
STATISTICS IN MEDICINE
Statist. Med. 2003; 22:1433–1446 (DOI: 10.1002/sim.1522)
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SUMMARY

A mixed-e�ects multinomial logistic regression model is described for analysis of clustered or longitu-
dinal nominal or ordinal response data. The model is parameterized to allow �exibility in the choice
of contrasts used to represent comparisons across the response categories. Estimation is achieved using
a maximum marginal likelihood (MML) solution that uses quadrature to numerically integrate over the
distribution of random e�ects. An analysis of a psychiatric data set, in which homeless adults with
serious mental illness are repeatedly classi�ed in terms of their living arrangement, is used to illustrate
features of the model. Copyright ? 2003 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nominal or polytomous response data are common in many �elds of research. For example,
the variable ‘type of service use’ is an outcome variable that is often measured in health
services research. Types of health services utilization can include medical provider visit, hos-
pital outpatient visit, emergency room visit, hospital inpatient stay and home health care visit.
If observations are independent, the multinomial or polychotomous logistic regression model
[1–5] can be used to assess the in�uence of explanatory variables on the nominal response
variable. It is often the case, however, that subjects are observed nested within clusters (for
example, schools, �rms, clinics) or are repeatedly measured. In this case, use of the ordinary
multinomial logistic regression model assuming independence of observations is problematic,
since observations from the same cluster or subject are usually correlated.
For data that are clustered (or longitudinal), mixed-e�ects regression models have become

increasingly popular, and several books have been written on this topic [6–8]. For dichotomous
response data, several approaches adopting either a logistic or probit regression model and
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1434 D. HEDEKER

various methods for incorporating and estimating the in�uence of the random e�ects have
been developed [9–14]. Several articles [15–18] have discussed and compared some of these
models and their estimation procedures. Extending these methods to ordinal response data has
also been actively pursued [19–25].
For clustered nominal responses, there have been some developments as well. An early

example is the model for nominal educational test data described by Bock [26]. This model
includes a random subject e�ect and �xed item parameters for the item responses that are
clustered within subjects. While Bock’s model is a full-information maximum likelihood ap-
proach, using Gauss–Hermite quadrature to integrate over the random-e�ects distribution, it
does not include covariates or multiple random e�ects. More general regression models of
clustered nominal data have been considered by Goldstein (reference [6], chapter 7), Daniels
and Gatsonis [27], and Revelt and Train [28]. These approaches use either more approximate
or Bayesian methods to handle the integration over the random e�ects. Also, these models
generally adopt a reference cell approach for modelling the nominal response variable in which
one of the categories is chosen as the reference cell and parameters are characterized in terms
of the remaining C − 1 comparisons to this reference cell. Bock’s model, alternatively, was
written in terms of any set of C − 1 comparisons across the nominal response categories. A
recent paper by Hartzel et al. [29] synthesizes much of the work in this area, describing a
general mixed-e�ects model for both clustered ordinal and nominal responses.
In this paper, a mixed-e�ects multinomial logistic regression model will be described that

is appropriate for either clustered or longitudinal response data. This model will accommodate
multiple random e�ects and, additionally, allow for a general form for model covariates. In
terms of comparisons across the nominal outcome categories, both reference cell and more
general category comparisons are described. A full maximum marginal likelihood solution is
outlined for parameter estimation. In this solution, multi-dimensional quadrature is used to
numerically integrate over the distribution of random e�ects, and an iterative Fisher scoring
algorithm is used to solve the likelihood equations. An example of an analysis of longitudinal
data will illustrate features of the mixed-e�ects model for nominal response data.

2. MIXED-EFFECTS MULTINOMIAL REGRESSION MODEL

Using the terminology of multilevel analysis [6], let i denote the level-2 units (clusters) and
let j denote the level-1 units (nested observations). Assume that there are i=1; : : : N level-2
units and j=1; : : : ; ni level-1 units nested within each level-2 unit. Let yij be the value of the
nominal variable associated with level-2 unit i and level-1 unit j. In the nominal case, we
need to consider the values corresponding to the unordered multiple categories of the response
variable. For this, let us assume that the C response categories are coded as c=1; 2; : : : ; C.
Adding random e�ects to the usual multinomial logistic regression model, the probability

that yij= c (a response occurs in category c) for a given level-2 unit i, conditional on the
random e�ects R, is given by

pijc = P(yij= c | R)= exp(zijc)

1 +
∑C

h=1 exp(zijh)
for c=2; 3; : : : ; C (1)

pij1 = P(yij=1 | R)= 1

1 +
∑C

h=1 exp(zijh)
(2)
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where zijc=w′
ijQc + x′ijRic. Here, wij is the s× 1 covariate vector and xij is the design vector

for the r random e�ects, both vectors being for the jth level-1 unit nested within level-2 unit
i. Correspondingly, Qc is an s× 1 vector of unknown �xed regression parameters, and Ric is an
r× 1 vector of unknown random e�ects for the level-2 unit i. The distribution of the random
e�ects is assumed to be multivariate normal with zero mean vector and covariance matrix �c;
it will be indicated later how this assumption can be relaxed.
It is convenient to standardize the random e�ects. For this, let Ric=TcXi, where TcT′

c=�c
is the Cholesky decomposition of �c. The reparameterized model is then

zijk =w′
ijQc + x′ijTcXi

As discussed by Bock [26], the model has a plausible interpretation. Namely, each nomi-
nal category is assumed to be related to an underlying latent ‘response tendency’ for that
category. The category c associated with the observed response yij is then the category for
which the response tendency is maximal. These latent response tendencies are assumed to be
independently distributed following approximately normal distributions (that is, logistic distri-
butions). As is well known, the logistic closely resembles the normal distribution, the primary
di�erence being that the logistic places more probability in the tails of the distribution.
The model can also accommodate separate (that is, independent) random-e�ect variance

terms for groups of either i or j units. For example, suppose that there is interest in allowing
varying random-e�ect variance terms by gender. For this, xij is speci�ed as a 2× 1 vector of
dummy codes indicating male and female membership, respectively. Tc is then a 2× 1 vector
of independent random-e�ect standard deviations for males and females, and the subject e�ect
�i is a scalar that is pre-multiplied by the vector Tc. This is also useful for educational testing
models [26] where n item responses (j=1; 2; : : : n) are nested within N subjects (i=1; 2; : : : N )
and a separate random-e�ect standard deviation (that is, an element of the n× 1 vector Tc) is
estimated for each test item (that is, each j unit). Again, this is accomplished by specifying
xij as an n× 1 vector of dummy codes indicating the repeated items. For both cases, Tc is an
r× 1 vector that is pre-multiplied by the transpose of an r× 1 vector of indicator variables
xij, and so Tc pre-multiplies a scalar random e�ect �i (instead of an r× 1 vector of random
e�ects Xi).

2.1. More general category contrasts

The model as written above allows estimation of any pairwise comparisons among the C
response categories. As characterized in Bock [26], it is bene�cial to write the nominal model
to allow for any set of C − 1 non-redundant contrasts. For this, the category probabilities are
written as

pijc=
exp(zijc)∑C
h=1 exp(zijh)

for c=1; 2; : : : ; C (3)

where now

zijc=w′
ij�dc + (x

′
ij ⊗ X′i)J′r∗�dc (4)

Here, D is the (C − 1)×C matrix containing the contrast coe�cients for the C − 1 contrasts
between the C logits and dc is the cth column vector of this matrix. The s× (C−1) parameter
matrix � contains the regression coe�cients associated with the s covariates for each of the
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C − 1 contrasts. Similarly, � contains the random-e�ect variance parameters for each of the
C − 1 contrasts. Speci�cally

�=[v(T1) v(T2) : : : v(TC−1)]

where v(Tc) is the r∗ × 1 vector (r∗= r[r + 1]=2) of elements below and on the diagonal
of the Cholesky (lower-triangular) factor Tc, and Jr∗ is the transformation matrix of Magnus
[30] that eliminates the elements above the main diagonal. This latter matrix is necessary to
ensure that the appropriate terms from the 1× r2 vector resulting from the Kronecker product
(x′ij ⊗ X′j) are multiplied with the r∗ × 1 vector resulting from �dc.
Several special cases of the model are worth noting. If the random e�ects are independent,

as described earlier, then the model simpli�es to

zijc=w′
ij�dc + x

′
ij�dc�i (5)

where � is the r× (C − 1) matrix of r independent random-e�ects variance terms (that is,
standard deviations) for each of the C − 1 category contrasts. Similarly, for the case of a
random-intercepts model, the model simpli�es to

zijc=w′
ij�dc +�dc�i (6)

with � as the 1× (C − 1) vector �=[�1 �2 : : : �C−1]. Finally, notice that if D equals

D=




0 1 0 : : : 0

0 0 1 : : : 0

: : : : : : :

0 0 0 : : : 1




the model simpli�es to the earlier representation in (1) and (2).
The current formulation allows for a great deal of �exibility in the types of comparisons

across the C response categories. For example, if the categories are ordered, an alternative to
the cumulative logits of the commonly-used proportional odds model is to employ Helmert
contrasts [31] within the nominal model. For this, with C=4, the following contrast matrix
would be used:

D=




−3
4

1
4

1
4

1
4

0 −2
3

1
3

1
3

0 0 −1
2

1
2




with the scale of each contrast set to equal unity in terms of the di�erence. Helmert contrasts
of the logits are similar but not exactly the same as the comparisons within continuation-ratio
logit models, as described within a mixed model formulation by Ten Have and Uttal [32].
The di�erence is that the Helmert contrasts above are applied to the category logits rather
than the category probabilities as in continuation-ratio models.
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2.2. Parameter estimation

Let yi denote the vector of nominal responses from level-2 unit i (for the ni level-1 units
nested within). Then the probability of any yi, conditional on the random e�ects X (and given
� and �), is equal to the product of the probabilities of the level-1 responses

‘(yi | �)=
nj∏
i=1

C∏
c=1
(pijc)yijc (7)

where yijc=1 if yij= c, and 0 otherwise. Thus, associated with the response from a particular
level-1 unit, yijc=1 for only one of the C categories and zero for all others. The marginal
density of the response vector yi in the population is expressed as the following integral of
the likelihood, ‘(:), weighted by the prior density g(:):

h(yi)=
∫
X
‘(yi | �)g(X) dX

where g(X) represents the population distribution of the random e�ects.
For parameter estimation, the marginal log-likelihood from the N level-2 units can be

written as log L=
∑N

i log h(yi). Then, using � to represent either parameter matrix

@ log L
@�′ =

N∑
i=1
h−1(yi)

∫
X

[
ni∑
j=1
D(yij − pij)⊗ @�

]
‘(yi | �)g(X) dX (8)

where

@�=w′
ij ; @�=[Jr∗(X⊗ xij)]′ (9)

Here, yij is the C × 1 indicator vector, and pij is the C × 1 vector obtained by applying (3)
for each category. Notice that if the random e�ects are independent then @� simply equals
x′ij�, while for the even simpler random-intercepts model @�= �.
As described elsewhere (for example, see Hedeker and Gibbons [23]), Fisher’s method of

scoring can be used to provide the solution to these likelihood equations. At convergence,
the ratio of the (maximum marginal likelihood) estimates to their standard errors can be used
to construct asymptotic z-statistics (for example, Wald statistics). Additionally, the converged
value of the log-likelihood can be used to construct likelihood-ratio tests.

2.3. Numerical quadrature

Numerical integration can be used to perform the integration over the random-e�ects distribu-
tion that is indicated in (8). Speci�cally, if the assumed distribution is normal, Gauss–Hermite
quadrature can be used to approximate the above integral to any practical degree of accuracy
[33]. The integration is approximated by a summation on a speci�ed number of quadrature
points Q for each dimension of the integration. If the random e�ects are assumed to follow a
distribution other than the normal distribution, other points may be chosen and density weights
substituted for those speci�ed by Gauss–Hermite quadrature. For example, if a rectangular or
uniform distribution is assumed, then Q points may be set at equal intervals over an appro-
priate range (for each dimension) and the quadrature weights are then set equal to 1=Q. Other
distributions are possible, including the possibility of empirically estimating the random-e�ect
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distribution [34]. In the examples below, we will compare results assuming a normal distri-
bution to those obtained under a uniform distribution to provide some information about the
sensitivity of the results to the assumed normal distribution.
Model estimation using quadrature has been implemented for use in the MIXNO program

[35].∗ At each iteration and for each level-2 unit, the solution goes over the Qr quadra-
ture points, with summation replacing the integration over the random-e�ect distribution. The
conditional probabilities ‘(yi | �) are obtained substituting the random-e�ect vector X by the
current r-dimensional vector of quadrature points Bq. The marginal density for each level-2
unit is then approximated as

h(yi) ≈
Qr∑
q
‘(yi |Bq)A(Bq)

At each iteration, computation of the �rst derivatives and information matrix then proceeds
summing over level-2 units and quadrature points. In the summation over the Qr quadrature
points, the X random-e�ect vector is substituted by the current vector of quadrature points
Bq, and the evaluation of the density g(X) is substituted by the current quadrature weight
A(Bq). Following the summation over level-2 units and quadrature points, parameters are
corrected according to the Fisher scoring solution, and the entire procedure is repeated until
convergence.

2.4. Estimation of random e�ects and marginal probabilities

In some cases, it may be of interest to estimate values of the random e�ects Xi within the
sample. A reasonable choice for this is the expected ‘a posteriori’ (EAP) or empirical Bayes
estimator �Xi [34]. For the univariate case, this estimator ��i is given by

��i=E(�i | yi)= 1
h(yi)

∫
�
�i‘(yi | �)g(�) d� (10)

The variance of this estimator is obtained similarly as

V ( ��i | yi)= 1
h(yi)

∫
�
(�i − ��i)2‘(yi | �)g(�) d� (11)

Upon convergence, these quantities can be obtained using one additional round of quadrature.
They may then be used, for example, to evaluate the response probabilities for particular
level-2 units. Also, Ten Have [24] suggests how these empirical Bayes estimates might be
used in performing residual diagnostics.
An additional step is required to obtain estimated marginal probabilities. First, so-called

‘subject-speci�c’ probabilities [36, 37] are estimated for speci�c values of covariates and ran-
dom e�ects Xi by applying (3) with ẑijc=w′

ij�̂dc + (x′ij ⊗ X′i)J′r∗�̂dc. Denoting these subject-
speci�c probabilities as p̂ss, marginal probabilities p̂m are then obtained by integrating over
the random-e�ect distribution, namely p̂m =

∫
X p̂ssg(X) dX. Again, numerical quadrature can

be used for this. Alternatively, for a random-intercepts model, the approximation described
in Diggle et al. (reference [38], p. 142) does not require use of quadrature. For this, the

∗This program and its manual can be obtained from http:==www.uic.edu=˜hedeker=mix.html.
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estimated regression coe�cients �̂ are divided by
√{(16√3=15�)2�̂2c + 1}. These ‘marginal-

ized’ coe�cients �̂∗ are then directly used with ẑijc=w′
ij�̂∗dc to produce estimated marginal

probabilities. Results using either of these methods generally agree closely. In the example
below, we illustrate model �t using the quadrature method.

2.5. Intraclass correlation

For a random-intercepts model it is often of interest to express the level-2 variance in terms
of an intraclass correlation. One way to obtain this expression utilizes the underlying latent
response tendencies, denoted as Yijc. Also, for simplicity, this will be done for the reference-
cell formulation, though it applies to the more general contrast situation as well. The random-
intercepts regression model for the latent variable Yijc, including level-1 residuals ”ijc, is written
as

Yijc=w′
ijQc + �c�i + ”ijc c=1; 2; : : : ; C (12)

As mentioned earlier, for a particular ijth unit, the category c associated with the observed
nominal response yij is the one for which Yijc is maximal. Since, in the present formulation,
c=1 is the reference category, Q1 =�1 = 0, and so the model can be rewritten as

Yijc=w′
ijQc + �c�i + (”ijc − ”ij1) c=2; : : : ; C (13)

for the latent response tendency of category c relative to the reference category. It can be
shown that the level-1 residuals ”ijc for each category are distributed according to a type
I extreme-value distribution (see Maddala, reference [39], p. 60). It can further be shown
that the standard logistic distribution is obtained as the di�erence of two independent type
I extreme-value variates (see McCullagh and Nelder, reference [40], pp. 20 and 142). As a
result, the level-1 variance is given by �2=3, which is the variance for a standard logistic
distribution. The estimated intraclass correlations are thus calculated as rc= �̂2c=(�̂

2
c + �

2=3),
where �̂2c is the estimated level-2 variance assuming normally distributed random intercepts.
Notice that C − 1 intraclass correlations are estimated. As such, the cluster in�uence on the
level-1 responses is allowed to vary across the nominal response categories.

3. HEALTH SERVICES RESEARCH EXAMPLE

The McKinney Homeless Research Project (MHRP) study [41, 42] in San Diego, CA, was
designed to evaluate the e�ectiveness of using Section 8 certi�cates versus no certi�cates as
a means of providing independent housing to the severely mentally ill homeless. Section 8
housing certi�cates were provided from the Department of Housing and Urban Development
(HUD) to local housing authorities in San Diego. These housing certi�cates, which require
clients to pay 30 per cent of their income towards rent, are designed to make it possible
for low income individuals to choose and obtain independent housing in the community.
A total of 361 clients took part in this longitudinal study employing a randomized factorial
design. Clients were randomly assigned to one of two types of supportive case management
(comprehensive versus traditional) and to one of two levels of access to independent housing
(Section 8 certi�cates: yes or no). Eligibility for the project was restricted to individuals
diagnosed with a severe and persistent mental illness who were either homeless or at high
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Table I. Housing status across time: response proportions and sample sizes (n).

Group Status Time-point

Baseline 6 months 12 months 24 months

Control street 0.555 0.186 0.089 0.124
community 0.339 0.578 0.582 0.455
independent 0.106 0.236 0.329 0.421

n 180 161 146 145

Section 8 street 0.442 0.093 0.121 0.120
community 0.414 0.280 0.146 0.228
independent 0.144 0.627 0.732 0.652

n 181 161 157 158

risk of becoming homeless at the start of the study. Individuals’ housing status was classi�ed
at baseline and at 6, 12 and 24 months follow-ups.
Here, we focus on examining the e�ect of access to Section 8 certi�cates on housing

outcomes across time. Speci�cally, at each timepoint subjects’ housing status was classi�ed
as either streets=shelters, community housing, or independent housing. The observed sample
sizes and response proportions by group are presented in Table I. These observed proportions
indicate a general decrease in street living and an increase in independent living across time
for both groups. The increase in independent housing, however, appears to occur sooner for
the Section 8 group relative to the control group. Regarding community living, across time
there is an increase for the control group and a decrease for the Section 8 group. There is
some attrition across time; attrition rates of 19.4 per cent and 12.7 per cent are observed at
the �nal time-point for the control and Section 8 groups, respectively. Since estimation of
model parameters is based on a full-likelihood approach, the missing data are assumed to be
‘ignorable’ conditional on both the model covariates and the observed nominal responses [43].
In longitudinal studies, ignorable non-response falls under the ‘missing at random’ (MAR)
assumption of Rubin [44], in which the missingness depends only on observed data. In what
follows, since the focus is on describing the mixed-e�ects multinomial regression model, we
will make the MAR assumption.
Several mixed-e�ects multinomial logistic regression models were �t to these data. The �rst

two were random-intercept models assuming the random e�ects were normally and uniformly
distributed, respectively. Results from these analyses are given in Tables II and III. Helmert
contrasts were used for category comparisons: the �rst Helmert contrast compares non-street
(that is, community and independent housing) to street housing, while the second Helmert
contrast compares the two types of non-street housing (that is, independent versus community
housing). These contrasts are well matched to primary study questions: (i) Do Section 8
certi�cates help subjects get o� the streets?; (ii) Do Section 8 certi�cates help subjects get
into independent rather than community housing for subjects o� the street? Tables II and III
list results for these two Helmert contrasts, respectively. For these analyses, the repeated
housing status classi�cations were modelled in terms of time e�ects (6, 12 and 24 months
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Table II. Housing status across time: 1289 observations within 361 subjects, mixed-e�ects
multinomial regression estimates and standard errors (SE). Helmert contrast 1: community

and independent versus street housing.

Term Normal RE distribution Uniform RE distribution

Estimate SE Estimate SE

Intercept −1:564 0.244 −1:600 0.230
t1 (6 month versus base) 2.312 0.322 2.195 0.319
t2 (12 month versus base) 3.454 0.484 3.301 0.475
t3 (24 month versus base) 3.179 0.387 3.058 0.382

Section 8 (yes= 1, no= 0) 0.651 0.334 0.573 0.311
Section 8 by t1 0.934 0.495 0.898 0.487
Section 8 by t2 −0:684 0.601 −0:647 0.586
Section 8 by t3 −0:324 0.517 −0:326 0.506

Subject SD 1.602 0.148 0.322 0.032

−2 log L 2218.73 2224.74

For �xed e�ects: bold indicates p¡0:05, italic indicates 0:05¡p¡0:10.

Table III. Housing status across time: 1289 observations within 361 subjects, mixed-e�ects
multinomial regression estimates and standard errors (SE). Helmert contrast 2: independent

versus community housing.

Term Normal RE distribution Uniform RE distribution

Estimate SE Estimate SE

Intercept −2:224 0.326 −2:255 0.320
t1 (6 month versus base) 0.741 0.375 0.690 0.374
t2 (12 month versus base) 1.268 0.352 1.230 0.350
t3 (24 month versus base) 1.839 0.358 1.830 0.354

Section 8 (yes= 1 no=0) 0.260 0.425 0.204 0.411
Section 8 by t1 2.138 0.505 2.236 0.501
Section 8 by t2 2.465 0.512 2.584 0.512
Section 8 by t3 1.256 0.509 1.321 0.504

Subject SD 1.463 0.166 0.336 0.034

−2 log L 2218.73 2224.74

For �xed e�ects: bold indicates p¡0:05, italic indicates 0:05¡p¡0:10.

follow-ups compared to baseline), a group e�ect (Section 8 versus control), and group by
time interaction terms.
In terms of statistical signi�cance of the �xed e�ects, the two models yield similar conclu-

sions. Thus, the random-e�ects distributional form does not seem to play an important role for
these data, at least as characterized by these two distributional forms. Subjects in the control
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Figure 1. Independent+community versus street logits.

group increase both community and independent housing relative to street housing (Table II),
and independent relative to street housing (Table III), at the three follow-ups as compared to
baseline. In terms of group di�erences there are only marginally signi�cant di�erences in the
non-street versus street comparison (Table II). However, as Table III indicates, all Section 8
by time interactions are signi�cant for the independent versus community housing comparison.
Thus, the Section 8 group has greater increases than the control group at all follow-ups in
independent housing, relative to community housing.
Considering the random subject e�ect in the normal random e�ects model, expressed as

intraclass correlations, r1 = 0:44 and r2 = 0:39 for the two Helmert contrasts. Thus, the degree
of subject in�uence is of moderate size and relatively similar for these two comparisons of
the response categories. It should be noted that there are concerns in using the standard errors
in constructing Wald test statistics for the variance terms (for example, the subject standard
deviation), particularly when the population variance is near zero and the number of subjects
is small [7]. As a result, statistical signi�cance is not indicated for the random-e�ect variance
parameters in the tables.
An analysis was also done to examine whether the random-e�ect variance terms varied sig-

ni�cantly by treatment group. The deviance (−2 log L) for this model, assuming normally dis-
tributed random e�ects, equalled 2218.43, which was nearly identical to the value of 2218.73
(from Tables II and III) for the model assuming homogeneous variances across groups. The
control group and Section 8 group estimates of the subject standard deviations were, respec-
tively, 1.696 (SE=0:212) and 1.499 (SE=0:216) for non-street versus street comparison,
and 1.471 (SE=0:232) and 1.457 (SE=0:244) for the independent versus community hous-
ing comparison. Thus, the homogeneity of variance assumption across treatment groups is
reasonable.
Model �t to the observed data is depicted in Figures 1 and 2. The marginal observed logits

are plotted with the ‘marginalized’ estimated logits of the mixed-e�ects model assuming nor-
mally distributed random e�ects. In terms of the non-street versus street comparison, Figure 1
shows the general increase across time for both groups. As the statistical tests indicated, the
groups do not di�er dramatically in terms of this logit over time. Figure 2, which illustrates
the logits of independent versus community housing, clearly depicts the bene�cial e�ect of
Section 8 certi�cates at all follow-up time-points. Considering these plots along with the
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Figure 2. Independent versus community logits.

results of the mixed-e�ects analysis, it is seen that both groups are relatively successful in
getting o� the streets, but do so in somewhat di�erent ways. The Section 8 group is much
more likely to achieve independent housing than the control group, which is more likely to
move towards community housing.

4. DISCUSSION

A mixed-e�ects multinomial logistic regression model is proposed for the analysis of multi-
level nominal response data. Maximum marginal likelihood methods are used for parameter
estimation. For this solution, quadrature is utilized to numerically integrate over the distri-
bution of random e�ects. For multilevel data with two levels this model allows for multiple
random e�ects at the second level. Fixed covariates can be included into the model at either
level of the data.
Comparisons across the C nominal categories are speci�ed either by selecting one category

as the reference cell or by specifying a set of other C − 1 category contrasts. The covariate
e�ects are then estimated for each of the C−1 comparisons. The random-e�ect variance terms
are also allowed to vary across the C − 1 nominal category comparisons. The model makes
an assumption that has been referred to as ‘independence of irrelevant alternatives’ in the
econometric literature [39]. This is because the e�ect of an explanatory variable comparing two
categories is the same regardless of the total number of categories considered. This assumption
is generally reasonable when the categories are distinct and dissimilar, and unreasonable as the
nominal categories are seen as substitutes for one another [45, 46]. Furthermore, McFadden
[47] notes that the multinomial logistic regression model is relatively robust in many cases in
which this assumption is implausible. In the present example, the outcome categories are fairly
distinct and so the assumption would seem to be reasonable for these data. The possibility of
relaxing this assumption for a more general mixed-e�ects multinomial regression model has
recently been discussed by Hartzel et al. [29].
As noted, the solution via quadrature can involve summation over a large number of points

when the number of random e�ects is increased. An issue, then, is the number of necessary
quadrature points to use for accurate estimation of the model parameters. Based on models

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1433–1446



1444 D. HEDEKER

for dichotomous and ordinal outcomes, respectively, Longford [8] and Jansen [20] note that
estimation is a�ected very little when the number of points is �ve or greater for the unidimen-
sional solution. Also, as suggested by Bock et al. [48] in the context of a dichotomous factor
analysis model, the number of points in each dimension can be reduced as the dimensionality
is increased. These authors noted that as few as three points per dimension were necessary
for a �ve-dimensional solution. Alternatively, the EGRET program [49] uses 20 quadrature
points by default for its unidimensional mixed-e�ects (binary) logistic regression model. In
the present example, we compared results based on 10 versus 20 quadrature points and found
little di�erence.
The use of Gibbs sampling and related methods [50] provides an alternative way of handling

the integration over the random-e�ect distribution. While the quadrature solution is relatively
fast and computationally tractable for models with few random e�ects, Gibbs sampling is
more advantageous for models with many random e�ects. For example, if there is only one
random e�ect, the quadrature solution requires only one additional summation over Q points
relative to the �xed e�ects solution. For models with multiple random e�ects, however, the
quadrature is performed over Qr points (where r equals the number of random e�ects), and so
becomes computationally burdensome for r¿5 or so. Attempting to overcome this problem,
methods of adaptive quadrature have been developed [51–53] that use fewer number of points
per dimension (for example, three or so) that are adapted to the location and dispersion of
the distribution to be integrated. For dichotomous factor analysis models with �ve and eight
factors (that is, random e�ects), Bock and Shilling [53] found similar results for adaptive
quadrature as compared to a Gibbs sampling approach.
The example presented illustrates the usefulness of the mixed-e�ects approach for longi-

tudinal categorical data. Mixed-e�ects models are also useful in analysis of clustered data,
where individuals are observed nested within schools, hospitals or �rms, for example. A fur-
ther extension of the model is underway to allow for three-level data in order to accommodate
clustered data where the clustered subjects are also repeatedly measured across time.
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