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-NOTE-

A MIXED BOUNDARY-VALUE PROBLEM FOR FIBER-REINFORCED
MATERIALS*

By A. C. PIPKIN and T. G. ROGERS

{Brown University)

1. Introduction. In a previous paper [1] we have outlined a theory of plane deforma-

tions of materials which are both incompressible and reinforced with inextensible fibers.

We showed that, under weak restrictions on the shear stress response of the material,

every kinematically admissible deformation is also statically admissible. The analysis

was not restricted to any particular material behavior such as elasticity, plasticity or

viscoelasticity.

In this note we consider a specific mixed boundary-value problem in which more than

one kinematically admissible deformation satisfies the prescribed displacement boundary

conditions. The purpose of the note is to show how to determine whether or not a given

kinematically admissible deformation furnishes a solution, by using the prescribed

traction boundary conditions. For this purpose, it is necessary to describe the shear

response of the material a little more specifically than would be necessary in a pure

displacement boundary-value problem.

2. Statement of the problem. The problem involves a slab of material initially

bounded by planes Xt = 0, H and X2 = ±L (Fig. 1). The slab is so constrained that
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we can assume conditions of plane strain and ignore the coordinate X3. The final position

x of a particle initially at X is then given by

X\ = Xi{Xi , Xz), x2 — x,(X, , X2), Xz — Xz • (2.1)

The slab is composed of homogeneous, incompressible material, and it is reinforced

with inextensible fibers that are initially straight and parallel to the X2 direction. The

fibers are treated as being continuously distributed. Thus any material curve that

initially lies along a line Xi = constant is called a fiber, and no segment of any such

curve can change length in any kinematically admissible deformation.

The slab is deformed so that its side Xi = 0 lies along a rigid wall ABCB'A' with

two straight segments ABC and CB'A' which intersect at an angle 2a (Figs. 2 and 3).

The particle initially at Xi = X7 — 0 lies at the corner C and the remaining particles on

the fiber Xi = 0 take positions determined by the inextensibility condition. The slab

is bonded to the wall, and the remaining surfaces are then left free of traction.

3. Kinematics. Let a be a field of unit vectors tangential to the fibers in the

deformed state, and let n be a field of unit vectors orthogonal to a at each point (Figs.

2 and 3). The curves to which n is tangent are called normal lines.

The constraints of incompressibility and inextensibility imply [1] that normal lines

must be straight when the fibers are initially parallel. Their orthogonal trajectories,

the fibers, are then parallel curves and the constraints imply [1] that the distance between

any two fibers must be the same as it was initially.

Figs. 2 and 3 show two deformations that satisfy the constraint conditions and the

specified displacement boundary condition on the fiber Xi = 0, for tan a less than L/H.

The deformation shown in Fig. 2 is proposed because it seems to be the most obvious

deformation we should expect. If we think of the corner at C as slightly rounded off, then

the straight normal lines perpendicular to the fiber ABCB'A' must be as shown in

Fig. 2. Nevertheless, Fig. 3 is also kinematically admissible, and among deformations

that involve discontinuities of the fiber directions, it seems to be the simplest possibility.

Both of these deformations, and all others that are kinematically admissible, can be

supported in equilibrium with suitable tractions on the boundary [1], However, as we

shall see, the prescribed conditions of zero traction are satisfied by the deformation in

Fig. 2 but not, in general, by that in Fig. 3, provided that the shearing stress response

of the material satisfies some weak and natural conditions.

4. Amount of shear. In evaluating the shearing stress it is necessary to know the

local state of deformation at each particle. This information is obtained by noting that

a material line element j dX2 deforms into an element a dX2 , and an element i dX,

becomes — (n + 7a) dXx . The coefficient y defines the amount of shear at the particle

considered. Thus

dx/dXi = — n — 7a, dx/dX2 = a. (4.1)

In Fig. 2, within the fan CD'C'D, the final polar coordinates r, 0 of a particle initially

at Xi , Xz are

r = X, , 6 = X2/Xl . (4.2)

Then

W, = dX, = Wy lr(e) + rlr'(e) dX, = lr ~ 9l" ' (4'3)
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Here ir and i9 are the unit vectors for the polar system, equal to — n and a respectively.

Then comparison with (4.1) shows that the amount of shear is

7 = 0. (4.4)

In the region ACDE, y is everywhere equal to its value a on CD, and in A'CD'E', y is

equal to —a.

In Fig. 3 the values of y in the upper and lower halves are respectively tan a and

— tan a.

5. Stress and equilibrium. Assuming that the stress components <j31 and a32 are

zero by symmetry, the stress for a plane deformation is of the form [1]

<j = —p(I — aa) + Taa + S33kk + <S(an + na). (5.1)

Here we use dyadic notation; for example, Taa is the tensor with cartesian components

TdiCLj. I is the unit tensor and k is a unit vector in the X3 direction. T and p are reactions

to the constraint conditions, to be determined from the equilibrium equations. S and S33

are functions of the amount of shear or its history, with forms which depend on specific

material properties such as elasticity, plasticity or viscoelasticity.

Assuming that dS33/dX3 is zero in plane deformations, the equilibrium equations

with zero body force yield [1]

a-VT + n-VS - 2kS = 0, (5.2)

— n-Vp + *(p + T) + a-VS = 0, (5.3)

and dp/dX3 = 0. Here k is the curvature of the fiber at the point considered.

A vector v normal to the surface AE is given by

v = a — yn. (5.4)

The condition of zero traction on AE(<iv = 0) then yields, with (5.1),

p = —S/y, T = yS on X2 = L. (5.5)

Since n is normal to the outer boundary X, = H, the condition of zero traction on that

boundary (C'DE in Fig. 2, DE in Fig. 3) gives

p = 0, 5 = 0 on Xi = H. (5.6)

The conditions on the symmetrically disposed boundaries of the lower region are the same.

The stress cannot be evaluated completely until S is specified. For an elastic material,

S is a function S(y) of the amount of shear. For plastic materials, if the deformation is

carried out with the magnitude of y increasing monotonically, S is again a function

S(y) of the amount of shear; the plastic behavior can be nonhardening (perfectly plastic)

or work-hardening. In all cases, we suppose that there is enough material symmetry

that S is an odd function of y:

S(-y) = -S(y). (5.7)

This symmetry is necessary if the deformation is to be symmetrical, as shown in Figs.

2 or 3. The functions p and T are then symmetrical about X2 = 0, and it is sufficient

to evaluate them in the upper region X2 > 0.
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6. Singular fiber. Within the theory, a single fiber or normal line (which are actually

sheets, of course, taking x3 into account) can carry a finite load by itself, and must do so

if it is a line of shearing stress discontinuity. In the present problem the boundary condi-

tion (5.6b) imposes such a discontinuity. The interior values of S at the boundary

fiber, Xt = H, are specified by a function S(y) that can be expected to be zero only

when 7 is zero, in general, whereas the zero traction condition requires S to be zero on

the exterior side of the bounding fiber.

The jump discontinuity in S contributes a term S(y) 6(r — H) to its derivative

n* V<S in (5.2). Here 5(r — H) is the Dirac delta and r is a coordinate constant along

fibers, equal to the polar radius r in the fan region of Fig. 2. From (5.2) we observe that

the tension T then also has a Dirac delta in the bounding fiber, corresponding to a finite

load in that single fiber.
The fiber next to the wall, X1 = 0, may also exhibit such singular behavior, but the

situation there is ambiguous until the value of S is prescribed at the wall. Indeed, we

are free to prescribe any distribution for S; the tension in the bounding fiber will auto-

matically adjust to equilibrate the discontinuity.

7. Solution. We now show that an equilibrium stress field satisfying the prescribed

traction boundary conditions (5.5) and (5.6) can be constructed if the deformation is

that shown in Fig. 2, but not if the deformation is that shown in Fig. 3.

We first consider Fig. 2. In the homogeneously deformed region ACDE, the fiber

curvature k is zero. The amount of shear y is constant, so the shearing stress S is also

constant except at its jump discontinuity across the outer bounding fiber. Thus, in this

region, (5.2) and (5.3) reduce to

a-VI1 = —S(y) 5(r — H) and n-Vp = 0. (7.1)

In the fan region CD'C'D we introduce polar coordinates r, 9. The fiber curvature is

then 1/r, and the amount of shear is equal to 6, according to (4.4). It follows that the

derivative of S along normal lines 6 = constant is zero except at the jump discontinuity

across the outer fiber. Hence, in the fan region the equilibrium conditions (5.2) and (5.3)

can be written as

(1/r) (07730) + S(6) o(r — H) — (2/r)S(d) = 0 (7.2)

and

(dp/dr) + (p + T)/r + (1 /r)S'(fl) = 0. (7.3)

With the boundary conditions (5.5) and (5.6), in which y = a, from (7.1) we obtain

T = aS(a) + (L - s)S(a) 5(r - H) in ACDE (7.4)

and

p=-S(a)/a in ABE, p = 0 in BCDE. (7.5)

In (7.4), s denotes arc length along C'DE, with s = 0 at the point C'. From (7.2), with

T given at 6 = a by (7.4), we obtain

T = aS(a) + (L — «H)S(o) d(r - H)

+ [H S(r - H) - 2] f S(6') dd' in CDC'D'. (7.6)
J e
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From (7.3), with p = 0 at r = H+, we obtain

rp(r, 9) = (H — r)[S'{6) + a5(o)] + (L - aH)S(a)U(H - r)

+ - r) - 2(H - r)] f" S(O') d6' in CDC'D'. (7.7)
J 6

Here U(H — r) is the unit step function, equal to unity inside the body but passing

discontinuously to zero across the singular boundary fiber.

We now consider the deformation in Fig. 3. If we proceed as in the previous case,

we find that T and p must be given by expressions of the forms (7.4) and (7.5), but with

a replaced by tan a everywhere. Now, however, there is a line of discontinuity CD which

is neither a fiber nor a normal line. Equilibrium requires that the stress vector <Jj be

continuous across CD. But T, p and S, and hence d, have already been determined on

both sides of CD, and an easy computation shows that the two values of <Jj are not equal,

except in the trivial case 5 = 0. Thus for Fig. 3 there is no equilibrium stress field

compatible with the boundary conditions.

We should immediately point out that for plastic materials, the conclusion that

Fig. 3 does not give a solution depends strongly on the assumption that there has been

no unloading. For example, if a body of rigid-plastic material were brought into the

shape shown in Fig. 3 by applying suitable tractions, and the loads were then removed,

the body would retain its shape and be in equilibrium under zero stress.
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