptosis43. Lenalidomide induces 

Figure 8.  Mutation landscape of the prognostic signature in TCGA cohort. Waterfall plots of frequently 
mutated genes in (A) high-risk and (B) low-risk groups.
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tumor vessel normalization and improves the therapeutic index of chemotherapy in metastatic CRC in vivo, 
but further studies are needed to explore the synergistic effect between lenalidomide and conventional therapy 
to treat solid tumors that may benefit from tumor vasculature  normalization44. A recent animal experiment 
showed that PAZ inhibited the growth of CRC, and inhibited lymph node metastasis and lymph angiogenesis in 
an orthotopic colon cancer model in nude  mice45. Additionally, although sunitinib has little benefit in patients 
with solid tumors including CRC, it has a synergistic inhibitory effect on CRC cell proliferation when sunitinib 
is combined with BBSKE, which may be a potential CRC treatment  strategy46.

Mismatch repair-deficient/microsatellite instable (dMMR/MSI) CRC tumors are highly infiltrated by immune 
 cells47, and the effectiveness of ICB in dMMR/MSI mCRC has been widely  demonstrated48–51, but ICB has shown 
poor efficacy in pMMR/MSS CRC 52. PMMR/MSS CRC patients present with distinct immune profiles, giving evi-
dence of different immune escape mechanisms, which can be overcome by individualized  immunotherapy53. The 
composition of the tumor microenvironment has been shown to influence ICB  responses54. ICB works by rein-
vigorating an effective anti-tumor immune response by using immune cell infiltration (primarily T cells) within 
the  tumor54. The degree of immune cell infiltration plays a crucial role in the prognosis of CRC  patients55,56. A 
recent study showed that resting CD4 memory T cells were the protective factor of CRC and could be used as an 
independent prognostic  factor57. In various cancers, resting CD4 memory T cells were associated with increased 
overall survival, so the frequency of resting CD4 memory T cells predicted better  survival58–60. And the level of 
mast cell infiltration in CRC is positively correlated with good  prognosis61. In our study, the infiltrating abun-
dance of resting CD4 memory T cells and resting mast cells was significantly higher in the low-risk group than 
in the high-risk group. This further confirms the accuracy of CD4 memory T cells and mast cells as predictors 
of CRC prognosis. Additionally, our high-risk group had higher levels of regulatory T (Treg) cell infiltration 

Figure 9.  Differences in response to chemotherapy and immunotherapy among high- and low-risk group. (A) 
Boxplots describe the differences in  IC50 levels of common chemotherapeutic agents or targeted agents between 
high-risk and low-risk groups. (B) The boxplot showed the differences of TIDE scores between the two groups. 
(C) Heatmap showed small-molecule compounds and their drug mechanisms of action.
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compared to the low-risk group, suggesting that Treg cells may contribute to CRC progression. Some previous 
studies have found that tumor Treg cell infiltration cannot predict the prognosis of CRC 62,63. However, increased 
Treg cell density was associated with poor tumor differentiation and increased lymph node  involvement62. Treg 
cells comprise a heterogeneous subset, some of which contribute to the progression of CRC, such as  CD8+ Treg 
cells, RORγt+ Treg cells and IL-17-producing Treg  cells64–66.

Different numbers, phenotypes, and localization of tumor-infiltrating lymphocytes are not only key regula-
tors of disease progression, but also potential biomarkers for predicting immunotherapy  response67. This shows 
the potential of our signature in predicting tumor immune microenvironment of CRC, which might benefit 
the immunotherapy. TIDE computational method, which integrates the expression signatures of T cell dys-
function and T cell exclusion to simulate tumor immune escape, can predict clinical response to ICB based on 
pre-treatment tumor  profiles23. We then used the TIDE method to predict the response of high-risk score and 
low-risk score CRC patients to ICB therapy. TIDE score was significantly higher in high-risk group, suggest-
ing that low-risk patients were more sensitive to ICB therapy. Thus, our signature had the potency for assisting 
oncologists to decide which patients are likely to respond to ICB in order to take the best course of treatment.

In conclusion, we constructed a signature that could predict the prognosis of CRC patients based on 
mitophagy related genes and could be used as an independent prognostic factor. The signature could also reflect 

Figure 10.  Validation of the function of ATG14 in CRC cell lines. (A) Western blotting of ATG14 and beta-
actin in vector or ATG14 overexpressed HCT116 and SW480 cells; (B) Cell proliferation of vector or ATG14 
overexpressed HCT116 and SW480. (C) Colony formation of vector or ATG14 overexpressed HCT116 and 
SW480. (D) Cell migration of vector or ATG14 overexpressed HCT116 and SW480, determined by Transwell 
assay, scale bar, 100 μm. *p < 0.05; **p < 0.01.
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the immune status of CRC patients to a certain extent. Our findings suggest that the prognostic signature may 
be useful for personalized treatment in clinical settings.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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