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Abstract Engineering design problems often involve non-

linear criterion functions, including inequality and equal-

ity constraints, and a mixture of discrete and continuous

design variables. Optimization approaches entail substan-

tial challenges when solving such an all-inclusive design

problem. In this paper, a modification of the Particle

Swarm Optimization (PSO) algorithm is presented, which

can adequately address system constraints while dealing

with mixed-discrete variables. Continuous search (particle

motion), as in conventional PSO, is implemented as the pri-

mary search strategy; subsequently, the discrete variables

are updated using a deterministic nearest-feasible-vertex

criterion. This approach is expected to alleviate the unde-

sirable difference in the rates of evolution of discrete and

continuous variables. The premature stagnation of candidate

solutions (particles) due to loss of diversity is known to be

one of the primary drawbacks of the basic PSO dynamics.

To address this issue in high dimensional design problems,
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a new adaptive diversity-preservation technique is devel-

oped. This technique characterizes the population diversity

at each iteration. The estimated diversity measure is then

used to apply (i) a dynamic repulsion away from the best

global solution in the case of continuous variables, and

(ii) a stochastic update of the discrete variables. For per-

formance validation, the Mixed-Discrete PSO algorithm is

applied to a wide variety of standard test problems: (i) a set

of 9 unconstrained problems, and (ii) a comprehensive set of

98 Mixed-Integer Nonlinear Programming (MINLP) prob-

lems. We also explore the applicability of this algorithm to a

large scale engineering design problem—-wind farm layout

optimization.
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1 Introduction

Particle Swarm Optimization (PSO) is a stochastic opti-

mization algorithm that imitates the dynamics of social

behavior observed in nature. This algorithm was intro-

duced by an Electrical Engineer, Russel C. Eberhart, and

a Social Psychologist, James Kennedy (1995). The underly-

ing philosophy of PSO and swarm intelligence can be found

in the book by Kennedy et al. (2001). PSO has emerged

over the years to be one of the most popular population-

based heuristic optimization approaches. Several variations

of PSO have been reported in the literature, and applied

to diverse optimization problems in engineering, basic

sciences and finance (Banks et al. 2008). The modifications

of the PSO algorithm presented in this paper are inspired by
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the authors’ research in product family design (Chowdhury

et al. 2010a, 2011) and wind farm optimization (Chowdhury

et al. 2010b, 2012). Both of these optimization problems

(defined as single objective) involve complex multimodal

criterion functions and a high dimensional system of mixed-

discrete design variables. These problems are challenging,

and generally require a large number of system-model

evaluations.

In the case of constrained single-objective optimization

problems, population-based algorithms (e.g., evolution-

ary and swarm-based optimization methods) often suffer

from premature stagnation (Banks et al. 2008). This unde-

sirable property can be attributed to an excessive and

mostly unopposed pressure of exploration or evolution. The

simultaneous presence of continuous and discrete design

variables that may experience differing rates of evolu-

tion further complicates the optimization scenario. In this

paper, a new method is developed to both characterize and

adaptively infuse diversity into the population of candi-

date solutions. This method is an evolution from earlier

diversity-preservation methods reported in the PSO litera-

ture, which are later discussed in Section 1.2. The PSO

algorithm presented in this paper can address a mixture

of discrete and continuous design variables. Two distinct

yet mutually coherent approaches are developed to address

the diversity-preservation issues for discrete and continuous

variables.

In the following two sections (Sections 1.1 and 1.2), we

provide brief surveys of Mixed-Discrete Nonlinear Opti-

mization (MDNLO) methodologies and the major variations

of the Particle Swarm Optimization algorithm reported in

the literature. Section 1.3 introduces the basic principles and

objectives of the Mixed-Discrete Particle Swarm Optimiza-

tion (MDPSO) algorithm developed in this paper. Sections 2

and 3 describe the development of the MDPSO algorithm

and the generalized diversity characterization/preservation

technique, respectively. Results and subsequent discussions

regarding the application of MDPSO to various standard test

problems, and a real-life engineering problem, a wind farm

layout optimization, are given in Section 4.

1.1 Existing mixed-discrete optimization approaches

A significant amount of research has been done in develop-

ing algorithms for solving Mixed-Integer Non-Linear Pro-

gramming (MINLP) problems. Most of these algorithms are

gradient-based search techniques. Three major categories of

gradient-based algorithms are (i) the branch and bound, (ii)

the cutting plane, and (iii) the outer approximation algo-

rithms. A list of these algorithms, related discussion, and

bibliography can be found in the websites of the MINLP

World (2010) and the CMU-IBM Cyber-Infrastructure for

MINLP (2010). These algorithms possess attractive numer-

ical properties, namely (i) fast convergence, (ii) proof of

optima, and (iii) an intrinsic ability to deal with constraints.

However, gradient-based algorithms do not readily apply

to the broad scope of engineering design problems that

may involve highly nonlinear, non-smooth and multimodal

criterion functions.

Among population-based optimization methods, binary

Genetic Algorithms (GAs) (Goldberg 1989; Deb 2009)

have been reported to be effective for discrete optimization.

Binary GAs convert the design variables into binary strings.

This process leads to an approximate discrete representa-

tion of the continuous variables. A population of candidate

solutions, each represented by a binary string, evolve over

generations generally through four stages: (i) fitness assign-

ment, (ii) selection, (iii) crossover, and (iv) mutation. One of

the most popular binary GAs is the bin-NSGA-II developed

by Deb et al. (2002). Genetic algorithms have been success-

fully implemented on MINLP problems, such as batch plant

design (Ponsich et al. 2007, 2008). Another class of dis-

crete optimization algorithms, which belong to Ant Colony

Optimization (ACO), have also been reported in the litera-

ture (Corne et al. 1999; Bonabeau et al. 1999). Applications

of ACO-based algorithms to discrete optimization problems

include vehicle routing, sequential ordering, and graph col-

oring. There exists in the literature a handful of variations

of the PSO algorithm that can address discrete and/or inte-

ger variables. A summary of these variations of PSO is

discussed in the following section.

1.2 Existing Particle Swarm Optimization algorithms

A comprehensive review of the background and the devel-

opment of Particle Swarm Optimization-based algorithms

(until 2007) can be found in a chapter by Banks et al. (2007).

An extensive follow up review of the various attributes of

PSO, and the applicability of PSO to different classes of

optimization problems, such as unconstrained/constrained,

combinatorial, and multicriteria optimization, can be found

in a book chapter by Banks et al. (2008). In this section,

we provide a brief survey of reported variations of PSO

that address the following critical optimization attributes: (i)

mixed-discrete variables, (ii) population diversity preserva-

tion, and (iii) constraint handling.

A balance between exploration, exploitation, and

population-diversity in PSO requires appropriate quan-

tification of the PSO coefficients, or what is more popularly

termed parameter selection. One of the earliest strategies

to balance exploration and exploitation was the introduc-

tion of the inertia weight (Banks et al. 2007). Eberhart

(1998) investigated the influences of the inertia weight

and the maximum velocity on the algorithm performance.



A mixed-discrete Particle Swarm Optimization algorithm with explicit diversity-preservation 369

Using numerical experiments, they proposed particular val-

ues (and/or range of values) for the inertia weight and the

maximum velocity, and also suggested the application of

time varying inertia weight to further improve the algo-

rithm performance. Trelea (2003) used standard results

from dynamic systems theory to provide graphical param-

eter selection guidelines. The applications of control theory

by Zhang et al. (2009), and chaotic number generation by

Alatas et al. (2009) are among the recently proposed methods

used to establish parameter selection guidelines (for PSO).

Several variations of the PSO algorithm that can solve

combinatorial optimization problems have been reported in

the literature. Kennedy and Eberhart (1997) presented one

of the earliest modification of PSO to address binary vari-

ables. They defined the trajectories of the binary variables

in terms of the change in the probability that a value of one

or zero will be taken. Tasgetiren et al. (2007) used construc-

tion/destruction operators to perturb the discrete component

of the variable vector of a particle in solving a Traveling

Salesman problem. A similar combinatorial-PSO concept

was also developed and used by Jarboui et al. (2008) for

resource-constrained project scheduling. These variations

of the PSO algorithm provide efficient and robust perfor-

mances, typically for combinatorial optimization problems

that are similar to the corresponding reported applications.

A majority of these methods do not readily apply to the

broad scope of mixed-discrete optimization that involves

problems with: (i) integers and/or real-valued discrete vari-

ables, (ii) non-uniformly spaced discrete variable values

(e.g., x ∈ [1, 3, 100, 1000, . . .]) and (iii) widely dif ferent

sizes of the “set of feasible values” for the discrete variables

(e.g., x1 ∈ [0, 1] and x2 ∈ [1, 2, . . . , 1000]).
Kitayama et al. (2006) developed a more generalized

approach to address discrete variables using a penalty

function—-discrete variables are treated as continuous vari-

ables by penalizing at the intervals. However, the addi-

tional multimodal constraint in the penalty function-based

approach may undesirably increase the complexity of the

design problem. Singh et al. (2010) presented an interesting

approach to address discrete variables, which manipulates

the random operators in the particle-velocity update step.

This approach can be very helpful in maintaining consis-

tency in the rates of evolution of the continuous and the

discrete variables. The needed stochastic and mutually inde-

pendent attributes of the random operators that regulate the

PSO dynamics are restricted in this approach.

Preservation of the population diversity to avoid pre-

mature convergence has been a long-standing challenge

for PSO. Rapid swarm convergence, which is one of the

key advantages of PSO over other population-based algo-

rithms, can however lead to stagnation of particles in a

small suboptimal region. Efficient and time-variant param-

eter selection has been traditionally used as an implicit

method to avoid particle stagnation, thereby preserving pop-

ulation diversity. Over the years, the use of explicit diversity

preservation techniques have proved to be more effective

(Kennedy and Eberhart 1995). Krink et al. (2002) intro-

duced a collision-avoidance technique to mitigate premature

convergence. Particles coming within a defined vicinity

of each other were allowed to bounce off; bouncing back

along the old velocity vector (U-turn approach) was found

to be most effective. Blackwell and Bentley (2002) also

developed a diversity preserving swarm based on a sim-

ilar collision-avoidance concept. The collision avoidance

schemes however require an intuitive specification of the

threshold radius.

A more globally applicable approach was developed by

Riget and Vesterstrom (2002), where the usual attraction

phase was replaced by a repulsion phase, when the entire

population diversity fell below a predefined threshold. In

this case, the usual PSO location update formula is applied

with the direction reversed. A metric similar to the standard

deviation of the particle locations was used as the mea-

sure of diversity. This measure, however, does not readily

account for the combined effects of the distribution of the

particles and the overall spread of the particles in the vari-

able space. In other words, with their method (Riget and

Vesterstrom 2002), infrequent extreme deviations (i.e., a

higher kurtosis such as [0, 0, 0, 0, 10, −10]) may yield the

same measure of diversity as frequent moderate deviations

(e.g., [5, 6, 7, −5, −6, −7]), which is misleading. Other

interesting methodologies to address population diversity

include: (i) introduction of a predatory particle (Silva et al.

2002), and (ii) introduction of the concept of negative

entropy from thermodynamics (Xie and Yang 2002). Never-

theless, the consideration of population diversity in a mixed-

discrete/combinatorial optimization scenario (in PSO) has

rarely been reported in the literature.

The basic dynamics of PSO does not account for sys-

tem constraints. Several variations of the PSO algorithm

that incorporate a constraint handling capability have been

proposed: (i) a straight-forward method of considering only

feasible particles for the best global and the best local

solutions (Hu and Eberhart 2002), (ii) the use of conven-

tional dynamic penalty functions (Parsopoulos and Vrahatis

2002), (iii) an effective bi-objective approach where the

net constraint serves as the the second objective (Venter

and Haftka 2009), and (iv) the use of the efficient con-

strained non-dominance principles (Zavala et al. 2005). In

this paper, we implement the rules of constrained non-

dominance introduced by Deb (2009). Interestingly, the

constrained non-dominance principle can be perceived as

an aspect of natural swarm intelligence: communication of

information from particle to particle regarding whether they

are beyond the feasible domain boundaries, and/or how far

beyond they are.
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1.3 Mixed-Discrete Particle Swarm Optimization:

principles and objectives

This paper presents fundamental modifications to the orig-

inal dynamics of PSO, with the aim to solve highly

constrained single-objective mixed-discrete optimization

problems. The development of this Mixed-Discrete PSO

(MDPSO) is driven by the following specific objectives:

i. Develop an approximation technique that can address

mixed-discrete design variables through continuous

optimization;

ii. Include a constraint handling technique to deal with

both equality and inequality constraints; and

iii. Formulate an explicit diversity preservation technique

to avoid the stagnation of particles.

Efficient diversity preservation (the third objective) pro-

vides an environment conducive to accomplishing the first

and the second objectives. Hence, the third objective is

considered to be the primary contribution of this paper.

A method is formulated to characterize the existing diver-

sity in the population and adjust the diversity parame-

ter(s)/coefficient(s) at every iteration. This approach pro-

vides a generalized adaptive regulation of the popula-

tion diversity, which can be implemented in a majority

of population-based optimization algorithms and is not

restricted to PSO. For example, the concerned diversity

parameter can be (i) the mutation probability in genetic

algorithms (Deb 2009), or (ii) the time-varying acceleration

coef f icients (TVAC) in PSO (Ratnaweera et al. 2004) or

(iii) the window-size of the hypercube operator in Predator–

Prey algorithms (Chowdhury and Dulikravich 2010), or

(iv) the random selection rate in Ant Colony Optimization

(Nakamichi and Arita 2004).

A majority of the existing Mixed-Discrete PSO algo-

rithms are hindered by the effects of differing rates of

evolution of the continuous and discrete design variables.

To avoid this undesirable scenario, continuous optimiza-

tion is applied as the primary search strategy for all vari-

ables, whether they are continuous or discrete. After the

particles have moved to their new locations, the discrete

component of the design vector for each particle is approx-

imated to the nearest feasible discrete domain location. In

this case, nearness is determined using the Euclidian dis-

tance in the discrete variable space. As a result, although

the variables evolve through continuous search dynam-

ics, system-function evaluations are performed only at the

allowed discrete locations. This approach is partly similar to

the strategy presented by Laskari et al. (2002). A schematic

of the proposed mixed-discrete optimization approach for a

single particle at a particular iteration is shown in Fig. 1. The

term “feasible discrete space location” as discussed in this

Fig. 1 Flowchart for the mixed-discrete optimization approach in

MDPSO

Section (and as appears in Fig. 1) pertains to the feasibility

with respect to the constraints imposed by the discreteness

of the variable space, and not to the system constraints.

Constraint handling in MDPSO is performed using the

principle of constrained non-dominance that was introduced

by Deb et al. (2002). This method has been success-

fully implemented in the Non-dominated Sorting Genetic

Algorithm-II (Deb et al. 2002), Modified Predator–Prey

algorithm (Chowdhury and Dulikravich 2010), and other

standard evolutionary algorithms. The MDPSO algorithm

involves a set of coefficients that regulate the inertia, the

personal behavior, the social behavior, and the diversity

preserving behavior of the particles. Parameter selection in

PSO is far from trivial, as discussed in the previous section.

However, detailed analysis of the selection of PSO param-

eters, and the ensuing numerical behavior of the particle

dynamics are not within the scope of this paper. In this

paper, we specifically intend to provide:

i. the detailed formulation of the Mixed-Discrete PSO

algorithm,

ii. the underlying hypothesis supporting the proposed

modifications, and

iii. the performance of this modified algorithm on a wide

variety of test cases.

Over the past decade, a substantial amount of interesting

research in PSO has been reported in the literature. Effective

characteristic modifications can therefore be adopted from
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the existing variations of the algorithm to further advance

the performance of the MDPSO algorithm. For valida-

tion purposes, the MDPSO algorithm is applied to (i) a

set of standard unconstrained nonlinear optimization prob-

lems (Pohlheim 2010; Miele and Cantrell 1969), and (ii)

a comprehensive set of MINLP problems (Schittkowski

2009).

2 Development of Mixed-Discrete Particle Swarm

Optimization (MDPSO)

2.1 Basic swarm dynamics

A general mixed-discrete single objective constrained mini-

mization problem involving m discrete variables and a total

of n design variables can be expressed as

Min f (X)

subject to

g j (X) ≤ 0, j = 1, 2, ..., p

hk (X) = 0, k = 1, 2, ..., q

where

X =
[

x1 x2 . . . xm xm+1 . . . xn

]

(1)

where p and q are the number of inequality and equality

constraints, respectively. In (1), X is the design variable

vector, where the first m variables are discrete and the next

n − m variables are continuous. To solve this optimization

problem, the PSO algorithm is initialized with N random

particles. To this end, the Sobol’s quasirandom sequence

generator (Sobol 1976) is applied. Sobol sequences use a

base of two to form successively finer uniform partitions

of the unit interval, then reorder the coordinates in each

dimension. The location of each particle in the swarm is

updated using a velocity vector at each iteration; the veloc-

ity vector of a particle is variable, and is itself updated

at every iteration. In the MDPSO algorithm, the velocity

vector update formula is redefined to allow for an explicit

diversity preservation term.

The modified dynamics of the particle motion can be

represented as

X t+1
i = X t

i + V t+1
i ,

V t+1
i = αV t

i + βlr1

(

Pi − X t
i

)

+ βgr2

(

Pg − X t
i

)

+ γcr3V̂ t
i (2)

where,

• X t
i and X t+1

i are the locations of the i th particle at the

t th and the (t + 1)th iterations, respectively;

• V t
i and V t+1

i are the velocity vectors of the i th particle

at the t th and the (t + 1)th iterations, respectively;

• r1, r2 and r3 are real random numbers between 0 and 1;

• Pi is the best candidate solution found for the i th

particle;

• Pg is the best candidate solution for the entire popula-

tion (also known as the current best global solution);

• α, βl and βg are the user defined coefficients that

respectively control the inertial, the exploitive, and the

explorative attributes of the particle motion;

• γc is the diversity preservation coefficient for continu-

ous design variables; and

• the last term γcr3V̂ t
i in the velocity update expression is

the diversity preservation term, in which the parameter

V̂ t
i is a diverging velocity vector.

The conventional particle dynamics in PSO encourages the

particles to congregate, often leading to premature con-

vergence. The purpose of the diverging velocity vector,

V̂ t
i , is to introduce a direction of motion (in each particle)

that opposes such premature congregation of particles. Two

different choices for the diverging velocity vector, V̂ t
i , are

explored in this paper: (i) the vector connecting the mean

of the population of solutions to the concerned particle, and

(ii) the vector connecting the current best global solution to

the concerned particle, which is V̂ t
i = X t

i − Pg . Numerical

experiments showed that the vector X t
i − Pg that repels the

particle from the best global solutions is more suitable for

diversity preservation. A representative illustration of the

velocity vectors guiding the motion of a particle (at every

iteration) according to the modified velocity update expres-

sion is shown in Fig. 2. In this figure, the dotted vector

(pointed up and right) represents the original new veloc-

ity vector of particle- j , i.e., when the diversity term is not

included. It is seen from Fig. 2 that the presence of the diver-

sity vector (pointed down and left) reduces the tendency of

the particles to congregate towards the global best particle.

The determination of the diversity preservation coefficient

(γc) is discussed in Section 3. The best global (Pg) and

the best local (Pi ) solutions are updated at every itera-

tion using the solution comparison principle. This solution

Fig. 2 Modified particle dynamics as given by (2)
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comparison principle is based on the values of the objec-

tive functions and the constraint functions of the candidate

solutions being compared. This principle is discussed in

Section 2.3. The continuous update process (2) is applied to

all the design variables of a particle, irrespective of whether

they are continuous or discrete. This approach promotes

coherent rates of evolution of the continuous and discrete

variables. Following the continuous update process, the dis-

crete component of the design vector is updated to nearby

feasible discrete locations. As in the previous Section, fea-

sibility in this case pertains to the constraints imposed by

the discreteness of the variable space, and not to the system

constraints.

2.2 Updating discrete design variables

In a mixed-discrete optimization scenario, the design space

can be divided into a continuous domain and a discrete

domain, which correspond to the continuous and the dis-

crete components of the design variable vector, respectively.

Following a continuous search PSO step (2), the location

of a particle in the discrete domain is defined by a local

hypercube that is expressed as

Hd =
{(

x L
1 , xU

1

)

,
(

x L
2 , xU

2

)

, . . . ,
(

x L
m, xU

m

)}

,

x L
i ≤ xi ≤ xU

i , ∀ i = 1, 2, . . . , m (3)

In (3), m is the number of discrete design variables, and

xi denotes the current location of the candidate solution in

the discrete domain. The parameters x L
i and xU

i represent

two consecutive feasible values of the i th discrete variable

that define the boundaries of the local hypercube. The total

number of vertices in the hypercube is equal to 2m .

The values, x L
i and xU

i , can be obtained from the discrete

vectors that need to be specified a priori for each dis-

crete design variable. A relatively straight-forward criterion,

called the Nearest Vertex Approach (NVA), is developed

to approximate the current discrete-domain location of the

candidate solution to one of the vertices of its local hyper-

cube, Hd (3). The NVA approximates the discrete-domain

location to the nearest vertex of the local hypercube (Hd ),

on the basis of the Euclidean distance. This approximation

is represented by

X̃ =
[

x̃1 x̃2 · · · x̃m

]

,

where

x̃i =
{

x L
i , if

∣

∣xi − x L
i

∣

∣ ≤
∣

∣xi − xU
i

∣

∣

xU
i , otherwise

∀ i = 1, 2, . . . , m (4)

In (4), X̃ represents the approximated discrete-domain

location based on the NVA.

Another approach to approximate discrete domain loca-

tions was also explored—this approach is called the Shortest

Normal Approach (SNA) (Chowdhury et al. 2010a). The

SNA approximates the discrete domain location of a par-

ticle to the local hypercube vertex that has the shortest

normal distance from the latest velocity vector of the par-

ticle. Numerical experiments showed that the NVA is sig-

nificantly less expensive and more reliable than the SNA;

hence, NVA is used for the application of MDPSO to the

test problems in this paper. An illustration of the NVA and

the SNA for a 2-D discrete domain is shown in Fig. 3.

This deterministic approximation seeks to retain the

search characteristics of the continuous PSO dynamics,

while ensuring that the system-model is evaluated only at

the allowed discrete domain locations. Such an approxi-

mation strategy can be readily implemented in other non-

gradient based continuous optimization algorithms as a

post process to the usual continuous search step at every

iteration.

2.3 Solution comparison and constraint handling

Solution comparison is essential in PSO at every iteration,

to determine and update the best global solution in the pop-

ulation and the best local solution for each particle. The

principle of constrained non-domination (Deb et al. 2002) is

used to compare solutions. According to this principle, can-

didate solution-i is said to dominate candidate solution- j if

and only if one of the following scenarios occur:

I. Solution-i is feasible and solution- j is infeasible or,

II. Both solutions are infeasible and solution-i has a

smaller net constraint violation than solution- j or,

Shortest Euclidean Distance

Shortest Normal Distance

Parent solution

Child solution

X

X

NVA vertex

SNA vertex

x1
L

x1
U

x2
U

x2
L

Local hypercube

Connecting Vector

Fig. 3 Illustration of the NVA and the SNA approximation
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III. Both solutions are feasible; in addition, solution-i

is not worse than solution- j in any objective, and

solution-i is better than solution- j in at least one

objective.

In the case of a multi-objective problem, it is possible that

none of the above scenarios apply, which implies that the

solutions are non-dominated with respect to each other.

The net constraint violation fc (X) is determined by

fc (X) =
p

∑

j=1

max
(

ḡ j , 0
)

+
q

∑

k=1

max
(

h̄k − ǫ, 0
)

(5)

where ḡ j and h̄k represent the normalized values of the

j th inequality constraint and kth equality constraint, respec-

tively. In (5), ǫ represents the tolerance specified to relax

each equality constraint; a tolerance value of 1.0e−06 is

used for the case studies in this paper. The solution com-

parison approach in MDPSO favors feasibility over the

objective function value. This approach has a tendency to

drive solutions towards and into the feasible region dur-

ing the initial iterations of the algorithm (Chowdhury and

Dulikravich 2010; Chowdhury et al. 2009). Throughout this

initial phase, dominance scenarios I and II are prominently

active. When a majority of the particles have moved into the

feasible space, scenario III takes over; solution comparisons

are then progressively determined by the magnitude of the

objective function.

In the case of highly constrained single-objective prob-

lems, this solution comparison approach, together with the

intrinsic swarm dynamics, can lead to an appreciable loss

in diversity. This undesirable phenomenon occurs primar-

ily during the feasibility-seeking process of optimization.

To counter this undesirable characteristic of the particle

motion in the MDPSO, the explicit diversity preservation

term, γcr3V̂ t
i (refer (2)), is added to the velocity vector, as

introduced in Section 2.1.

3 Diversity preservation

The first step in diversity preservation is to characterize and

quantify the existing population diversity with respect to

the design variable space. A consistent measure of diver-

sity should simultaneously capture the overall spread and

the distribution of the particles in the population. Deb et al.

(2002) used a performance metric to measure the spread

of solutions along the computed Pareto front in the objec-

tive space. A similar metric, implemented in the variable

space, would be an almost ideal choice for diversity char-

acterization. However, the required determination of the

nearest-neighbor Euclidian distances for every member of

the population is likely to become computationally pro-

hibitive in the case of high dimensional optimization prob-

lems. A novel diversity characterization/metric is developed

in this paper. Salient features of this metric are:

• It seeks to effectively capture the two diversity

attributes: the overall spread and the distribution of

particles.

• It is computationally inexpensive to implement, if

required, at every iteration.

Separate diversity metrics and diversity preservation

mechanisms are formulated for continuous and discrete

design variables. The diversity metrics and the correspond-

ing diversity preservation coefficients are estimated for the

entire population at the start of an iteration. The diversity

metrics are then updated using a common factor that seeks

to account for the particle distribution. In the case of con-

tinuous design variables, the initial diversity metric is given

by the normalized side length of the smallest hypercube that

encloses all the particles. This metric is expressed as

Dc =

⎛

⎝

n
∏

i=m+1

x
t,max
i − x

t,min
i

xmax
i − xmin

i

⎞

⎠

1
n−m

(6)

where x
t,max
i and x

t,min
i are respectively the maximum and

the minimum values of the i th design variable in the popu-

lation at the t th iteration; and xmax
i and xmin

i , respectively,

represent the specified upper and lower bounds of the i th

design variable. The parameters n and m represent the total

number of variables and the number of discrete variables,

respectively. It is important to note that the concept of

enclosing hypercube (of the entire population or an elite

subset of the population) has been used in different ways

to improve the efficiencies of heuristic optimization algo-

rithms. For example, Wang et al. (2009) used the hypercube

that encloses a set of elite solutions (surrounding the fea-

sible region) to shrink the search space, and consequently

accelerate the feasible region seeking process during con-

strained evolutionary optimization.

An undesirable and common scenario in heuristic algo-

rithms is the presence of one or more outlier particles,

when the majority of the particles are concentrated in a sig-

nificantly smaller region. Occurrence of this scenario leads

to an appreciable overestimation of the population diversity

(Dc). To overcome this deleterious scenario, as well as to

account for the distribution of candidate solutions, the diver-

sity metric is further modified. A hypercuboid region is first

constructed around the best global candidate solution in the

overall variable-space (including continuous and discrete

variables). This hypercuboid region is defined such that its
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volume is a fraction of the volume of the smallest hyper-

cube enclosing all the particles. The user-def ined fraction

is represented by the parameter λ, where 0 < λ < 1.

The “number of particles” within the fractional hypercuboid

region is then determined and used to adjust the continu-

ous diversity metric (enclosing-hypercube side length), in

order to better account for the particle distribution. The

boundaries of the fractional hypercuboid region is given by

x̄
t,max
i = max

[

x
t,min
i + λ�x t

i

min
(

Pg,i + 0.5λ�x t
i , x

t,max
i

)

]

,

x̄
t,min
i = min

[

x
t,max
i − λ�x t

i

max
(

Pg,i − 0.5λ�x t
i , x

t,min
i

)

]

∀ i = 1, 2, . . . , n

(7)

where �x t
i = x

t,max
i − x

t,min
i ; the parameters x̄

t,max
i and

x̄
t,min
i respectively represent the upper and the lower bound-

aries of the fractional domain for the design variable xi ;

and Pg,i is the i th variable of the best global solution. The

adjusted continuous diversity metric D̄c is then expressed as

D̄c =
(

λ
N + 1

Nλ + 1

)
1
n

× Dc (8)

where Nλ is the number of particles in the λ-fractional

domain.

The diversity coefficient, γc, for continuous variables is

then defined as a function of the continuous diversity metric,

which is given by

γc = γc0 exp

(−D̄2
c

2σ 2
c

)

, where

σc = 1√
2 ln (1/γmin)

(9)

and γc0 and γmin are specified constants that respectively

control the scale of the diversity coefficient and the vari-

ance of the diversity coefficient with the diversity metric.

The order of magnitude of the diversity-scaling constant γc0

should be one; or, in other words, it should be comparable

to that of the explorative coefficient, βg . In the range 0 to 1

for D̄c, the diversity coefficient is a monotonically decreas-

ing function. The nature of this function for different orders

of magnitude of γmin is shown in Fig. 4.

In the case of discrete design variables, the diversity is

characterized independently for each variable in order to

address the following two factors:

i. The effective diversity in the i th discrete variable

depends on (1) the number of feasible values available

for that variable and (2) the distribution of these feasible

values.
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Fig. 4 Variation of the diversity coefficients γc and γd,i with the diver-

sity metrics D̄c and D̄d,i , respectively, illustrated at (i) different values

of γmin for continuous variables, and (ii) different sizes (M) of the

feasible set for discrete variables, with γd0 = 1

ii. Diversity preservation in discrete variables should seek

to avoid the stagnation of particles inside a local

discrete-space hypercube Hd .

The initial diversity metric (Dd ) for discrete design vari-

ables is a vector of the normalized discrete variable ranges

that span the current population. This metric is expressed as

Dd,i =
x

t,max
i − x

t,min
i

xmax
i − xmin

i

, ∀ i = 1, 2, . . . , m (10)

where Dd,i is the component of the discrete diversity metric

corresponding to the i th discrete variable. Subsequently, in

order to better account for the distribution of solutions, the

discrete diversity metric is adjusted as

D̄d,i =
(

λ
N + 1

Nλ + 1

)
1
n

× Dd,i (11)

where D̄d,i is the adjusted discrete diversity metric. It is

important to note how the parameter λ couples the diversity

in continuous and discrete design variables. As a result, the

diversity preservation mechanisms for continuous and dis-

crete variables are expected to work in coherence with each

other.

Diversity preservation for discrete variables is accom-

plished through modification of the discrete update pro-

cess described in Section 2.2. The otherwise deterministic

approximation of the particle to a nearby feasible discrete

location is replaced by a stochastic update process. This

stochastic update gives a particle the opportunity to jump

out of a local hypercube, thereby reducing the possibility

of stagnation of the swarm’s discrete component. A vector



A mixed-discrete Particle Swarm Optimization algorithm with explicit diversity-preservation 375

of discrete-variable diversity coefficients, γd , is defined to

further regulate the updating of discrete variables, with the

objective to minimize the possibility of their premature stag-

nation. A random number (r4) is generated between 0 and 1,

and the stochastic update for the generic i th discrete variable

(xi ) of a particle is then applied using the following rules:

i. If r4 is greater than the diversity coefficient γd,i , then

update the discrete variable using (4).

ii. If r4 is less than or equal to γd,i , then randomly

approximate xi to either x L
i or xU

i (defined in (4)).

The discrete-variable diversity coefficient, γd,i , that reg-

ulates the stochastic update rules is designed to adapt to

the size of the set of feasible values for the i th discrete

variable. This approach avoids a false impression of con-

siderable diversity, in the case of discrete variables that take

a relatively small sized set of feasible values. The discrete

diversity coefficient is defined as

γd,i = γd0 exp

(

−D̄2
d,i

2σ 2
d,i

)

, where

σd,i = 1√
2 ln Mi

∀ i = 1, 2, . . . , m

(12)

and where Mi represents the size of the set of feasible values

for the i th discrete variable, and γd0 is a prescribed constant

between 0 and 1. For any estimated value of the population

diversity, a higher value of the prescribed parameter, γd0,

makes the random update of the discrete domain location

more likely.

It is important to note that, while the continuous-

variable diversity coefficient (γc) directly regulates the

particle motion (in the location update step), the discrete-

variable diversity coefficients (γd,i ) control the updating of

the discrete variables as a post-process (during the NVA

application) in every pertinent iteration. In addition, the

same value of γc is used for all design variables at a par-

ticular iteration, whereas a different value of γd,i is used

for each generic i th discrete variable. An illustration of the

discrete diversity coefficient for different sizes of the set of

feasible values is shown in Fig. 4.

4 Numerical experiments

To validate the Mixed-Discrete Particle Swarm Optimiza-

tion (MDPSO) algorithm, we apply it to two different

classes of single-objective optimization problems: (i) stan-

dard unconstrained problems, most of which are multi-

modal, and (ii) Mixed-Integer Non-Linear Programming

(MINLP) problems. The MDPSO algorithm is also applied

to a large scale real life engineering problem: wind farm

optimization. These three sets of numerical experiments are

discussed in the following three sub-sections. The values

of the prescribed MDPSO parameters for the three sets of

numerical experiments are given in Table 1.

4.1 Unconstrained standard optimization problems

The new MDPSO algorithm is applied to a set of nine stan-

dard unconstrained nonlinear optimization test problems

with only continuous variables to compare its performance

with that of the basic PSO. For a majority of these test

problems, the basic PSO is expected to offer an effective

solution. The MDPSO is specifically designed to address

complex constrained and/or mixed-discrete optimization

problems. With this set of numerical experiments, we partic-

ularly investigate whether the new MDPSO features related

to diversity preservation, introduce any unexpected charac-

teristics. The first eight test problems have been borrowed

from the list of sample single objective optimization prob-

lems provided in the MATLAB Genetic and Evolutionary

Algorithm Toolbox (GEATbx) Documentation (Pohlheim

Table 1 User-defined constants

in PSO
Parameter Unconstrained MINLP Wind farm

problems optimization

α 0.5 0.5 0.5

βg 1.4 1.4 1.4

βl 1.4 1.4 1.4

γc0 0.1, 0.5, 1.0 2.0 5.0

γd0 – 0.7 1.0

γmin 1.0e−10 1.0e−10 1.0e−05

Population size (N) 10 × n 10 × n 20 × n

Fractional domain size (λ × N ) 0.25 × N 0.1 × N 0.1 × N

Allowed number of function calls 10,000 50,000 600,000
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Table 2 Standard

unconstrained optimization

problems

Test problem Function name Number of variables Complexity attribute

1 Rosenbrock’s valley 2 Long relatively flat valley

2 Rastrigin’s function 2 Highly multimodal

3 Schwefel’s function 2 Highly multimodal

4 Griewangk’s function 2 Highly multimodal

5 Ackley’s path function 2 Highly multimodal

6 Michalewicz’s function 10 Flat regions and multimodal

7 Easom’s function 2 Mostly flat search space

8 Goldstein–Price’s function 2 Extensive flat region

9 Miele–Cantrell 4 Multimodal

2010). The GEATbx problems were originally developed

and reported by different researchers from the design

and optimization community. The last test problem from

Table 2 (Miele–Cantrell function) has been borrowed from

the paper by Miele and Cantrell (1969). Details of the

standard unconstrained test problems are summarized in

Table 2.

The MDPSO algorithm is applied to each test problem,

using three different values of the diversity coefficient scal-

ing constant: γc0 = 0.1, 0.5, 1.0. Each test problem is run

10 times, with a particular γc0 value, to compensate for the

effects of the random operators on the overall algorithm per-

formance. Results of the conventional PSO was obtained by

specifying the diversity coefficient scaling constant, γc0, to

be zero, while other basic PSO parameters were fixed at the

same values as given in Table 1. The algorithms are termi-

nated when the best global solution does not improve by

at least 1.0e−10 times its objective value in 10 consecutive

iterations. The convergence histories for the Miele Cantrell

test function from representative runs of the MDPSO and

a representative run of the conventional PSO are shown in

Fig. 5. The actual minimum objective value for this test

function is 0.0. It can be observed from Fig. 5 that the algo-

rithms perform very well for the multimodal Miele–Cantrell

test function. With the diversity scaling constant equal to

0.1 (black dashed line), the rate of convergence of MDPSO

is approximately twice that of the conventional PSO—the

objective function reduces to 1.0e−07 in half the number

of function calls. With the diversity scaling constant equal

to 1.0 (grey long-dashed line), the MDPSO algorithm con-

verges slightly slower than the conventional PSO algorithm.

This phenomenon can be attributed to the increased reduc-

tion in the particle velocities towards the global optimum,

caused by the preservation of a larger amount of population

diversity among the particles.

For each test problem in Table 2, the actual minimum

of the objective function is known. Using the actual min-

imum objective function value, a normalized relative error

is evaluated to represent the optimization performance. This

normalized relative error (ε f ) is expressed as

ε f =

⎧

⎨

⎩

∣

∣ f
comp

min − f act
min

∣

∣

f act
min

, if f act
min �= 0

∣

∣ f
comp

min − f act
min

∣

∣ , if f act
min = 0

(13)

where f
comp

min and f act
min are the computed minimum and the

actual minimum of the objective function, respectively. The

normalized relative errors given by the best and the worst

optimized solutions among the 10 runs of each test problem

are shown in Fig. 6a and b. Figure 6a specifically shows

the resulting errors when conventional PSO and MDPSO

are applied to the same test problems. Figure 6b specifically

shows the resulting errors when MDPSO is applied to the

test problems using different values of the specified diver-

sity scaling constant (γc0). Further details, regarding the
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performance of the MDPSO algorithm with the diversity

scaling constant equal to 1.0, are provided in Table 3.

Figure 6a shows that the MDPSO algorithm performs as

well as or better than the conventional PSO algorithm for

most of the standard unconstrained test problems, except

for test problem 2. It is observed from Fig. 6a and Table 3

that neither of the algorithms could provide satisfactory

solutions for test problem 6, Michalewicz’s function; these

observations can be attributed to the existence of exten-

sive flat regions and multimodality in the Michalewicz’s

function (Pohlheim 2010). Overall, Fig. 6a illustrates that

the additional diversity preservation features in MDPSO

does not introduce any undesirable characteristics into the

dynamics of the PSO algorithm. Figure 6b illustrates that

the performance of MDPSO is marginally sensitive to the

specified value of the diversity scaling constant (γc0) in

the case of these unconstrained continuous problems—the

relative errors given by MDPSO for the three different val-

ues of the diversity scaling constant are close to each other.

The standard deviation in the computed minima obtained

from the 10 runs for each test problem (Table 3) is observed

to be relatively small when compared to the correspond-

ing actual minima. This observation further illustrates the

consistency in the performance of the MDPSO algorithm.

4.2 Mixed-Integer Nonlinear Programming (MINLP)

problems

The MDPSO algorithm is applied to an extensive set

of ninety-eight Mixed-Integer Non-Linear Programming

(MINLP) test problems; these test problems were obtained

from the comprehensive list of one hundred MINLP prob-

lems reported by Schittkowski (2009). The problems

Table 3 Performance of

MDPSO (with γc0 = 1.0) on the

standard unconstrained test

problems

Test problem Actual minimum Best computed Worst computed Standard deviation

minimum minimum of computed minima

1 0.000E+00 1.359E−11 9.951E−11 3.274E−11

2 0.000E+00 3.283E−11 9.950E−01 5.138E−01

3 −8.380E+02 −8.380E+02 −7.195E+02 6.242E+01

4 0.000E+00 1.263E−11 3.946E−02 1.269E−02

5 0.000E+00 1.167E−11 8.373E−11 2.276E−11

6 −9.660E+00 −9.328E+00 −6.843E+00 8.119E−01

7 −1.000E+00 −1.000E+00 −1.000E+00 2.723E−11

8 3.000E+00 3.000E+00 3.000E+00 8.614E−11

9 0.000E+00 4.534E−12 1.054E−07 4.436E−08
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numbered 10 and 100 in the original list (Schittkowski

2009) have not been tested in this paper. A majority of

these MINLP test problems belong to the GAMS Model

Library MINLPlib (Bussieck et al. 2007), and have been

widely used to validate and compare optimization algo-

rithms (Schittkowski 2009). These MINLP test problems

present a wide range of complexities:

• the total number of design variables varies from 2 to 50;

• the numbers of binary design variables and integer

design variables vary from 0 to 16 and 0 to 50, respec-

tively;

• the total number of constraints (including equality and

inequality) varies from 0 to 54;

• the number of equality constraints varies from 0 to 17.

Similar to the previous set of numerical experiments, each

MINLP test problem is run 10 times to compensate for the

performance effects of the random operators in the algo-

rithm. For each run, the algorithm is terminated when the

best global solution does not improve by at least 1.0e−06

times its objective value in 10 consecutive iterations.

For ease of illustration and ready interpretation of the

results obtained by MDPSO, we divide the set of 98 MINLP

test problems into six classes based on the number of design

variables and the presence of continuous variables. These

MINLP problem classes are shown in Table 4. The nor-

malized relative errors corresponding to the best and the

worst solutions among the 10 runs obtained (by MDPSO)

for each test problem from the six classes are illustrated

separately in Fig. 7a–f. These figures also show the num-

ber of design variables (solid gray line) and the number of

constraints (dashed gray line) in each test problem, to help

understand their impact on the optimization performance.

A histogram of the relative errors is shown in Fig. 8. It is

helpful to note that, in the case of several purely integer test

problems, a zero relative error is obtained through optimiza-

tion. In order to allow a logarithmic scale illustration of the

errors, these zero errors are replaced by an artificial error

value of 1.0e−12 in the figures.

Figure 7a and b show that MDPSO performs significantly

better for the purely integer problems (Class-1A) than for

the mixed-integer problems (Class-1B). This observation

Table 4 MINLP problem classes

Number Without continuous With continuous

of variables (n) variables (n = m) variables (n > m)

2 ≤ n ≤ 5 Class-1A Class-1B

6 ≤ n ≤ 10 Class-2A Class-2B

11 ≤ n ≤ 50 Class-3A Class-3B

can be partly attributed to the practical possibility of finding

the exact minimum (no error) if the variables are all inte-

gers instead of continuous real numbers. Overall, a majority

of the Class-1 test problems (with n ≤ 5) are observed

to have converged to relative errors less than 1.0e−04.

Similarly, for Class-2 problems, Fig. 7c and d show that

MDPSO performs better in the case of purely integer prob-

lems (Class-2A). Interestingly, for the Class-2A problems,

the best solution among 10 runs is observed to mostly con-

verge to the exact minima (ε f = 1.0e−12 in the figures).

It is observed that, for a majority of the Class-3 problems

(Fig. 7e and f), MDPSO has not converged beyond a relative

error of 1.0e−04, which can be primarily attributed to the

high number of constraints in these MINLP problems. Some

of the Class-3 problems have more than 30 constraints. A

higher number of design variables (11 ≤ n ≤ 50) might

also have partly contributed to the lack of convergence in

the Class-3 problems.

The histogram in Fig. 8 illustrates the distribution of the

relative error, on a logarithmic scale, for all the 10 × 98

test problem runs. It is observed that the MDPSO algorithm

has converged to acceptable relatively errors of less than

1.0e−03 in approximately 50 % of the test problem runs. It

is important to note that the same prescribed parameter val-

ues were specified for all MINLP test problems (Table 1)

for a fair illustration of algorithm performance. The set

of MINLP test problems present a wide variety of non-

linear criteria functions and problem complexities, which

ideally demands different parameter values to be specified

for characteristically different MINLP problems. The devel-

opment of general guidelines regarding how to specify the

prescribed MDPSO parameter values for different types of

MINLP problems is therefore an important topic for further

research.

Figure 9a and b illustrate the net constraint violation (5)

corresponding to the best and the worst solutions obtained

by MDPSO, respectively for MINLP problems without and

with equality constraints. It is observed from Fig. 9a that

the MDPSO algorithm has successfully found the feasible

space in a majority of the MINLP problems without inequal-

ity constraints; the handful of exceptions is observed to

generally involve more than 35 design variables and 35 con-

straints. The feasibility success of MDPSO is lower for the

MINLP problems with equality constraints than those with-

out equality constraints (Fig. 9b). Overall, MDPSO found

the feasible region with the best solution in a majority of

the test problems (90 out 98). Cabrera and Coello (2007)

stated that significant advancement is necessary to extend

the application of standard PSO to solve constrained opti-

mization problems. From that perspective, the performance

of MDPSO in finding the feasible region seems promising,

particularly considering that the concerned test problems

are of mixed-discrete nature. However, addressing equality
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(e) Class-3A problems: n = m and 11 ≤ n ≤ 50
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Fig. 7 Normalized relative errors for the best and the worst solutions (among 10 runs) obtained by MDPSO for the MINLP problems
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Fig. 8 Histogram of the order of magnitude of the normalized relative

error obtained by MDPSO for the MINLP test problems

constraints in PSO, in the presence of mixed-discrete vari-

ables, remains a major challenge.

In addition to the ability to successfully find the feasi-

ble space and the optimum design, the number of func-

tion evaluations invested in the process is also an impor-

tant performance attribute for an optimization algorithm.

Figure 10a–c illustrate the number of function evaluations

made by the MDPSO algorithm for Class-1, Class-2, and

Class-3 MINLP problems, respectively. A majority of the

Class-1 and Class-2 MINLP problems converged in less

than 30,000 function evaluations. A significant number of

the Class-1 problems required less than 1000 function evalu-

ations to converge. In contrast, most of the Class-3 problems

exhausted the maximum allowed number of function evalu-

ations (50,000). This greater computational expense can be

attributed to the significant investment necessary in finding

the feasible region for these constrained high dimensional

MINLP problems.

Further details regarding the performance of the MDPSO

algorithm for the MINLP problems are provided in Tables

5, 6, and 7. The results of the MDPSO algorithm (for the

MINLP problems) are also compared with those of a pop-

ular binary genetic algorithm—the Non-dominated Sort-

ing Genetic Algorithm (bin-NSGA-II) (Deb et al. 2002).

Although NSGA-II is typically suited for multi-objective

problems, it has been used to solve constrained single

objective problems (Murugan et al. 2009). NSGA-II is a

popular choice among heuristic algorithms, when solving

MINLP problems. In the current set of numerical exper-

iments, NSGA-II is also run ten times for each MINLP

problem. The population is set as 10 times the number of

design variables and the maximum allowed number of func-

tion evaluations is 50,000; both of these specifications are

the same as prescribed for MDPSO (Table 1). In the case

of NSGA-II, the crossover probability is set at 0.8, and the

string length for each variable is set at 8. NSGA-II is applied

to solve 46 problems out of the entire suite of 98 MINLP

problems; at least two problems are solved from each Class

of MINLP problems. The results of NSGA-II are included

in Tables 5–7.

In Tables 5–7, the feasibility success % represents the

fraction of the 10 runs for which the concerned optimization

algorithm found the feasible region. The rows that appear

light gray represent MINLP problems for which the best

minimum function value (among 10 runs) found by MDPSO

was worse than that found by NSGA-II. The rows that
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Fig. 9 Net constraint violation in the best and the worst solutions (among 10 runs) obtained by MDPSO for MINLP problems
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Fig. 10 Number of function evaluations used for the best and the worst solutions (among 10 runs) obtained by MDPSO for the MINLP problems

appear dark gray represent MINLP problems for which the

standard deviation of the minimum function values (among

10 runs) found by MDPSO was worse than that found by

NSGA-II. In the column headings for these three tables,

“std. dev.” means standard deviation.

It is observed from Tables 5–7 that MDPSO finds the fea-

sible region with 100 % success in a majority of the MINLP

problems. The feasibility success of NSGA-II is in gen-

eral observed to be lower than that of MDPSO, which can

be partly attributed to an expected slower rate of conver-

gence of NSGA-II for single objective problems. MDPSO

also outperforms NSGA-II for the majority of the Class-

1 MINLP problems, both in terms of the best computed

minimum and the standard deviation of the computed min-

ima (out of 10 runs). However, in the cases of Class-2 and

Class-3 MINLP problems, the performances of MDPSO

and NSGA-II seem comparable. Future work should there-

fore seek to further advance the MDPSO algorithm for

more robust application to high-dimensional and highly

constrained mixed-discrete optimization problems.

4.3 Wind farm optimization problem

In this section, we present the application of the MDPSO

algorithm to a complex real life engineering design
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Table 5 Performance of MDPSO and NSGA-II on the Class-1 MINLP test problems

problem: wind farm optimization. This problem presents (i)

a significantly large number of design variables: 50 contin-

uous variables, and 25 discrete variables, and (ii) a highly

nonlinear and multimodal objective function. At the same

time, the objective function evaluation for this problem is

computationally expensive. A computationally efficient yet

robust optimization methodology needs to be leveraged to

address such a challenging problem.

Wind farms consist of multiple wind turbines located

in a particular arrangement over a substantial stretch of
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Table 6 Performance of MDPSO and NSGA-II on the Class-2 MINLP test problems

land (onshore) or water body (offshore). The net energy

produced by a wind farm is significantly reduced by the

wake effects—i.e., the shading effect of a wind turbine

on other turbines downstream from it (Beyer et al. 1996).

This energy loss can be partially regained by optimizing

the arrangement of wind turbines in a farm (farm lay-

out). The overall energy production capacity and the cost

of the wind farm also depend on the type(s) of wind tur-

bines installed. Traditionally, a wind farm is comprised

of a uniform type of wind turbine. Chowdhury et al.

(2012) showed that using an optimal combination of wind

turbines with dif fering rotor diameters can significantly

improve the performance of a wind farm. This research

(Chowdhury et al. 2012) laid the foundation for the explo-

ration of the benefits of using multiple types of wind

turbines in a farm.
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Table 7 Performance of MDPSO and NSGA-II on the Class-3 MINLP test problems

The current use of MDPSO in wind farm optimiza-

tion is a progressive extension of the use of PSO as

an important component of the Unrestricted Wind Farm

Layout Optimization (UWFLO) framework developed by

Chowdhury et al. (2012). Several wind farm layout opti-

mization methodologies exist in the literature (Sorensen and

Nielsen 2006; Mikkelsen et al. 2007; Beyer et al. 1996;

Table 8 Specified wind farm properties

Farm property Value

Location Baker, ND

Land size (length × breadth) (5 × 7D0) × (5 × 3D0)

Orientation North to South lengthwise

Average roughness 0.1 m (grassland)

Density of air 1.2 kg/m3

Grady et al. 2005; Sisbot et al. 2010; Gonzalez et al. 2010).

The UWFLO methodology (Chowdhury et al. 2012) avoids

the limiting assumptions presented by other methods regard-

ing the layout pattern, the selection of turbines, and the

variation of wind conditions over time. Optimal selection of

wind turbines presents a discrete problem, since only a set

of discrete turbine choices is commercially available. This

discrete selection scenario was however not considered in

the original UWFLO framework (Chowdhury et al. 2012),

where turbine rotor-diameters were treated as continuous

variables. The current implementation of the MDPSO algo-

rithm in the UWFLO framework allows the type of each

turbine to be treated as an integer variable.

In this paper, the UWFLO method is used to design a

rectangular wind farm of specified dimensions, and com-

prises 25 turbines. A hypothetical wind farm that is located

at the Baker wind station in North Dakota (48.167◦ N,

−99.648◦ W) is considered for this case study. The essential
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wind-conditions data is obtained from North Dakota Agri-

cultural Weather Network (NDAWN 2010). In the UWFLO

method, the wind resource variations are represented using

probability distribution models. The specified wind farm

properties are given in Table 8; the parameter D0 in this

table represents the average rotor diameter of commercially

available wind turbines. The farm is oriented such that the

positive X -direction of the layout co-ordinate system points

towards the South. Using web data from major turbine man-

ufacturers catering to the US onshore market, an integer

number code T j is assigned to each unique turbine-type-

j . A turbine-type is defined by a unique combination of

rated-power, rotor-diameter, hub-height, and power charac-

teristics. A list of 66 turbine-types, with rated-powers from

0.6 to 3.6 MW, is prepared and coded from the follow-

ing turbine manufacturers: GE, Vestas, Gamesa, Siemens,

Mitsubishi, and Suzlon.

In this paper, the objective of wind farm optimization is

to maximize the net power generation. The net power gen-

eration is given by the ratio of “the total energy production

over a time period” and “the time period”. The location

coordinates and the turbine-type of each wind turbine are

treated as design variables: 50 continuous variables, and 25

integer variables, respectively. The boundaries of the wind

farm, and the minimum distance required between adjacent

turbines are treated as inequality constraints. The Cost of

Energy (COE) of the wind farm is constrained to a refer-

ence cost. This reference cost is the COE, estimated for

a reference farm with a 5 × 5 array layout, a 7D × 3D

turbine spacing and comprised of the “GE 1.5 MW xle”

turbines (GE-Energy 2009); in this case, D represents the

rotor diameter of the reference turbine. Further theoretical

and numerical details of the UWFLO model can be found in

the paper by Chowdhury et al. (2012).

The farm optimization framework was run several times,

and the improvement in farm performance (accomplished

through optimization) was found to be consistent across

these optimization runs. In this Section, the results from

one of the representative optimization runs are illustrated

and discussed. An appreciable increase of 60 % in the net

power generated by the farm was accomplished through this

optimization run. The convergence history for wind farm

optimization is shown in Fig. 11. The objective on the Y-axis

in Fig. 11 represents the generated farm power normalized

by the installed capacity of the reference wind farm. The

installed capacity of the farm is 25 × 1.5 MW. Comparison

of the performances of the optimized farm and the reference

farm is provided in Table 9.

From Table 9, it is observed that the net power gener-

ated by the optimized farm is significantly higher than that

generated by the reference farm—a 56.3 % increase. This

remarkable increase in power is accomplished at a Cost of

Energy lower than that of the reference farm. The optimized
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Fig. 11 Convergence history for wind farm optimization

farm is comprised of a combination of eight Vestas 1.8 MW–

90 m, four Vestas 1.8 MW–100 m, two Gamesa 2.0 MW–

90 m, one Mitsubishi 2.4 MW–95 m, four Mitsubishi

2.4 MW–102 m, one GE 2.5 MW–100 m, and five Vestas

3.0 MW–112 m wind turbines. The overall efficiency of the

farm, represented by the power-generated/power-installed

ratio, is also observed to be appreciably higher in the case

of the optimized farm. Figure 12a–d illustrate the optimized

farm layout, where the turbine locations are colored accord-

ing to (a) the overall power generation, (b) the rated power,

(c) the rotor-diameter, and (d) the hub-height of the individ-

ual turbines, respectively. The dashed line in these figures

represent the farm boundary.

Zhang et al. (2013) have shown that, for this particular

site (Baker, ND), the frequency of the wind coming from

the East is significantly lower than that coming from the

other three cardinal directions. It is indeed interesting to

note from Fig. 12b and c that: the UWFLO framework has

taken advantage of the turbine selection allowance to place

higher rated-power turbines that come with larger rotor-

diameters on the Eastern edge of the wind farm. These

turbines with larger rotor diameters are more suited for

lower wind speeds, as experienced by the Eastern face of

Table 9 Performance comparison of the optimized wind farm and the

reference wind farm

Parameter Reference farm Optimized farm

Normalized power generated 0.597 0.933

Overall farm efficiency 0.597 0.635

COE 0.024 0.023
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Fig. 12 Layout of the optimized wind farm (with optimal combination of turbine-types)

the farm. Their location on the Eastern edge of the farm

also ensures minimal effects of the relatively larger wakes

created by these turbines.

5 Concluding remarks

A majority of the swarm-based algorithms do not read-

ily address constrained mixed-discrete optimization prob-

lems. In this paper, a modification of the Particle Swarm

Optimization (PSO) algorithm is developed, which can

adequately address system constraints and mixed-discrete

variables for single objective problems. Constraint handling

is performed using the constrained non-dominance princi-

ple adopted from evolutionary algorithms. The conventional

particle motion step at each iteration is followed by approx-

imating the discrete component of the variable vector to a

neighboring feasible discrete space location. This approach

ensures that the system model is always evaluated at fea-

sible discrete variable values, and simultaneously seeks to

retain the search characteristics of the basic PSO dynam-

ics. Stagnation of particles owing to loss of population

diversity has been one of the major drawbacks of the

PSO algorithm; this undesirable search attribute becomes

more pronounced in the case of constrained single objec-

tive mixed-discrete problems. A new efficient technique is

developed to characterize the population diversity at a par-

ticular iteration. The estimated diversity measure is used to

apply (i) a dynamic repulsion away from the best global

solution for the continuous variables and (ii) a stochas-

tic update of the discrete variables for each solution. This
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approach is uniquely helpful in preserving the population

diversity in PSO. The generalized diversity measure formu-

lated in this paper can be used for diversity preservation in

a wide variety of population-based algorithms.

The Mixed-Discrete PSO (MDPSO) algorithm outper-

forms the normal PSO, when applied to a set of standard

unconstrained problems involving objective functions that

present different types of complexities: e.g., multimodality,

high non-linearity, and extensive flat regions. The algo-

rithm is also tested on a comprehensive set of ninety-eight

MINLP problems. MDPSO performs well for the lower

dimensional MINLP problems. Interestingly, MDPSO gen-

erally performs better for the purely integer test problems

compared to the mixed-integer problems. Overall, MDPSO

finds the point of minimum with a relative accuracy of

1e−03 or lower in around 50 % of the entire set of MINLP

test runs. More problem specific assignment of the pre-

scribed MDPSO parameter values is expected to help in

obtaining more accurate solutions for such a wide variety

of mixed-discrete optimization problems. When compared

to a popular binary genetic algorithm, MDPSO performed

better for the low dimensional MINLP problems, and pro-

vided comparable results for the higher dimensional MINLP

problems. The MDPSO algorithm is also employed to per-

form wind farm design, where the selection of turbine-types

to be installed (discrete) and the farm layout (continu-

ous) are simultaneously optimized. A remarkable increase

in the overall farm power generation (60 %) is accom-

plished, which illustrates the potential of applying the

MDPSO algorithm to practical mixed-discrete engineer-

ing design problems. Future research in Mixed-Discrete

PSO should focus on a comprehensive parametric analy-

sis of the sensitivity of the algorithm performance to the

prescribed parameter values. Subsequent development of

standard guidelines to specify prescribed parameters val-

ues based on problem complexity would further enhance

the universal applicability of this class of mixed-discrete

optimization algorithms.
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