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Abstract

This paper explores two new aspects of photos and

human emotions. First, we show through psychovisual

studies that different people have different emotional reac-

tions to the same image, which is a strong and novel depar-

ture from previous work that only records and predicts a

single dominant emotion for each image. Our studies also

show that the same person may have multiple emotional

reactions to one image. Predicting emotions in “distribu-

tions” instead of a single dominant emotion is important for

many applications. Second, we show not only that we can

often change the evoked emotion of an image by adjusting

color tone and texture related features but also that we can

choose in which “emotional direction” this change occurs

by selecting a target image. In addition, we present a new

database, Emotion6, containing distributions of emotions.

1. Introduction

Images are emotionally powerful. An image can evoke a

strong emotion in the viewer. In fact, photographers often

construct images to elicit a specific response by the viewer.

By using different filters and photographing techniques,

photographs of the same scene may elicit very different

emotions. Motivated by this fact, we aim to mimic this

process after the image was taken. That is, we wish to

change an image’s original evoked emotion to a new one

by changing its low-level properties.

Further, the viewer’s emotion may be sometimes affected

in a way that was unexpected by the photographer. For

example, an image of a hot air balloon may evoke feelings

of joy to some observers (who crave adventure), but fear in

others (who have fear of heights). We address the fact that

people have different evoked emotions by collecting and

predicting the distributions of emotional responses when an

image is viewed by a large population. We also address

the fact that the same person may have multiple emotions

evoked by one image by allowing the subjects to record

multiple emotional responses to one image.

This paper proposes a framework for transferring the

Figure 1. An example of transferring evoked emotion distribu-

tion. We transform the color tone and texture related features

of the source to those of the target. The ground truth proba-

bility distribution of the evoked emotion is shown under each

image, supporting that the color modification makes the source

image more joyful. A quantitative evaluation measuring the simi-

larity of two probability distributions with four metrics M (M ∈
{KLD,BC,CD,EMD}) (see Sec. 5) is shown on the right,

where DMs
is the distance between source and target distribu-

tions, and DM
tr

is the distance between transformed and target

distributions. For each metric, the better number is displayed in

bold. By any of the 4 measures, the transformed image evokes

more similar emotions to the target image versus the source image.

distribution of evoked emotion of an input image without

severely interfering with the high-level semantic content of

the original image. Since we work with emotion distribu-

tions, we propose a novel approach for emotion transfer that

includes choosing an image representing the target emotion

distribution. Using a target image for emotion transfer is

intuitive and allows an operator to change multiple emotion

dimensions simultaneously. Figure 1 shows an example of

transferring evoked emotion distribution, where the trans-

formed image evokes (versus the source) emotions more

similar to those of the target image. Further, we build a

model to predict the evoked emotion that a population of

observers has when viewing a particular image.

We make the following contributions: 1) We show

that different people have different emotional reactions to

an image and that the same person may have multiple

emotional reactions to an image. Our proposed database,

Emotion6, addresses both findings by modeling emotion

distributions. 2) We use a convolutional neural network

(CNN) to predict emotion distributions, rather than simply
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predicting a single dominant emotion, evoked by an image.

Our predictor of emotion distributions for Emotion6 can

serve as a better baseline than using support vector regres-

sion (SVR) with the features from previous works [20,

28, 30] for future researchers. We also predict emotions

in the traditional setting of affective image classification,

showing that CNN outperforms Wang’s method [30] on

Artphoto dataset [20]. 3) This paper introduces the appli-

cation of transferring the evoked emotion distribution from

one image to another. With the support of a large-scale

(600 images) user study, we successfully adjust the evoked

emotion distribution of an image toward that of a target

image without changing the high-level semantics.

2. Prior Work

In computer vision, image classification based on

abstract concepts has recently received a great deal of focus.

Aesthetic quality estimation [14] and affective image clas-

sification [20, 28, 30] are two typical examples. However,

these two abstract concepts are fundamentally different

because the evoked emotion of an image is not equiva-

lent to aesthetic quality. For example, one may feel joyful

after viewing either amateur or expert photos, and aestheti-

cally ideal images may elicit either happy or sad emotions.

Moreover, aesthetic quality is a one-dimensional attribute,

whereas emotions are not [10].

In most previous works on affective image classifica-

tion [3, 15, 20, 28, 30], image features are used solely for

classification. Relatively few works address manipulating

an image’s evoked emotion by editing the image. Wang

et al. [29] associate color themes with emotion keywords

using art theory and transform the color theme of the input

image to the desired one. However, most results in their

work deal with cartoon-like images, and they only use few

examples. Also showing few examples, Peng et al. [24]

propose a framework for changing the image emotion by

randomly sampling from a set of possible target images

and using an emotion predictor. In contrast with Peng’s

method [24], our proposed method of emotion transfer

does not need random sampling or a predefined set of

target images, and performance on a large set (600 images)

is deeply analyzed. Jun et al. [16] show that pleasure

and excitement are affected by changes in brightness and

contrast. However, changing these two features can only

produce limited variation of the input image. Here, we

modify the color tone and texture related features of an

image to transfer the evoked emotion distribution. We also

show that the change of the evoked emotion distribution is

consistent with the ground truth from our user study.

To modify the evoked emotion of an image, one

may predict how the image transformation affects image

features. This is not a trivial task. Some image attributes

have well-established transformation methods, such as

color histogram reshaping [12, 25], texture transfer [8],

edge histogram specification [22], etc. However, most of

these works belong to the domain of image processing,

and have not considered the affective interpretation of the

image edits. This is an important part of our goal. We use

these image editing tools and focus on building connections

between the processed images and the evoked emotions,

and we show that it is often possible to change the evoked

emotion distribution of an image towards that of a target

image.

In predicting the emotion responses evoked by an

image, researchers conduct experiments on various types

of images. Wang et al. [30] perform affective image

classification on artistic photos or abstract paintings, but

Solli and Lenz [28] use Internet images. Machajdik and

Hanbury [20] use both artistic and realistic images in their

experiment. The fact that groups of people seldom agree

on the evoked emotion [14] and that even a person may

have multiple emotions evoked by one image, are ignored

by previous works. According to the statistics of Emotion6,

the image database we collect in Sec. 3, more than half

of the subjects have emotion responses different from the

dominant emotion. Our statistics also show that ∼22%

of all the subjects’ responses select ≥2 emotion keywords

to describe one subject’s evoked emotions. Both of these

observations support our assertion that emotion should be

represented as a distribution rather than as a single domi-

nant emotion. Further, predicting emotions by distribution

rather than as a single dominant emotion is important for

practical applications. For example, a company has two

possible ads arousing different emotion distributions (ad1:

60% joy and 40% surprise; ad2: 70% joy and 30% fear).

Though ad2 elicits joy with higher probability than ad1

does, the company may choose ad1 instead of ad2 because

ad2 arouses negative emotion in some part of the popula-

tion.

In psychology, researchers have been interested in

emotions for decades, leading to three major approaches –

“basic emotion”, “appraisal”, and “psychological construc-

tionist” traditions [11]. With debate on these approaches,

psychologists designed different kinds of models for

explaining fundamental emotions based on various criteria.

Ortony and Turner [23] summarized some past theories

of basic emotions, and even now, there is not complete

consensus among psychologists. One of the most popular

frameworks in the emotion field proposed by Russell [26],

the valence–arousal (VA) model, characterizes emotions in

VA dimensions, where valence describes the emotion in the

scale of positive to negative emotion, while arousal indi-

cates the degree of stimulation or excitement. We adopt VA

model as part of emotion prediction. In terms of emotion

categories, we adopt Ekman’s six basic emotions [9], which

details are explained in Sec. 3.



Issues of previous databases Explanation and how Emotion6 solves the issues

Ad-hoc categories Previous databases select emotion categories without psychological background, but Emotion6 uses Ekman’s 6 basic

emotions [9] as categories.

Unbalanced categories Previous databases have unbalanced proportion of images from each category, but Emotion6 has balanced categories

with 330 images per category.

Single category per image Assigning each image to only one category (dominant emotion), previous databases ignore that the evoked emotion can

vary between observers [14]. Emotion6 expresses the emotion associated with each image in probability distribution.

Table 1. The issues of previous emotion image databases and how our proposed database, Emotion6, solves these issues.

Figure 2. Example images of Emotion6 with the corresponding ground truth. The emotion keyword used to search each image is displayed

on the top. The graph below each image shows the probability distribution of evoked emotions of that image. The bottom two numbers are

valence–arousal (VA) scores in SAM 9-point scale [1].

To recognize and classify different emotions, scientists

build connections between emotions and various types of

input data including text [10], speech [7, 17], facial expres-

sions [7, 6], music [31], and gestures [7]. Among the

research related to emotions, we are interested in emotions

evoked by consumer photographs (not just artworks or

abstract images as in [30]). Unfortunately, the number of

related databases is relatively few compared to other areas

mentioned previously. These databases, such as IAPS [19],

GAPED [4], and emodb [28] have a few clear limita-

tions. We propose a new emotion database, Emotion6,

which the paper is mainly based on. Table 1 summarizes

how Emotion6 solves the limitations of previous databases.

Sec. 3 describes the details of Emotion6.

3. The Emotion6 Database

For each image in Emotion6, the following information

is collected by a user study: 1) The ground truth of VA

scores for evoked emotion. 2) The ground truth of emotion

distribution for evoked emotion. Consisting of 7 bins,

Ekman’s 6 basic emotions [9] and neutral, each emotion

distribution represents the probability that an image will

be classified into each bin by a subject. For both VA

scores, we adopt the Self-Assessment Manikin (SAM) 9-

point scale [1], which is also used in [19]. For the valence

scores, 1, 5, and 9 mean very negative, neutral, and very

positive emotions respectively. For the arousal scores, 1

(9) means the emotion has low (high) stimulating effect.

Figure 2 shows some images from Emotion6 with the corre-

sponding ground truth. The details about the selection of

emotion model/categories/images and the user study are

described in the following paragraphs. More statistics are

shown in the supplementary material. We will release the

database upon publication.

Emotion model and category selection: According to

the list of different theories of basic emotions [23], we use

Ekman’s six basic emotions [9] (anger, disgust, joy, fear,

sadness, and surprise) as the categories of Emotion6. Each

of these six emotions is adopted by at least three psycho-

logical theorists in [23], which provides a consensus for the

importance of each of these six emotions. We adopt the

valence–arousal (VA) model, in addition to using emotion

keywords as categories because we want to be consistent

with the previous databases where ground truth VA scores

are provided.

Image collection and user study: We collect the images

of Emotion6 from Flickr by using the 6 category keywords

and synonyms as search terms. High-level semantic content

of an image, including strong facial expressions, posed

humans, and text, influences the evoked emotion of an

image. However, one of our goals is to modify the image

at a low level (rather than modifying text or facial expres-

sions) to manipulate the evoked emotion. One could argue

that Emotion6 should not contain images with high-level

semantic concepts. However, this is not trivial because

the definition of high-level semantic contents is debatable.



Figure 3. Two screenshots of the interface of our user study on

AMT. Before the subject answers the questions (right image), we

provide instructions and an example (left image) explaining how

to answer the questions to the subject.

Therefore, we only remove the images containing apparent

human facial expressions or text directly related to the

evoked emotion because these two contents are shown to

have strong relationship to the emotion [7, 10]. In contrast

to the database emodb [28], that has no human moderation,

we examine each image in Emotion6 to remove erroneous

images. A total of 1980 images are collected, 330 for each

category, comparable to previous databases. Each image is

scaled to approximately VGA resolution while keeping the

original aspect ratio.

We use Amazon Mechanical Turk (AMT) to collect

emotional responses from subjects. For each image, each

subject rates the evoked emotion in terms of VA scores,

and chooses the keyword(s) best describing the evoked

emotion. We provide 7 emotion keywords (Ekman’s 6

basic emotions [9] and neutral), and the subject can select

multiple keywords for each image. Instead of directly

asking the subject to give VA scores, we rephrase the ques-

tions to be similar to GAPED [4]. Figure 3 shows two snap-

shots of the interface. To compare with previous databases,

we randomly extract a subset S containing 220 images from

GAPED [4] such that the proportion of each category in S

is the same as that of GAPED. We rejected the responses

from a few subjects who failed to demonstrate consistency

or provided a constant score for all images.

Each HIT on AMT contains 10 images, and we offer 10

cents to reward the subject’s completion of each HIT. In the

instructions, we inform the subject that the answers will be

examined by an algorithm that detects lazy or fraudulent

workers and only workers that pass will be paid. In each

HIT, the last image is from S, and the other 9 images are

from Emotion6. We create 220 different HITs for AMT

such that the following constraints are satisfied: 1) Each

HIT contains at least one image from each of 6 categories

(by keyword). 2) Images are ordered in such a way that the

frequency of an image from category i appearing after cate-

gory j is equal for all i, j. 3) Each image or HIT cannot be

rated more than once by the same subject, and each subject

cannot rate more than 55 different HITs. 4) Each image is

scored by 15 subjects.

Mean and standard deviation, in seconds, on each HIT

are 450 and 390 respectively. The minimum time spent on

1 HIT is 127 seconds, which is still reasonable. 432 unique

subjects took part in the experiment, rating 76.4 images on

average. After collecting the answers from the subjects,

we sort the VA scores, and average the middle 9 scores (to

remove outliers) to serve as ground truth. For emotion cate-

gory distribution, the ground truth of each category is the

average vote of that category across subjects. To provide

grounding for Emotion6, we compute the VA scores of the

images from S using the above method and compare them

with the ground truth provided by GAPED [4], where the

original scale 0∼100 is converted linearly to 1∼9 to be

consistent with our scale. The average of absolute differ-

ence of V (A) scores for these images is 1.006 (1.362) in

SAM 9-point scale [1], which is comparable in this highly

subjective domain.

4. Predicting Emotion Distributions

Randomly splitting Emotion6 into training and testing

sets with the proportion of 7:3, we propose three methods–

SVR, CNN, CNNR and compare their performance with

those of the three baselines. The details of the proposed

three methods are explained below.

SVR: Inspired by previous works on affective image

classification [20, 28, 30], we adopt features related to color,

edge, texture, saliency, and shape to create a normalized

759-dimensional feature set shown in Table 2. To verify the

affective classification ability of this feature set, we perform

the exact experiment from [20], using their database. The

average true positive per class is ∼60% for each category,

comparable to the results presented in [20].

We train one model for each emotion category using

the ground truth of the category in Emotion6 with Support

Vector Regression (SVR) provided in LIBSVM [2] with the

parameters of SVR learned by performing 5-fold cross vali-

dation on the training set. In the predicting phase, the prob-

abilities of all emotion categories are normalized such that

they sum up to 1. To assess the performance of SVR in

emotion classification, we compare the emotion with the

greatest prediction with the dominant emotion of the ground

truth. The accuracy of our model in this multi-class classi-

fication setting is 38.9%, which is about 2.7 times that of

random guessing (14.3%).

CNN and CNNR: In CNN, we use the exact convo-

lutional neural network in [18] except that the number of

output nodes is changed to 7 to represent the probability

of the input image being classified as each emotion cate-

gory in Emotion6. In CNNR, we train a regressor for each

emotion category in Emotion6 with the exact convolutional

neural network in [18] except that the number of output

nodes is changed to 1 to predict a real value and that the

softmax loss layer is replaced with the Euclidean loss layer.

In the predicting phase, the probabilities of all emotion cate-

gories are normalized to sum to 1. Using the Caffe imple-

mentation [13] and its default parameters for training the

ImageNet [5] model, we pre-train with the Caffe reference



Feature Type Dimension Description

Texture 24 Features from Gray-Level Co-occurrence Matrix (GLCM) including the mean, variance,

energy, entropy, contrast, and inverse difference moment [20].

3 Tamura features (coarseness, contrast and directionality) [20].

Composition 2 Rule of third (distance between salient regions and power points/lines) [30].

1 Diagonal dominance (distance between prominent lines and two diagonals) [30].

2 Symmetry (sum of intensity differences between pixels symmetric with respect to the

vertical/horizontal central line) [30].

3 Visual balance (distances of the center of the most salient region from the center of the

image, the vertical and horizontal central lines) [30].

Saliency 1 Difference of areas of the most/least saliency regions.

1 Color difference of the most/least saliency regions.

2 Difference of the sum of edge magnitude of the most/least saliency regions.

Color 80 Cascaded CIECAM02 color histograms (lightness, chroma, hue, brightness, and saturation)

in the most/least saliency regions.

Edge 512 Cascaded edge histograms (8 (8)-bin edge direction (magnitude) in RGB and gray chan-

nels) in the most/least saliency regions.

Shape 128 Fit an ellipse for every segment from color segmentation and compute the histogram of fit

ellipses in terms of angle (4 bins), the ratio of major and minor axes (4 bins), and area (4

bins) in the most/least saliency regions.

Table 2. The feature set we use for SVR in predicting emotion distributions.

Figure 4. Classification performance of CNN and Wang’s

method [30] with Artphoto dataset [20]. In 6 out of 8 emotion

categories, CNN outperforms Wang’s method [30].

model [13] and fine-tune the convolutional neural network

with our training set in both CNN and CNNR.

To show the efficacy of classification with the convo-

lutional neural network, we use CNN to perform binary

emotion classification with Artphoto dataset [20] under the

same experimental setting of Wang’s method [30]. In this

experiment, we change the number of output nodes to 2 and

train one binary classifier for each emotion under 1-vs-all

setting. We repeat the positive examples in the training set

such that the number of positive examples is the same as

that of the negative ones. Figure 4 shows that CNN outper-

forms Wang’s method [30] in 6 out of 8 emotion categories.

In terms of the average of average true positive per class of

all 8 emotion categories, CNN (64.724%) also outperforms

Wang’s method [30] (63.163%).

The preceding experiment shows that CNN achieves

state-of-art performance for emotion classification of

images. However, what we are really interested in is the

prediction of emotion distributions, which better capture the

range of human responses to an image. For this task, we use

CNNR as previously described, and show that its perfor-

mance is state-of-art for emotion distribution prediction.

We compare the predictions of our proposed three

Method 1 Method 2 PKLD PBC PCD PEMD

CNNR Uniform 0.742 0.783 0.692 0.756

CNNR Random 0.815 0.819 0.747 0.802

CNNR OD 0.997 0.840 0.857 0.759

CNNR SVR 0.625 0.660 0.571 0.620

CNNR CNN 0.934 0.810 0.842 0.805

Uniform OD 0.997 0.667 0.736 0.593

Method KLD BC CD EMD

Uniform 0.697 0.762 0.348 0.667

Random 0.978 0.721 0.367 0.727

OD 10.500 0.692 0.510 0.722

SVR 0.577 0.820 0.294 0.560

CNN 2.338 0.692 0.497 0.773

CNNR 0.480 0.847 0.265 0.503

Table 3. The performance of different methods for predicting

emotion distributions compared using PM and M (M ∈
{KLD,BC,CD,EMD}). The upper table shows PM , the

probability that Method 1 outperforms Method 2 with distance

metric M . Each row in the upper table shows that Method 1

outperforms Method 2 in all M . The lower table lists M , the

mean of M , of each method, showing that CNNR achieves better

M than the other methods listed here. CNNR performs the best

out of all the listed methods in terms of all PM s with better M .

methods with the following three baselines: 1) A uniform

distribution across all emotion categories. 2) A random

probability distribution. 3) Optimally dominant (OD) distri-

bution, a winner-take-all strategy where the emotion cate-

gory with highest probability in ground truth is set to 1,

and other emotion categories have zero probability. The

first two baselines represent chance guesses while the third

represents a best case scenario for any (prior art) multiclass

emotion classifier that outputs a single emotion.

We use four different distance metrics to evaluate

the similarity between two emotion distributions – KL-

Divergence (KLD), Bhattacharyya coefficient (BC),

Chebyshev distance (CD), and earth mover’s distance

(EMD) [21, 27]. Since KLD is not well defined when a

bin has value 0, we use a small value ε = 10−10 to approx-

imate the values in such bins. In computing EMD in our



Figure 5. The framework of transferring evoked emotion distribution by changing color and texture related features.

paper, we assume that each of the 7 dimensions (Ekman’s

6 basic emotions [9] and neutral) is such that the distance

between any two dimensions is the same. For KLD, CD

and EMD, lower is better. For BC, higher is better.

For each distance metric M , we use M and PM to eval-

uate the ranking between two algorithms, where M is the

mean of M , and PM in Table 3 (upper table) is the propor-

tion of images where Method 1 matches the ground truth

distribution more accurately than Method 2 according to

distance metric M . Method 1 is superior to Method 2

when PM exceeds 0.5. For the random distribution base-

line, we repeat 100000 times and report the average PM .

The results are in Table 3. CNNR outperforms SVR, CNN,

and the three baselines in both PM and M , and should be

considered as a standard baseline for future emotion distri-

bution research. Table 3 also shows that OD performs even

worse than uniform baseline. This shows that predicting

only one single emotion category like [20, 28, 30] does not

well model the fact that people have different emotional

responses to the same image and that the same person may

have multiple emotional responses to one image.

We also use CNNR to predict VA scores. CNNR outper-

forms the two baselines – guessing VA scores as the mode

of all VA scores and guessing VA scores uniformly, and has

comparable performance with respect to SVR. The detailed

results are in the supplementary material.

5. Transferring Evoked Emotion Distributions

In emotion transfer, the goal is to modify the evoked

emotion distribution of the source towards that of the target

image. We believe that selecting a target image is more

intuitive than specifying the numerical change of each bin

of evoked emotion distributions because the quantization

of emotion change may be unnatural for humans. Setting

up source and target images, we examine the differences

between the distributions before and after adjusting the

color tone and texture related features. We only change low-

level features because we do not want to severely change

the high-level semantics of the source image. The frame-

work of transferring evoked emotion distribution is illus-

trated in Figure 5. For each pair of source and target

images, we decompose the images into CIELab color space,

and modify the color tone in the ab- channels, and texture

related features in the L channel. For the color tone adjust-

ment, we adopt Pouli’s algorithm [25] with full transfor-

mation. For the adjustment of texture related features, we

first create the Laplacian pyramids Ls and Lt for source and

target images, respectively. Second, Ls (i) are scaled such

that the average of the absolute value of Ls (i) is the same

as that of Lt (i), where L (i) is the i-th level of the Lapla-

cian pyramid L. Finally, the modified Ls and the Gaus-

sian pyramid of the source image are used to reconstruct.

Figure 1 and 6 show the adjustment of the color tone and

texture related features.

To investigate whether the evoked emotion distributions

can be pushed towards any of the six directions via the trans-

ferring method, we experiment by moving neutral images

towards each of the other emotion categories. We construct

a set of source images Ss consisting of the 100 most

neutral images in Emotion6 in terms of the ground truth

of evoked emotion, and we use Emotion6 as the set of

target images St. For an image in Ss, each image in St

takes a turn as the target image and a corresponding trans-

formed image is produced using the method of Figure 5.

For each source image, 6 transformed-target pairs are

chosen (one for each of Ekman’s 6 basic emotions [9]

ei (i ∈ {1, 2, · · · , 6})) such that the transformed image trei
has the highest predicted probability in ei. These probabil-

ities are predicted by our classifier (Sec. 4) which takes an

image as input and outputs its evoked emotion distribution.

This results in 600 source-target-transformed triplets. We

put the transformed images of these 600 triplets on AMT

and collect the ground truth of the transformed images using

the same method when building Emotion6.

We use the metrics M ∈ {KLD,BC,CD,EMD}



Figure 6. Examples showing the feature transform in transferring evoked emotion distributions. For each example, DMs
and DM

tr
are

provided (M ∈ {KLD,BC,CD,EMD}) with better scores marked in bold. The ground truth of evoked emotion distribution from

AMT is provided under each image. In each example, the transformed image has closer evoked emotion distribution to that of the target

compared to the source in all 4 metrics.

Figure 7. Failure examples of transferring evoked emotion distributions. The ground truth of evoked emotion distribution from AMT is

provided under each image. For each example, DMs
and DM

tr
are provided (M ∈ {KLD,BC,CD,EMD}) with better scores marked

in bold. The results show that the evoked emotion distribution of the source does not move toward that of the target in these examples.

from Sec. 4 to evaluate the distance between two emotion

distributions. For each distance metric M (M ∈
{KLD,BC,CD,EMD}), we compute the distances

between: 1) source and target images DMs
= M (ds, dt).

2) transformed and target images DM
tr

= M (dtr, dt),
where ds, dt, and dtr are the ground truth probability distri-

butions of evoked emotion of the source, target, and trans-

formed images respectively. The results are reported in

terms of DMs
, DM

tr
, and PM , where PM represents the

probability that dtr is closer to dt than ds is, using metric

M . Table 4 shows that we shape ds toward dt successfully

in about 60∼70% of the cases in each ei. Figure 6 depicts

some examples with DMs
and DM

tr
computed from the

ground truth given by the user study, showing that our

feature transformation moves ds closer to dt in terms of all

4 metrics.

We also show some typical failure modes of emotion

transferring in Figure 7. There are two main reasons for

such failure cases: 1) ds may be mostly caused by the

high level semantics such that the modification in low-level

features can hardly shape ds closer to dt. 2) dt may be also

mostly caused by the high level semantics such that copying

the low-level features of the target cannot totally replicate

its emotional stimuli. More examples of transferring evoked

emotion and their emotion distributions are provided in the

supplementary material.

In an additional experiment, randomly selecting 6 target

images from St for each of 100 source images in Ss, we



Category Anger Disgust Fear Joy Sadness Surprise

PKLD 0.74 0.64 0.70 0.79 0.68 0.70

PBC 0.65 0.61 0.68 0.68 0.58 0.66

PCD 0.69 0.61 0.56 0.78 0.70 0.66

PEMD 0.64 0.69 0.72 0.79 0.63 0.80

Table 4. The results of transferring evoked emotion in terms of PM

(M ∈ {KLD,BC,CD,EMD}) in each category, which shows

that in more than a half cases, the transformed image has a closer

emotion distribution to the target (versus the source).

generate the corresponding 600 transformed images and

collect their emotion distributions judged by AMT with

the same setting as that of the previous experiment. The

resulting PM s are 0.67, 0.56, 0.62, and 0.61 for M =
KLD,BC,CD,EMD respectively, which shows that the

transformation produces an evoked emotion distribution

closer to the target (versus the source image) with 99%

confidence from binomial test.

To show that our framework of emotion transferring

actually transforms the evoked emotion distribution of the

source image towards that of the “correct” target, we

perform cross evaluation with the ground truth of 600

triplets. Assume tei is the corresponding target image

of trei given a source image. For each source image in

Ss, we compute all DMij
= M

(

dtei , dtrej

)

, ∀i, j ∈

{1, 2, · · · , 6}, where dtei and dtrej are the ground truth

probability distributions of evoked emotion of tei and trej
respectively and M ∈ {KLD,BC,CD,EMD}. For each

source image in Ss, each tei , and each M , we compare all

6 DMij
(j ∈ {1, 2, · · · , 6}) and compute P1/6 M which is

defined as the probability that the following condition is

true:

i =







argmin
j

DMij
, if M 6= BC

argmax
j

DMij
, if M = BC

(1)

In other words, P1/6 M is the probability that a trans-

formed image’s emotion distribution matches its target’s

emotion distribution more closely than the other five trans-

formed images from the other five targets. Table 5 lists all

P1/6 Ms, comparing them with 16.67%, the probability of

randomly selecting 1 transformed image out of 6. Table 5

shows our strategy moves the evoked emotion distribution

of the source image closer towards that of the desired target

(versus other transformed images) with the probability

higher than chance in most cases. Considering all trans-

form categories as a whole for M ∈ {KLD,BC,EMD},

we achieve a confidence level higher than 95% using bino-

mial test.

Inspired by the user study by Wang et al. [29], we

perform an additional user study comparing pairs of images.

Wang’s algorithm [29] outputs a color-adjusted image given

an input image and an emotion keyword. Photoshop experts

were hired to produce an output image which represents

Transform Category Anger Disgust Fear Joy Sadness Surprise All

P1/6 KLD 0.23 0.15 0.22 0.27 0.13 0.21 0.20

P1/6 BC 0.26 0.14 0.21 0.26 0.12 0.19 0.20

P1/6 CD 0.19 0.22 0.15 0.18 0.18 0.15 0.18

P1/6 EMD 0.26 0.22 0.19 0.19 0.18 0.21 0.21

Table 5. Cross evaluation results in terms of P1/6 M (M ∈
{KLD,BC,CD,EMD}) in each transform category (the

numbers larger than 1/6 are marked in bold), which shows that

our framework of emotion transferring moves the evoked emotion

distribution of the source closer towards that of the desired target

(versus other transformed images) with the probability higher than

chance in most cases.

the same emotion given the same input. In Wang’s exper-

iment [29], they ask subjects to select one image better

corresponding to the emotion keyword out of two images:

the outputs of their algorithm and the Photoshop expert.

However, there are two major shortfalls in Wang’s exper-

iment [29]: 1) Only 20 pairs of images were studied, a

small sample size. 2) The output of their algorithm is

not compared directly with the input image, neglecting the

possibility that both the outputs of their algorithm and the

Photoshop expert are worse than the input image.

We improve Wang’s experiment [29] by making the

following two adjustments: 1) We use the 600 neutral and

transformed image pairs for the user study. 2) For each pair,

we upload the source and transformed images in random

order to AMT and ask 15 subjects to choose the one image

(of two) that better corresponds to the emotion keyword.

Out of all 600×15 evaluations, 66.53% selections indicate

that our transformed image better corresponds to the associ-

ated emotion keyword, roughly comparable to the 69.70%

reported by Wang et al. [29]. In 76.50% of the pairs, more

subjects think our transformed image better matches the

emotion keyword than the source image. This user study

shows that our framework performs well when targeting a

specific dominant emotion. Further, as shown in Table 4,

our framework can transfer emotion in distributions, more

general than previous work [29].

6. Conclusion

This work introduces the idea of representing the

emotional responses of observers to an image as a distri-

bution of emotions. We describe methods for estimating the

emotion distribution for an image, and describe a method

for modifying an image to push its evoked emotion distribu-

tion towards a target image. Further, our proposed emotion

predictor, CNNR, outperforms other methods including

using SVR with the features from previous work and the

optimal dominant emotion baseline, the upper-bound of the

emotion predictors that predict a single emotion. Finally,

we propose a novel image database, Emotion6, and provide

ground truth of valence, arousal, and probability distribu-

tions in evoked emotions.
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