A Mixed Branch Length Model of Heterotachy Improves Phylogenetic Accuracy
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Evolutionary relationships are typically inferred from molecular sequence data using a statistical model of the
evolutionary process. When the model accurately reflects the underlying process, probabilistic phylogenetic methods
recover the correct relationships with high accuracy. There is ample evidence, however, that models commonly used
today do not adequately reflect real-world evolutionary dynamics. Virtually all contemporary models assume that
relatively fast-evolving sites are fast across the entire tree, whereas slower sites always evolve at relatively slower rates.
Many molecular sequences, however, exhibit site-specific changes in evolutionary rates, called “heterotachy.” Here we
examine the accuracy of 2 phylogenetic methods for incorporating heterotachy, the mixed branch length model—which
incorporates site-specific rate changes by summing likelihoods over multiple sets of branch lengths on the same
tree—and the covarion model, which uses a hidden Markov process to allow sites to switch between variable and
invariable as they evolve. Under a variety of simple heterogeneous simulation conditions, the mixed model was
dramatically more accurate than homotachous models, which were subject to topological biases as well as biases in
branch length estimates. When data were simulated with strong versions of the types of heterotachy observed in real
molecular sequences, the mixed branch length model was more accurate than homotachous techniques. Analyses of
empirical data sets confirmed that the mixed branch length model can improve phylogenetic accuracy under conditions
that cause homotachous models to fail. In contrast, the covarion model did not improve phylogenetic accuracy compared
with homotachous models and was sometimes substantially less accurate. We conclude that a mixed branch length
approach, although not the solution to all phylogenetic errors, is a valuable strategy for improving the accuracy of

inferred trees.

Introduction

The evolutionary process is complex and dynamic. Se-
lection pressures can vary as organisms diversify. Even
when selection is relatively constant at the organismal level,
evolutionary constraints acting at particular sites in a mol-
ecule may be variable, because the sites subject to specific
functional constraints change over evolutionary time (Fitch
and Markowitz 1970). As a result, some fast-evolving sites
can become slow-evolving (and vice versa) in different lin-
eages (Lopez et al. 2002). Such evolutionary dynamics are
largely ignored by existing “homotachous” evolutionary
models—including those allowing among-site rate varia-
tion—which assume that fast-evolving sites are fast across
the entire tree, whereas more constrained sites are always
slow-evolving (see Yang 1996a, and fig. 1A and B). It has
been shown that homotachous models are inadequate to
capture the shifting dynamics of molecular evolution for
protein-coding sequences (Fitch and Markowitz 1970;
Fitch 1971, 1976; Miyamoto and Fitch 1995; Germot
and Philippe 1999; Gaucher et al. 2001; Gu 2001, 2003;
Philippe and Lopez 2001; Huelsenbeck 2002; Lopez
et al. 2002; Susko et al. 2002; Ané et al. 2005; Lockhart
et al. 2005), RNA molecules (Lockhart et al. 1998;
Steel et al. 2000; Galtier 2001; Brown 2005; Baele et al.
2006), and promoter regions (Taylor et al. 2000).

The prevalence of heterotachy—site-specific evolu-
tionary rates that change across the tree (Lopez et al.
2002)—has important implications for phylogenetics. The-
oretical arguments suggest that some forms of heterotachy
might produce biased inferences of phylogenies or result in
lack of resolution when homotachous models are used
(Chang 1996; Siddall and Kluge 1999; Stefankovi¢ and
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Vigoda 2006). Simulation studies have confirmed these
predictions, revealing that some forms of heterotachy—but
not all (Penny et al. 2001)—can impair the accuracy of ho-
motachous model-based methods (Kolaczkowski and
Thornton 2004; Gadagkar and Kumar 2005; Gaucher
and Miyamoto 2005; Philippe et al. 2005; Spencer et al.
2005; Susko et al. 2005; Ruano-Rubio and Fares 2007).
Analyses of empirical sequence data suggest that hetero-
tachy may be an important cause of real-world phylogenetic
error. For example, site-specific rate shifts are at least par-
tially responsible for the failure of homotachous models to
recover the correct Microsporidia + Fungi (MF) phylogeny
from elongation factor 1o (EF1a) data (Hirt et al. 1999; In-
agaki et al. 2003, 2004). Heterotachy seems to be a contrib-
uting factor in a variety of other phylogenetic artifacts, as
well (Philippe, Lartillot, and Brinkmann 2005; Rodriquez-
Ezpeleta et al. 2007).

Two types of statistical models of heterotachy have
been developed. First, based on early observations that dif-
ferent sites in a molecular sequence may be invariant in dif-
ferent lineages (Fitch and Markowitz 1970; Fitch, 1971,
1976), the “covarion” model uses a hidden Markov process
that allows sites to switch between variable and invariable
as they evolve (Tuffley and Steel 1998, see fig. 1C). The
simple variant—invariant covarion model has been general-
ized to allow sites to switch among multiple evolutionary
rates (Galtier 2001; Wang et al. 2007). Covarion models
provide an improved statistical fit to empirical data com-
pared with homotachous models (Miyamoto and Fitch
1995; Galtier 2001; Huelsenbeck 2002; Wang et al.
2007), but it is unknown whether this improved fit trans-
lates into improved phylogenetic accuracy. Evidence sug-
gests that the covarion model does not accurately match the
way site-specific evolutionary rates change (Germot and
Philippe 1999; Steel et al. 2000; Lopez et al. 2002; Lockhart
et al. 2005). Particularly, covarion models assume that
1) the proportion of sites in each rate category is constant
across the entire tree and 2) the rate at which sites switch
evolutionary rates is proportional to the expected number of
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Fic. 1.—Comparison of homotachous and heterotachous models.
(A) In a simple homotachous model, the likelihood of the model is
calculated using a single set of branch lengths. (B) A homotachous
discrete gamma model of among-site rate variation calculates the
likelihood as a weighted sum over multiple branch length classes, but
the ratio of each branch length to the others is the same in all classes. (C)
A covarion model uses a hidden Markov process allowing sites to switch
between variable (solid lines) and invariable (dotted lines) as they evolve.
(D) A partitioned model divides sites into categories a priori; the total
likelihood is the product over all partitions. (£) A mixed branch length
model calculates likelihoods at each site as a weighted sum over multiple
independent branch length sets; weights and branch lengths are inferred
from the data.

substitutions per site. These conditions are unlikely to hold
in real molecular sequence data.

Mixed models to represent heterotachy have also been
described (Kolaczkowski and Thornton 2004; Spencer et al.
2005). Mixture modeling is a general statistical approach for
incorporating complex heterogeneous processes (McLachlan
and Peel 2000). Under a mixed model, the probability of the
data is calculated for a variety of simple submodels and then
combined to give the probability of the data under the
mixed model. Kolaczkowski and Thornton (2004) first sug-
gested that heterotachy could be modeled using multiple
sets of branch lengths on the same topology. Likelihoods
for each site are calculated as a weighted sum over all
sets of branch lengths. Spencer et al. (2005) improved
the model by inferring weights from the data as free param-
eters (see fig. 1E). The mixed branch length model is dif-
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ferent from a partitioned model (Yang 1996b; Ronquist and
Huelsenbeck 2003) because a partitioned model assigns
sites to specified categories a priori (fig. 1D). A partitioned
model is useful when biochemical information is sufficient
to accurately classify sites into rate categories prior to anal-
ysis, whereas a mixed model does not require such prior
knowledge.

Unlike the covarion model—which assumes a specific
stationary process generates variation in evolutionary rates—
the mixed branch length model is a general model of het-
erotachy that does not make any strong assumptions about
the process generating rate variation. Any distribution of
evolutionary rates across sites and lineages can be described
by allowing different sites to evolve along different branch
lengths. The flexibility of the mixed model allows it to fit
a variety of patterns of heterotachy.

Little is known about whether the mixed branch length
model improves the accuracy of phylogenetic inference.
First, simulation studies have shown that the mixed model
can perform well on a single, challenging form of hetero-
tachy when the correct number of branch length categories
is known in advance (Kolaczkowski and Thornton 2004,
Spencer et al. 2005), but its accuracy on other forms of het-
erotachy has not been assessed. Second, the number of
branch length classes required to adequately describe the
data is never known in practice; the accuracy with which
the number of branch length classes and the parameters
of the mixed model can be estimated from sequence data
has not been investigated. Third, although theoretical anal-
yses suggest that the mixed model may fail to recover the
correct tree under some simplified conditions, even if infin-
ite data were available (Allman and Rhodes 2006; Stefan-
kovi¢ and Vigoda 2006; Matsen and Steel 2007), the
relevance of these findings to complex phylogenetic prob-
lems is unknown. Finally, the fit of the mixed branch length
model to empirical data—and its ability to recover the cor-
rect phylogeny under realistic conditions—is not known.

Here we report on the implementation and perfor-
mance analysis of a general mixed branch length software
package for analyzing both nucleotide and protein data
(available at http://phylo.uoregon.edu/software/m31). We
introduce a simulated annealing algorithm to estimate
maximum likelihood (ML) values of model parameters
and tree topology and infer the best-fit number of branch
length categories using the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC). We
use simulation experiments and analyze empirical se-
quence data to examine the effects of heterotachy on phy-
logenetic inference and evaluate the ability of the mixed
branch length and covarion models to improve phyloge-
netic accuracy.

Materials and Methods
Phylogenetic Analyses

Mixed branch length model analyses were conducted
in a ML framework using novel software (available at http://
phylo.uoregon.edu/software/m31). The mixed branch length
model calculates likelihoods using multiple independent
sets of branch lengths on the tree (Kolaczkowski and
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Thornton 2004; Spencer et al. 2005). We have implemented
the model as formulated by Spencer et al. (2005). The likeli-
hood of tree ¢ given data X = (x1, x2,..., xm) and branch
length sets b = (bl, b2,..., bn) is given by

Lx) = TS ol b,
k

=1li=1

where each p; is estimated from the data and P(x;lt, b;) is the
probability of the data given branch lengths b;. We used the
JC69 model for analyses of simulated data and the Jones,
Taylor, Thornton + gamma (4-category discrete gamma ap-
proximation) model for analyses of empirical protein se-
quences. Simulated annealing (Kirkpatrick et al. 1983)
was used to optimize tree topology and all model parame-
ters. The annealing schedule used a geometric descent of
1,000 temperatures starting from 1.0 and ending at 10>,
At each temperature, 1,000 parameter changes were attemp-
ted, with acceptance based on the Metropolis criterion. For
4-taxon simulations, we performed exhaustive topology
searches, optimizing parameters separately on each possi-
ble tree. For larger phylogenies, heuristic tree searches were
performed using simulated annealing, with topology rear-
rangements including tree bisection-reconnection, subtree
pruning-regrafting, and nearest neighbor interchange.
The best-fit number of branch length classes (n) was se-
lected using either AIC (Akaike 1974) or BIC (Schwartz
1978).

Sequence alignments were also analyzed using homo-
tachous ML (which includes models of among-site rate var-
iation such as the gamma model and the proportion of
invariable sites model), Bayesian Markov Chain Monte
Carlo (BMCMC), and unweighted maximum parsimony
(MP). MP and homotachous ML analyses of nucleotide
data were conducted using exhaustive topology search in
PAUP* 4.0b10 (Swofford 2002). For homotachous ML
and BMCMC analyses, the best-fit substitution model
was selected by a chi-square hierarchical likelihood ratio
test (o = 0.05) assuming the Neighbor-Joining topology,
implemented in Modeltest 3.7 (Posada and Crandall
1998). Use of alternative homotachous models did not sub-
stantially affect our results (see supplementary fig. S2, Sup-
plementary Material online). Bayesian analyses were
conducted using MrBayes 3.1 (Ronquist and Huelsenbeck
2003). Two independent runs of 4 chains were executed
until the average standard deviation in clade probabilities
dropped below 0.01; the first 5,000 generations were dis-
carded as burn-in. Topology priors were equal for each re-
solved tree, branch length priors were uniform on (0, 10),
and the default priors were used for other model parameters.

To determine the specific effects of various forms of
heterotachy on phylogenetic accuracy, we also performed
analyses using the true ML model (ML), which correctly
partitions sites into branch length categories a priori and
estimates branch lengths separately for each category.

Simplified Branch Length Heterogeneity

We simulated data sets of length 5,000 nucleotides
(nt) using the JC69 model under 4 simplified types
of 4-taxon branch length heterogeneity (see fig. 2):

1) Felsenstein zone heterotachy (FZH), 2) inverse-
Felsenstein zone heterotachy (IFZH), 3) single long-branch
heterotachy (SLBH), and 4) signal-noise heterotachy
(SNH). Both FZH and IFZH partition sites into 2 branch
length categories, with equal numbers of sites in each cat-
egory. Long branches (0.75 expected substitutions/site)
lead to 2 terminal lineages, whereas short branches (0.05)
lead to the other 2 terminal lineages, but the lineages with
long terminal branches are different in different branch
length categories. In the case of FZH, the long terminal
branches are not sister to one another, whereas long branches
lead to sister taxa in IFZH. SNH partitions sites into 2 cat-
egories; in the first (80% of sites), sequences evolve with
long terminal branch lengths (0.75) and a zero-length internal
branch. In the other category, terminal branch lengths are
short (0.05), and the internal branch length varies between
0.0 and 0.4. SLBH consists of 4 branch length categories
with equal numbers of sites; in each category, a single lin-
eage has a long terminal branch (0.75), whereas all other ter-
minal branches are short (0.05). In each case, the internal
branch length (which is the same in all categories) varied be-
tween 0.0 and 0.4. Two hundred replicate sequence align-
ments were simulated under each set of evolutionary
conditions.

Phylogenetic analyses were conducted as described
above. Accuracy was determined by calculating the propor-
tion of replicates for which the correct phylogeny was
uniquely recovered. The internal branch length at which
50% of inferred trees were correct (BLsg) was estimated
for each method using nonlinear regression
(Kolaczkowski and Thornton 2004), and the accuracy of
different methods was compared by comparing BL5 esti-
mates using a 2-way z-test. Bias was examined by simulat-
ing sequences under heterotachous conditions but with
a zero-length internal branch. The proportion of replicates
falsely resolved with support >0.95 was measured using
nonparametric bootstrapping (1,000 replicates) for ML
and MP and posterior probabilities for BMCMC.

To assess the asymptotic performance of ML with in-
finite data, ideal pseudodata with no stochastic error were
analyzed. We calculated the expected frequency of each
character state pattern (f(x)) under SLBH conditions with
an internal branch length of 0.01. These state pattern fre-
quencies are the frequencies that would occur if infinite se-
quence data were available. We implemented an algorithm
to calculate likelihoods under a homotachous model di-
rectly from this vector of expected pattern frequencies, pro-
ducing a per-site likelihood equivalent to that which would
be obtained from infinite data. The per-site likelihood of
tree ¢ given state pattern x is calculated by raising the prob-
ability of the pattern, given the tree, to the frequency with
which that pattern is expected to occur: L(flx) = P(xlt)f W,
The total per-site likelihood of the tree is the product of this
partial likelihood over all possible state patterns. We calcu-
lated the likelihoods of internal branch lengths between 0.0
and 0.01 expected substitutions/site, with other branch
lengths optimized using ML.

We also examined the accuracy with which different
phylogenetic models estimated branch lengths from finite
data. For each set of simulation conditions, we calculated
the expected or mean set of branch lengths across sites
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Fic. 2.—Mixed branch length model improves phylogenetic accuracy under idealized heterotachous conditions. Sequences of 5,000 nt each were
simulated using the tree at left in each panel, with long terminal branch lengths 0.75 substitutions/site and short terminals 0.05. Left graph in each panel
plots the proportion of correct inferences made using homotachous, heterotachous, and the true partitioned model (see key at lower right) against the
internal branch length of the true tree. Right graphs plot internal (left) and terminal (right) branch lengths estimated by maximum likelihood using true,
mixed branch length, and homotachous models against the true internal branch length on which sequences were simulated; dotted lines indicate perfect
correspondence between estimated and true lengths. (A) Felsenstein-zone heterotachy. (B) Inverse Felsenstein-zone heterotachy. Inset bar graph shows
the proportion of replicates from which each method recovered each possible resolved topology when data were generated with an internal branch
length of zero. (C) Signal-noise heterotachy. (D) Single long-branch heterotachy. Bottom left panel shows per-site likelihood calculated on an ideal
infinite data set (see Materials and Methods) using homotachous ML plotted against increasing internal branch length; sequence was generated under
SLBH conditions with a true internal branch length of 0.01. Bottom right panel shows accuracy when >95% support is required to resolve the

phylogeny.

using homotachous ML, the mixed branch length model,
and the correct ML model (ML,..). The single set of in-
ferred branch lengths are the expected lengths across sites
for homotachous ML. For the mixed model and ML, ex-
pected branch lengths over sites were calculated by multi-
plying each site-specific branch length by the weight
associated with that length and then summing over all
weighted site-specific branch lengths. For the mixed model,
weights are estimated from the data, whereas weights are
correctly assigned a priori for ML,,,.. In the case of terminal
branches, we report the average expected branch length
over all 4 terminals.

Types of Heterotachy Observed in Molecular Evolution

To simulate stationary covarion dynamics, we simu-
lated sequence data using the covarion model described
by Tuffley and Steel (1998). We used a 4-taxon Felsenstein
zone phylogeny (see fig. 3A) with nonsister long (0.75 ex-
pected substitutions/site) and short (0.05) terminal branch
lengths to generate 5,000-nt sequences using the JC69
model. A hidden Markov process was used to allow sites
to continuously switch between variable and invariable
states, with the rate of switching varying from 0.2 to 2.0
switches/substitution. The internal branch length varied
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FiG. 3.—Mixed branch length model improves phylogenetic accuracy under simulated conditions derived from observations of heterotachy in
empirical sequence data. Proportion of replicate data sets from which the correct tree was uniquely recovered by each method is plotted against
increasing internal branch length; sequences of 5,000 nt were simulated using the trees at left, with long terminal branch lengths of 0.75 expected
substitutions/site. (A) Sequences were simulated along a single set of branch lengths using a stationary covarion process in which sites switch between
variable and invariable states as they evolve. Series are not shown for the true model (which is the same as the covarion model in this case) and the mixed
branch length model (which is the same as the homotachous model). (B) Data were simulated under a model of covarion rate shifts in which some
invariable sites become released from selection in nonsister lineages; other sites that were previously variable then become invariable to compensate for
the relaxation of selective constraint at correlated sites. The proportion of correct inferences using each method is plotted against the length of the internal
branch (for variable sites only) on the true tree. (C) Sequence data were simulated with convergent proportions of invariable sites in nonsister lineages.

from 0.0 to 0.4. Note that the covarion model implemented
in MrBayes is the true model in this case.

To simulate correlated rate shifts, we generated se-
quence data using an evolutionary process in which groups
of sites exhibit correlated changes in evolutionary rates in
nonsister lineages (see fig. 3B). Sequences were simulated
on a 4-taxon ((AB),(CD)) phylogeny, with sites divided in-
to 4 classes as follows: 25% of sites were invariable
throughout the tree; 25% of sites were invariable in lineages
B and D but released from selection—indicated by long
branches (0.75)—in lineages A and C; 25% of sites were
variable in lineages B and D (terminal branch lengths
0.75) but constrained in lineages A and C to compensate
for loss of evolutionary constraints in the previously de-
scribed class of sites. The remaining sites (25%) were vari-
able in all lineages (terminal branch length 0.75). We varied
the internal branch length for variable sites from 0.0 to 0.8.

To simulate changing proportions of invariable sites
indifferentlineages, we divided sites into 3 differentrate clas-
ses. Twenty-five percent of sites were invariable throughout
the entire ((AB),(CD)) tree; 25% were invariable only in lin-

eages A and C; and 50% were always variable (see fig. 3C).
Terminal branch lengths for variable sites were 0.75, and the
internal branch length varied between 0.0 and 0.8.

Empirical Sequence Data

We analyzed the Micro* data set of Inagaki et al.
(2004) (349 sites, 24 taxa) using homotachous ML (JTT +
gamma model), MP, BMCMC (JTT + gamma + covarion),
and the mixed branch length model using JTT + gamma
with a variable number of branch length categories. ML
analyses were conducted using 4 gamma rate categories,
with branch lengths and shape parameter optimized using
simulated annealing. BMCMC analyses were conducted
using MrBayes v3.1 (Ronquist and Huelsenbeck 2003)
as described above. ML scores for the covarion model were
calculated using software provided by Zhou et al. (2007),
with the same parameters as used in their original study.
We calculated the best-fit number of branch length classes
for the mixed branch length model using AIC. For each
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number of branch length classes (from 1 to 7), we inferred
the ML phylogeny using simulated annealing; the likeli-
hoods obtained were used to calculate AIC scores for
each model, and the number of classes with the lowest
AIC score was selected as the best-fit model. We calculated
the likelihood ratio of the correct MF tree to the artifactual
Microsporidia + Archaebacteria (MA) tree and assessed
the support for the most likely hypothesis using the approx-
imately unbiased (AU) test (Shimodaira 2002) imple-
mented in CONSEL v0.1i (Shimodaira and Hasegawa
2001).

We calculated the weight of evidence in favor of the
model selected by AIC using Akaike weights (see Posada
and Buckley 2004). We calculated the difference in AIC
score between each model i and the model selected by
AIC: AAIC; = AIC; — AIC¢ecteq- The Akaike weight in
favor of model i (w;) is

e~ 0.5AAIC;

I
! 27 e — 0-5AAIC;
j=1

Using the ML topology inferred under the model se-
lected by AIC, we calculated the posterior probability that
each site evolved according to each set of inferred branch
lengths. The posterior probability of branch length set b;
given site x was calculated by multiplying the proportion
of sites expected to evolve under branch length set b;
(p;) by the likelihood obtained for that branch length set
(P(xlt, b;)) and dividing by the total likelihood summed over
all branch length sets:

P(x|t, by

>li=1 PP, by)

For post hoc partitioned analysis, we used posterior prob-
ability cutoffs 0of 0.7, 0.8, 0.9, 0.95, and 0.99 to classify sites
into categories. A site x was assigned to a particular class 7 if
the posterior probability of that class (P(b,lx, f)) was greater
than the cutoff. In each case, the likelihood ratio MF/MA
was calculated using the JTT 4 gamma model, with branch
lengths optimized independently for each class of sites. We
also performed a partitioned analysis in which each site was
assigned to the class with the highest posterior probability.

We compressed the original RNA polymerase (Rpo)
alignment of Lockhart et al. (2005) using Gblocks to re-
move ambiguously aligned regions (Castresana 2000).
We used a minimum number of conserved sequences of
8, a minimum number of flanking sequences of 12, a max-
imum contiguous nonconserved region length of 20, a min-
imum block length of 5, and allowing gaps with half the
total number of taxa. This resulted in an alignment of
1,773 amino acids (aa). This alignment was analyzed using
the JTT 4+ G4 mixed branch length model with 1-7 branch
length classes. For each number of classes, the ML tree was
inferred using simulated annealing. We calculated the best-
fit number of classes using AIC and estimated the weight of
evidence in favor of the best-fit model using Akaike
weights as described above. We calculated the support in
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favor of the correct red + green algae tree using the likeli-
hood ratio of the best tree with red+green algae versus the
best tree with the alternative nonphytosynthetic bacteria +
green algae topology (fig. 7A).

We analyzed a multigene data set from Philippe,
Lartillot, and Brinkmann (2005) using the same approach
as with the Rpo data. To reduce the computational burden
of working with long sequences, we selected a reduced
5-taxon data set (fig. 7B) and removed columns containing
gaps or missing characters from the alignment, resulting in
a sequence length of 16,791 aa. We inferred the best-fit
model and the ML topology as for the Rpo data. In this case,
we calculated the likelihood ratio of the best tree with nem-
atodes + insects (the well-corroborated tree) versus the best
tree with nematodes + fungi.

Results

To determine the effects of heterotachy on phyloge-
netic inference, we conducted 3 different kinds of analyses,
each designed to address a different question. First, to as-
sess how specific forms of heterotachy affect phylogenetic
accuracy, we simulated sequences under very challenging
conditions in which sites evolve on various combinations of
heterogeneous branch lengths. Second, to examine more
empirically relevant forms of heterotachy under controlled
conditions, we simulated sequences under strong versions
of the types of heterotachy observed in real data sets. Fi-
nally, to determine the potential of the mixed branch length
and covarion models for addressing real phylogenetic prob-
lems, we analyzed empirical sequence data known to have
evolved heterotachously on well-known phylogenies.

Under each condition, we asked 2 questions: 1) how
different forms of unincorporated heterotachy affect the
performance of homotachous models and 2) whether
evolutionary models incorporating heterotachy produce
more accurate phylogenies (see fig. 1 for a diagram of
the models used in this study). Two heterotachous models
were used: 1) a Bayesian implementation of the covarion
model (Tuffley and Steel 1998) and 2) a ML implementa-
tion of the mixed branch length model (Kolaczkowski and
Thornton 2004; Spencer et al. 2005), with the number of
branch length classes estimated from the data using AIC
(Akaike [1974]) and BIC (Schwartz [1978]), 2 widely used
methods of statistical model selection (Posada and Buckley
2004).

Simulations of Simplified Branch Length Heterogeneity

To elucidate the types of problems that different forms
of heterotachy might cause and the ability of heterotachous
models to address these problems, we examined data sets
generated using 4 types of challenging, stereotyped branch
length combinations. We compared the phylogenetic accu-
racy of the mixed branch length and covarion models of
heterotachy with that of the best-fit homotachous model
by plotting the fraction of correct inferences using each
method against increasing phylogenetic signal (internal
branch length). To reveal the specific effects of heterotachy,
we compared the accuracy of each method with that of the
true partitioned model (ML), which correctly assigns
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sites to branch length categories a priori and estimates sep-
arate branch lengths within each category. We also exam-
ined the accuracy of MP.

Under all conditions studied, unincorporated hetero-
tachy substantially reduced the accuracy of homotachous
models. The mixed branch length model was significantly
more accurate, recovering the correct tree with less phylo-
genetic signal and producing more accurate estimates of ex-
pected branch lengths across sites (fig. 2). Although the
mixed model generally exhibited reduced statistical power
compared with ML, (see supplementary fig. S1, Supple-
mentary Material online), the mixed model was not biased
under any of these conditions. In contrast, the covarion and
homotachous models were subject to strong topological
biases, loss of statistical power, and inference of hard pol-
ytomies, depending on the specific pattern of heterotachy in
the data.

Under the first set of conditions—sequences generated
on a tree with 2 long and 2 short terminal branches—both
homotachous and covarion models were severely biased in
favor of the long-branch attraction tree (fig. 2A and B). As
with classical long-branch attraction, the direction of bias
depended on which taxa had long branches. As previously
observed (Kolaczkowski and Thornton 2004), when long
terminals were not sister to one another, the bias favored
an incorrect tree (fig. 2A). When sister taxa had long
branches, the bias favored the correct phylogeny, as indi-
cated by strong support for this tree even when the internal
branch length was zero (fig. 2B). In contrast, the mixed
branch length model was unbiased, producing inferences
of topology and estimates of branch lengths much more
similar to those obtained using ML .

Under the second set of conditions—sites with strong
phylogenetic signal simulated together with randomized
noisy sites—homotachous and covarion models both ex-
hibited a severe reduction in statistical power to resolve
the correct phylogeny compared with ML, (fig. 2C).
The mixed branch length model was more accurate; the per-
formance improvement was small but statistically signifi-
cant (P < 0.001). Branch length estimates were much
more accurate using the mixed model compared with ho-
motachous ML under these conditions.

Under the third set of conditions—in which sites are
released from selection in different lineages—homotachous
ML incorrectly estimated a zero-length internal branch on
the most likely topology, inferring a hard polytomy (fig. 2D).
This polytomous tree was recovered even when sequences
of effectively infinite length were analyzed, indicating that
homotachous ML is statistically inconsistent under these
conditions. The mixed branch length model, in contrast,
was not biased and recovered the correct phylogeny signif-
icantly more often. Although homotachous BMCMC was
also unbiased, trees inferred using BMCMC were very
weakly supported; when strong support was required to re-
solve the phylogeny, the accuracy of BMCMC was reduced
to that of homotachous ML. The covarion model did not
improve performance (see supplementary text, section 1,
Supplementary Material online).

Across all conditions, AIC selected the correct number
of branch length classes for mixed model analysis more of-
ten than it selected a too-simple model, and it never over-

estimated model complexity (see supplementary table S1,
Supplementary Material online). In contrast, BIC favored
an underparameterized model under some conditions.

Simulations of Types of Heterotachy Observed in
Molecular Evolution

Studies of heterotachy have revealed 3 important fea-
tures. First, a stationary covarion model of evolution gen-
erally fits empirical data better than homotachous models
(Miyamoto and Fitch 1995; Galtier 2001; Huelsenbeck
2002). Second, different sites in the sequence may be in-
variable in different lineages (Fitch and Markowitz 1970;
Fitch 1971, 1976). Third, the proportion of invariable sites
has been observed to vary among lineages (Germot and
Philippe 1999; Steel et al. 2000; Lockhart et al. 2005).
To examine the potential effects of these types of hetero-
tachy on phylogenetic inference, we simulated sequences
under 3 simplified models: 1) a stationary covarion model
in which every site may continuously switch between vari-
able and invariable at a constant rate as evolution proceeds,
2) a nonstationary “correlated rate shift” model in which
groups of sites exhibit periodic correlated changes in evo-
lutionary rates, and 3) a model in which the proportion of
invariable sites differs among lineages. In each case, we
simulated sequences along a Felsenstein zone tree with
long-branch nonsister lineages (see fig. 3), using challeng-
ing conditions and strong heterotachy. Although not neces-
sarily indicative of the levels of heterotachy observed in
empirical data sets, these simulations allow us to test for
heterotachy-induced topological biases using purposefully
difficult conditions of the types likely to be encountered
when analyzing real data.

For the stationary covarion process, we simulated se-
quencedatausing the model of Tuffley and Steel (1998). Under
these conditions, homotachous ML was unbiased and recov-
eredthe correcttree withhighaccuracy (fig. 3A; supplementary
fig. S3, Supplementary Material online). The accuracy of the
covarion model was the same as that of the simpler homota-
chous model. Model selection criteria did not support multiple
branch length categories under these conditions.

To simulate correlated rate shifts, we partitioned sites
on the ((AB),(CD)) phylogeny into 50% invariable and
50% variable. In lineages A and C, half the invariable sites
are released from selection and become variable; a corre-
sponding number of previously variable sites become in-
variable in the same lineages (fig. 3B). Under these
conditions, homotachous models were strongly biased,
and the covarion model performed even more poorly. In
contrast, the mixed model was substantially more accurate
than homotachous models and was unbiased, performing
almost as well as ML .

To assess the potential effects of changes in lineage-
specific proportions of invariable sites, we simulated data
on the ((AB),(CD)) phylogeny, with lineages A and C hav-
ing 50% invariable sites, whereas lineages B and D had
only 25% (fig. 3C). The mixed branch length model was
more accurate than other methods under these conditions,
whereas homotachous models were strongly biased in favor
of the long-branch attraction topology. The covarion model
was significantly less accurate than homotachous models.
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Fic. 4—Mixed branch length model recovers the correct MF grouping from EFla sequence data. (A) Correct MF tree is shown at left, and
incorrect MA tree is shown at right, with branch lengths inferred by ML using the JTT 4 gamma model. (B) The difference in AIC scores between each
model and the model with minimal AIC is plotted for the JTT + gamma model with 1-7 branch length classes. The tree topology was estimated by ML
separately for each model. Arrow indicates the model with minimal AIC score, which is the model selected by AIC. (C) The log-likelihood ratio of the
MF tree to the MA tree is plotted for models with increasing number of branch length classes, with negative InL ratios indicating support for the
incorrect MA tree and positive values indicating support for the correct MF tree. The significance of support for the best tree in each case was assessed
using the AU test; p-values assuming each model are shown at right. Arrow indicates the model selected by AIC.

These results show that mixed branch length analysis
can improve the quality of inferred phylogenies under a va-
riety of conditions when sequences evolve heterotachously.
In contrast, the covarion model was less accurate than sim-
pler homotachous models in some cases and was no more
accurate than homotachous models even when it precisely
matched the true evolutionary conditions.

Empirical Sequence Analysis

Although simulations can establish the potential im-
pacts of heterotachy on phylogenetic accuracy, the true test
of any method is how accurately it can reconstruct correct
evolutionary relationships from real sequence data. To
determine whether the mixed branch length model can im-
prove the accuracy of phylogenies inferred from empirical
sequences, we analyzed 3 data sets in which heterotachy is
thought to cause phylogenetic error.

First, we analyzed the EF1a data set of Inagaki et al.
(2004). Previous analyses have shown that when the
Eukaryote phylogeny is inferred from these data using a
homotachous evolutionary model, the Microsporidia are ar-
tifactually grouped with the Archaebacterial outgroup (the

MA tree) rather than correctly with Fungi (MF, see fig. 4A).
Prior analyses also show that systematic removal of sites
exhibiting strong rate changes across the Archaebacteria/
Eukaryote split reduces support for the incorrect placement
of Microsporidia, suggesting that heterotachy may be at
least partially responsible for this phylogenetic artifact
(Inagaki et al. 2004).

To analyze the EF1 data set using the mixed branch
length model, we used an unconstrained topology search
based on simulated annealing (see Materials and Methods)
to infer the ML phylogeny assuming mixed models with 1-7
branch length classes. The best-fit number of classes—and
resulting topology inference—was determined using AIC
and BIC. AIC gave very strong support for branch length
heterogeneity, selecting 6 as the best-fit number of branch
length classes with Akaike weight >0.99 (fig. 4B; sup-
plementary table S2, Supplementary Material online).
BIC selected the covarion model with strong support (BIC
weight >0.99).

The mixed model selected by AIC strongly supported
the correct MF tree over the artifactual MA phylogeny
(P = 0.021, fig. 4C). Whenever the number of branch
length classes was underestimated, support shifted in
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Fic. 5.—Mixed model analysis of EF1la data partitions sites into branch length categories. We plot the posterior probability that each site in the
alignment evolved according to each set of branch lengths inferred using a 6-category mixed branch length model (inferred branch lengths shown to the
left of each graph). The number above each tree indicates the inferred proportion of sites expected to evolve according to those branch lengths. The tree
topology is the same as the MF tree in figure 4A; the Microsporidia clade has been placed at the bottom for space.

favor of the MA tree. Overestimating the complexity of the
model reduced support for the correct phylogeny but did not
favor the incorrect tree. The covarion model, which was
preferred by BIC, recovered the incorrect MA tree and gave
negligible support (posterior probability <0.05) for the cor-
rect MF tree.

Concerns have been raised that AIC may systemati-
cally overestimate model complexity (Hurvich and Tsai
1989; Alfaro and Huelsenbeck 2006); BIC can be biased
in favor of a too-simple model (Weakliem 1999). To deter-
mine the accuracy of AIC and BIC in this case, we simu-
lated protein sequence data of the same length as the
original data (349 aa) using the JTT + gamma model with
4 branch length classes—a model simpler than the one in-
ferred by AIC—and parameter values estimated from the
original data (see supplementary fig. S4, Supplementary
Material online). We found that AIC was slightly conser-
vative, selecting the correct number of branch length classes
in 75% of trials; the number of classes was underestimated
as 2 in the remaining 25% and was never overestimated. In
contrast, BIC was strongly biased, selecting a 2-category
model from 93% of replicates and a 1-category model in
the remaining cases. These results show that an AIC/mixed
model approach can improve phylogenetic accuracy in real
data analysis. BIC and the covarion model were inferior
strategies under these conditions.

To determine if incorporating heterotachy is responsi-
ble for the improved phylogenetic accuracy of the mixed
model, we performed partitioned analyses, with partitions
inferred using the ML tree assuming a 6-category mixed

model. We calculated the posterior probability of each
branch length class for each site in the data set (see Materi-
als and Methods). Most of the sites were decisively catego-
rized with high posterior probability (fig. 5): 93% of sites
were unambiguously categorized with posterior probability
greater than 0.9; 88% of sites were categorized with poste-
rior probability greater than 0.95; and 81% of sites were
categorized with greater than 0.99 posterior probability.
We used a variety of posterior probability cutoffs to gen-
erate strongly supported partitions; sites with posterior
probability less than the cutoff were excluded (fig. 6).
We found that using a high posterior probability cutoff
to classify sites on the MF tree resulted in support for
the correct phylogeny, indicating that partitioning sites
based on mixed model analysis is sufficient to recover
the correct tree. These results are consistent with the hy-
pothesis that the mixed model is capturing an important
aspect of EFlo evolution; however, it is impossible to rule
out heterogeneity in other aspects of the evolutionary
process—such as shifts in relative transition rates—as con-
tributing to the improved performance of the mixed model.

To determine whether our results obtained using EFla
sequences can be generalized to other data, we analyzed 2
additional data sets: the 16-taxon plastid/eubacterial Rpo
data of Lockhart et al. (2005) and a 5-taxon multigene data
set derived from the study of bilaterian phylogeny by
Philippe, Lartillot, and Brinkmann (2005). Both data sets
have been shown to produce artifactual phylogenies. In
the case of the Rpo data, MP incorrectly groups green algal
plastids with the nonphotosynthetic bacteria outgroup
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Fic. 6.—Partitioning sites based on mixed branch length analysis
recovers the correct MF tree from EFlo data. The log-likelihood ratio of
the MF tree to the MA tree is plotted for a partitioned analysis, with sites
categorized into groups based on posterior probabilities calculated from
a 6-category mixed branch length analysis. Support for the correct MF
tree or the incorrect MA tree is indicated by positive or negative InL
values, respectively. NC indicates that no cutoff was used; each site was
placed in the category having the highest posterior probability.

rather than as a sister group to red algae (fig. 7A). The bilat-
erian data overwhelmingly support a basal position for nem-
atodes when taxon sampling is poor (fig. 7B). Improving
taxon sampling and removing genes with accelerated evolu-
tionary rates shift support in favor of a nematode + insect
clade (Philippe, Lartillot, and Brinkmann 2005). For each
data set, we identified the best-fit evolutionary model using
AIC and inferred the ML tree using simulated annealing.
Support in favor of the correct phylogeny versus the incor-
rect tree was calculated using the log-likelihood ratio (InL).

The mixed branch length model fits both empirical
data sets better than a homotachous model and increases
support for the correct phylogeny (fig. 7C). Extremely
strong support was observed for choosing a mixed model
with 3 and 5 classes, respectively, for the Rpo and bilaterian
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data. For Rpo, the mixed model improved support for
the correct phylogeny from a InL ratio of 5.8—using a ho-
motachous model—to 18.6 (a >300,000-fold improvement
in the likelihood ratio). For the bilaterian data, the mixed
model reduced support for the incorrect tree versus the cor-
rect phylogeny from —87.9 to —19.0. These results, to-
gether with the analysis of EFla, suggest that the mixed
branch length model is likely to be a generally useful
strategy for improving phylogenetic accuracy. In some
cases—such as the bilaterian example—the mixed model
is not sufficient to completely overcome strong topological
biases, presumably due to other types of model violations
(Lartillot et al. 2007) or inadequate taxon sampling.

Discussion

We have shown that numerous forms of strong heter-
otachy can cause homotachous models to infer inaccurate
phylogenies. These results suggest that phylogenies in-
ferred from molecular data using homotachous models
should be interpreted with caution and examined for poten-
tial artifacts caused by model misspecification. Because
unincorporated heterotachy can introduce strong biases,
phylogenetic accuracy is not always improved by increas-
ing the amount of sequence data; under some heteroge-
neous conditions, model-based techniques infer incorrect
trees even when infinite data are available (see also Chang
1996; Kolaczkowski and Thornton 2004; Stefankovi¢ and
Vigoda 2006).

We found that the covarion model—the only existing
tool for incorporating heterotachy—does not improve phy-
logenetic accuracy under the conditions we examined, in-
cluding real sequence data. The failure of the covarion
model could be due to 3 potential factors. First, mathemat-
ical formulations of the covarion model (Tuffley and Steel
1998) assume that the rate at which sites switch between

B
I Saccharomyces
Homo
Crassostrea
0.1 Drosophila
Caenorhabditis
data set model AIC weight InL ratio
EF1a JTT+G 9.2x10% -23.5
JIT+G+C  35x10°  -21.2
JTT+G:6 _ 0.99 27.2
Rpo JTT+G 2.2x10™ 5.8
JTT+G+C  22x10™ 5.4
JTT+G:3  0.99 18.6
bilateria  JTT+G 1.2x10* -87.9
JTT+G+C  4.8x10™ -87.9
JTT+G:5  0.99 -19.0

Fic. 7.—Mixed branch length model increases support for correct phylogenetic relationships. We analyzed 3 empirical data sets using both
homotachous and mixed branch length models. (A) The correct 16-taxon Rpo phylogeny; the incorrect tree groups the green algal plastids with
nonphotosynthetic bacteria (shown in bold) (B) The correct bilaterian phylogeny; the incorrect tree places the taxa in bold together. (C) We calculated
the log-likelihood ratio (InL) of the correct versus incorrect phylogenies. Positive InLs indicate support for the correct tree, whereas negative values
indicate support for the wrong tree. AIC weights indicate the inferred support for each model. The correct and incorrect trees for EFlo are shown in
figure 4. Models used were homotoachous with gamma-distributed among-site rate variation (JTT+G), covarion (+C), or the mixed branch length model

(:n, where n is the best-fit number of branch-length categories using AIC).
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variable and invariable on any branch is proportional to the
rate of character substitution, which is unlikely to be the
case for real sequence evolution (Gaucher et al. 2001;
Gu 2001, 2003; Susko et al. 2002; Inagaki et al. 2003,
2004). Second, the covarion model assumes that the propor-
tion of invariable sites is constant across lineages, whereas
empirical data suggest that different lineages may have dif-
ferent proportions of invariable sites (Germot and Philippe
1999; Steel et al. 2000; Lockhart et al. 2005). Finally, the
covarion model does not incorporate correlations in evolu-
tionary rate shifts among different sites, which may be
an important feature of molecular evolution (Fitch and
Markowitz 1970; Fitch 1971, 1976). Our results show that
each of these factors can impair the performance of the co-
varion model; in some cases, the covarion model’s accuracy
is even worse than a homotachous model. The covarion
model appears to perform well only when it precisely
matches the true evolutionary conditions, and even in this
case there is no improvement over homotachous models.
More general versions of the covarion model that allow
sites to switch among multiple evolutionary rates have been
developed (Galtier 2001; Wang et al. 2007). These models
capture a more subtle stationary rate-switching process than
the simple on—off version but do not differ from the simpler
covarion model with regard to the 3 factors listed above. For
this reason, we predict that these more general covarion
models will suffer from the same limitations as the simple
on—off model.

The mixed branch length model, in contrast, was dra-
matically more accurate than both homotachous and cova-
rion models, recovering the correct phylogeny more often
and providing better estimates of expected branch lengths
across sites under all conditions tested. The mixed model
provides a significantly better fit to real sequence data than
homotachous models and recovered the correct evolution-
ary relationships under challenging conditions that cause
other methods to fail.

The accuracy of the mixed model depends on the ac-
curacy with which the best-fit number of branch length clas-
ses can be estimated. Our analyses suggest that AIC
provides a reasonably accurate — albeit slightly conserva-
tive — estimate of model complexity when used to select
the number of classes for the mixed model. In contrast,
BIC was conservatively biased. Previous analyses sug-
gested that AIC may select an overly complex model in
some cases but did not address the frequency with which
such errors might occur (Zhou et al. 2007). Our results sug-
gest that overfitting errors are likely to be rare. One limi-
tation of our simulation experiments is that the correct
evolutionary model was always available; it is not known
how AIC or BIC perform when additional forms of het-
erogeneity not captured by any available model are
present in the data. Understanding the properties of model
selection procedures such as AIC and BIC in the context of
mixed phylogenetic models is an important area for future
research.

Theoretical analyses have shown that the mixed model
is statistically consistent so long as it is identifiable (Spencer
et al. 2005), and that it is identifiable under some conditions
(Allman and Rhodes 2006; Stefankovi¢ and Vigoda 2006);
however, it may produce inaccurate phylogenies due to

nonidentifiability under specific evolutionary conditions
using binary data (Matsen and Steel 2007). Our results in-
dicate that the AIC/mixed model strategy is highly accurate
on both simulated and empirical data, using both protein and
nucleotide sequences: nonidentifiability does not appear to
undermine phylogenetic accuracy under the conditions
we examined.

The power of the AIC/mixed model to infer accurate
phylogenies could depend on the amount of available data
as well as the strength and complexity of heterotachy in the
data. The mixed model performed extremely well in our
simulations, which were done with moderately large data
sets (N = 5,000 nt) and a moderate amount of strong het-
erotachy (2—4 branch length classes). The mixed model also
improved phylogenetic accuracy and decisively partitioned
sites using smaller empirical data sets (349 and 1,773 aa for
EFlo and Rpo, respectively) and, in the case of EFla, ap-
parently more complex heterotachy. A more detailed under-
standing of the efficiency of the mixed model on small data
sets will require further experiments.

One limitation of the mixed model is that it requires
much more computation time than simpler models (see sup-
plementary fig. S5, Supplementary Material online), which
could necessitate limiting analyses to smaller data sets. De-
velopment and implementation of more efficient optimiza-
tion algorithms should help overcome this limitation.

In addition to improving phylogenetic accuracy, the
mixed branch length model is a potentially useful tool for
characterizing the processes that drive molecular sequence
evolution, one of the most important standing problems in
biology. Branch lengths are often of interest for making in-
ferences about divergence dates, substitution rates, or other
aspects of the evolutionary process. We found that homo-
tachous models produce biased estimates of branch lengths
when sequences evolve heterotachously. The mixed branch
length model produced much more accurate estimates of
expected branch lengths across sites and may produce more
accurate estimates of other evolutionary parameters,
such as the amount of among-site rate variation and the
nonsynonymous/synonymous substitution ratio, which could
be routinely misestimated due to unincorporated heteroge-
neity. The ability of the mixed model to decisively partition
sites among inferred branch length classes could be used
to directly infer site-specific evolutionary properties from
sequence data. For example, the identification of sites
exhibiting lineage-specific increases in evolutionary rates
could be used to predict sites involved in functional shifts.
These predictions could then be examined using biochem-
ical and structural approaches (Dean and Thornton 2007).

Current evolutionary models are built from multiple
components, typically including a tree topology, branch
lengths, a substitution matrix, state frequencies, a proportion
of invariable sites, and gamma-distributed rate variation.
The evolutionary forces described by these components
could be heterogeneous across sites, lineages, or both. A
comprehensive approach capable of incorporating a variety
of types of heterogeneity would be useful for characterizing
the forms of heterogeneity in real data sets. Models incor-
porating specific types of heterogeneity have been devel-
oped (Yang and Roberts 1995; Bruno 1996; Thorne
et al. 1996; Galtier and Gouy 1998; Halpern and Bruno
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1998; Koshi and Goldstein 1998, 2001; Huelsenbeck and
Nielsen 1999; Dimmic et al. 2000; Foster 2004; Lartillot
and Philippe 2004; Pagel and Meade 2004; Gowri-Shankar
and Rattray 2005; Blanquart and Lartillot 2006); however,
these partially heterogeneous models have not been inte-
grated into a coherent framework capable of testing hypoth-
eses about which aspects of the model display significant
heterogeneity. Mixed models incorporating multiple types
of heterogeneity could provide this general framework, en-
abling new types of evolutionary and phylogenetic hypoth-
eses to be rigorously examined.

Supplementary Material

Supplementary text, tables S1 and S2, and figures S1—
S5 are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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