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Abstract— Real-time continuous tracking of seizure state is
necessary to develop feedback neuromodulation therapy that
can prevent or terminate a seizure early. Due to its high
temporal resolution, high scalp coverage, and non-invasive
applicability, electroencephalography (EEG) is a good candidate
for seizure tracking. In this research, we make multiple seizure
state estimations using a mixed-filter and multiple channels
found over the entire sensor space; then by applying a Kalman
filter, we produce a single seizure state estimation made up of
these individual estimations. Using a modified wrapper feature
selection, we determine two optimal features of mixed data type,
one continuous and one binary analyzing all available channels.
These features are used in a state-space framework to model
the continuous hidden seizure state. Expectation maximization
is performed offline on the training and validation data sets
to estimate unknown parameters. The seizure state estimation
process is performed for multiple channels, and the seizure
state estimation is derived using a square-root Kalman filter. A
second expectation maximization step is utilized to estimate the
unknown square-root Kalman filter parameters. This method is
tested in a real-time applicable way for seizure state estimation.
Applying this approach, we obtain a single seizure state esti-
mation with quantitative information about the likelihood of a
seizure occurring, which we call seizure probability. Our results
on the experimental data (CHB-MIT EEG database) validate
the proposed estimation method and we achieve an average
accuracy, sensitivity, and specificity of 92.7%, 92.8%, and
93.4%, respectively. The potential applications of this seizure
estimation model are for closed-loop neuromodulation and long-
term quantitative analysis of seizure treatment efficacy.
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I. INTRODUCTION

Approximately 50 million people live with epilepsy world-

wide [2]. In the US alone, the National Institutes of Health

spends over $150 million each year on epilepsy research.

This accounts for roughly 82% of research that is not coming

from industry sources [3]. Epilepsy is a neurological disorder

which can occur at any age, currently has no cure, and is

characterized by seizures that can happen without noticeable

warning [3]. This can lead to other health problems such

as brain injury from falling, psychiatric conditions, and a

reduction in quality of life [4], [5]. It is a spectrum with

a wide range of seizure types, which vary from person-to-

person [6], [7]. For example, a focal seizure is one that is

triggered by a localized portion of the brain, while a general

seizure can be triggered in multiple parts of the brain [7].

Treatments for epilepsy currently focus on anti-epileptic

medications [8]. While most patients find that their symp-

toms are well controlled with a drug regimen, more than

90% still experience seizures [8], [9]. These medications also

have various side effects such as: weight change, headaches,

dizziness, and shaking [10], [11]. Independence is also a

common concern among people living with epilepsy, with

many questioning their ability to find employment, travel, or

pursue higher education, even with treatment [11].

Due in part to the limited success of medications and

because more invasive techniques such as surgical resection

for focal seizures carry high risk, researchers are now ex-

ploring minimally invasive neurostimulation techniques such

as Deep Brain Stimulation (DBS) and Vagus Nerve Stimu-

lation (VNS) [12]–[15]. While long-term studies are still in

progress, the results are promising, and both DBS and VNS

have already achieved a higher rate of seizure reduction than

medication-based interventions [14]–[16]. However, most of

these devices are open-loop and work by applying constant

or periodic stimulation without any feedback [17]. Open-

loop systems have several limitations, such as lower battery

life, reduced effectiveness of the treatment, and side-effects

from stimulation such as disruption of cognitive function,

dizziness, or mood changes [18]–[20]. The few closed-

loop systems currently available are still limited and costly

[21]. An ideal closed-loop system has several advantages

including lower power consumption, reduction in stimuli,

and fewer adverse effects to the treatment [22], [23]. Some

of the challenges when closing the loop are measuring and

decoding neural activity from the brain to detect the seizure.

While several methods of recording cortical activity exist,
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one of the most accessible and low-cost is electroencephalog-

raphy (EEG). EEG is a non-invasive measurement of elec-

trical activity produced by the brain and measured at the

scalp [24]. Because of its safety, high temporal resolution,

portability, high scalp coverage, recording reliability, and

low power requirements, it is one of the preferred methods

for recording brain activity [25], [26]. By selecting a non-

invasive option for neural recording, the system becomes

more widely accessible to the epileptic community, can be

implemented quickly, and avoids the complications posed by

invasive neural recording alternatives.

An effective closed-loop system must have accurate

seizure detection or prediction because late intervention can

be ineffective to prevent or terminate seizures early [27],

[28]. Over the past decade, a number of solutions to seizure

detection have been tested. The proposed solutions range

from training neural networks, support vector machines,

empirical mode decomposition, or wavelet transformation

to determine the amplitude and frequency of the recorded

signals [29]–[32]. While these methods use a wide range

of approaches to predict a seizure, computationally intensive

algorithms are required. This is not feasible in a system with

limited resources, where minimizing power consumption and

computational complexity is a high priority. Additionally,

most of these approaches only result in the binary estimation,

which provides no information about the progression of the

seizure state as it evolves in time and space. Real-time

estimation and monitoring of seizure state as they evolve and

progress is clinically relevant as they may assist in develop-

ing feedback therapy (adaptive neuromodulation) [29], [30].

In this study, we define the likelihood of a seizure occurring

as seizure probability. One practical application of seizure

probability estimation for seizure abatement is with VNS,

which can use real-time frequency and amplitude adaptation

to better tailor treatment [33]. There are also clinical reasons

why knowing seizure probability would be useful, such as

determining efficacy of the neurostimulation treatment over

the course of treatment or quantitatively determining the

impact of medication on seizures [34], [35].

Seizures are emergent neural phenomena characterized by

multiple state transitions starting from the interictal to pre-

ictal, ictal onset, propagation, termination, and the postictal

state [36]. When estimating the seizure state, model selection

is incredibly important. In this case, a state-space model is

preferred as it can be related to the underlying biology and

the output is continuous, rather than binary, which provides

information as to the seizure evolution and severity [1], [37].

Furthermore, state-space modeling algorithms are computa-

tionally efficient and can model complex systems to a high

degree of accuracy, making them ideal for low resource

systems [38]. Expanding on previous work [1], where the

authors employed a mixed-filter approach to perform seizure

state estimation using two EEG channels, we propose that

the removal of the self-imposed channel count restriction

may lead to increases in accuracy and robustness of the

state-estimation and be more applicable to non-focal type

seizures [7]. Then, we employ a mixed-filter approach to

incorporate both binary and continuous features. While we

can estimate the seizure state using a single estimation alone,

a combined continuous estimation uses multiple channels,

so it is less susceptible to sensor noise, provides us with

higher accuracy, and includes information on the severity of

a seizure [37], [39], [40]. By having information about the

seizure probability, the amplitude and the frequency in DBS

and VNS applications can be automated in a real-time closed-

loop manner. Thus, accurately estimating seizure states may

improve treatment and reduce the possibility of serious brain

injuries [41], [42].

II. METHODS

Figure 1 outlines the proposed method and some future

uses for finding a combined seizure state estimation, which

we define as a seizure state estimation made up of N num-

ber of individual estimations using 2N features. A person

wearing an EEG headset has their neural activity recorded

in real-time. Using a Linear Discriminant Analysis (LDA)

classifier we find two features, one continuous and one

binary, that best estimate the seizure state. A mixed-filter

with expectation maximization (EM) is applied to make a

single estimation of the seizure state. EM is an iterative

process that finds maximum-likelihood estimates for model

parameters when the data is incomplete or has unobserved

latent variables [37], [43]. This process is repeated N times

where N = 5 is the maximum number of iterations and 2N is

the number of features that make up the estimation. A square-

root Kalman filter is employed to include information from

multiple predictions. A Kalman filter is a recursive filter that

estimates the hidden state of a linear dynamic system from a

series of noisy measurements [44]. The square-root Kalman

filter returns a combined seizure state estimation which is

made up of the N individual estimations.

Having multiple estimations is useful because, if one of the

selected features is contaminated with noise, this could lead

to poor performance. By using a filter with multiple inputs,

if one of the features is noisy, the filter can still provide a

relatively accurate estimation using the other features [45]–

[48]. The output of this process is a single seizure state

estimation with high accuracy. Parts (E) and (F) in Figure 1

highlight two examples of future applications of this work,

such as real-time tailoring of closed-loop neural stimulation

(E) and tracking the effectiveness of anti-seizure medications

(F).

A. Data

The data set (CHB-MIT Scalp EEG Database) was col-

lected in 2010 at the Boston Children’s Hospital [49], [50]. It

consists of continuous high density EEG recordings from 22

pediatric subjects (5 males, ages 3-22, and 17 females, ages

1.5 - 19) with intractable seizures for several days following

the cessation of anti-seizure medication to determine if

surgical intervention was warranted.

The EEG recordings have between 46 to 52 electrodes,

which were placed according to the international 10-20 sys-

tem of EEG electrode positions. All signals were recorded at



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3113888, IEEE

Transactions on Neural Systems and Rehabilitation Engineering

Fig. 1: Procedure for real-time seizure estimation. A

person wearing a EEG headset A, which monitors neural

activity B. This information is then passed to the seizure

state estimation algorithm C which returns the seizure state

severity estimation D. This work has several future ap-

plications. Some examples are the real-time tailoring and

activation of neural stimulation modalities such as VNS/DBS

E and monitoring efficacy of anti-seizure medications or

other treatments F.

256 Hz sampling frequency. Recordings were accomplished

using a bipolar montage, where each channel consists of

two electrodes. The database consists of 916 hours of EEG

recordings and the data set contains 182 seizures over the

entire subject population. Further information on the original

data collection can be found in [49], [50].

B. Feature Extraction

For feature extraction, the EEG data of a single subject

was divided into three data sets: a training set, a validation

set, and a testing set. The first session with a recorded seizure

within the subjects data set was used as the training set, the

session with the second recorded seizure was used for the

validation set, and the remaining seizure containing sessions

are used as the testing data set [1]. By splitting the training,

validation, and testing data in these proportions, the number

of seizures needed to train the model is reduced, which

limits the necessary training data collection efforts and sets

a lower limit to the effectiveness of this model. Additionally,

segmenting the data this way provides a larger testing set, so

we can better determine the performance of our approach.

Due to the session-to-session variability, the EEG features

were normalized with a min/max normalization based on

the statistical characteristics of the feature derived from the

first minute of each session. The first minute of data was

also selected for this normalization process to maintain the

real-time applicability of this method. An assumption that

is made when using this mixed filter is that the continuous

feature must be monotonic in relation to the unknown seizure

state [51]. However, EEG signal information is oscillatory

in nature, so it is not possible for the amplitudes to be

monotonic in relation to the seizure state [52], [53]. One

way to resolve this issue is using EEG band powers (i.e.

monotonic) as the candidate features.

Using the Fast Fourier Transform (FFT) with a sliding

one second window, each channel is decomposed into the

absolute power of four characteristic EEG band powers:

Delta (0.1-4 Hz), Theta (4-7 Hz), Alpha (8-15 Hz), and Beta

(16-31 Hz). Gamma band (31+ Hz) was excluded from the

candidate bands because Gamma band is more likely to be

contaminated with noise from muscles. Moreover, previous

work has found that lower frequency bands provide more

information about the seizure state [54].

1) Continuous Feature: For the continuous feature, the

raw feature values are converted from amplitude squared

to dB so as to enforce having a positive amplitude square

estimation from the model.

2) Binary Feature: The binary feature extraction process

is a slightly modified version of the continuous feature

extraction protocol. The raw EEG feature data is binarized

using an LDA classifier, which eliminates the need to apply

the dB transformation.

C. Feature Selection

To determine the best continuous and binary features, a

modified wrapper feature selection is utilized that consists

of an (i) LDA, which is a simple linear computationally-

efficient classifier that is used to create a predictive model,

(ii) F1 score as an evaluation method, (iii) greedy forward

selection for subset selection, and (iv) a stopping criteria of

using 2n features where n = 1, 2, 3, ..., N = 5 is the total

number of estimations [55].

Using two pools of candidate features, one binary pool

and continuous pool, at each iteration, the modified wrapper

feature selection algorithm selects one candidate feature from

the continuous pool, is used to train an LDA classifier with

any previously selected features, then repeats this process for

the binary pool. The selected continuous and binary features

are then placed into their respective candidate pools.

Feature selection was done by training M LDA classifiers

with J features, where M is the number of features in the

candidate pool and J is the number of features in the selected

feature pool plus one feature from the candidate feature pool.

Each LDA classifier is tested using the validation set. The

resulting arrays are then compared to the true binary seizure

state [56], [57]. The validation set is used to find features

that are generalizable and have the power to estimate the

hidden seizure state. Without using a validation set, there

is a possibility that our model would be overfit and would

not be able to make an accurate estimation. Changing the

stopping criteria from previous paper [1], which was set

to one, helps to reduce the inter-feature correlation since

candidate LDAs now use the previously selected features as

well as one candidate feature to determine if the candidate

feature improves the performance.

For the binarization of each selected binary feature, an

LDA is trained using each of that selected binary features on

both the training and validation sets. The misclassification

cost was again derived based on the proportion of the
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Fig. 2: First Pair of Features Selected for Subject 1,

Session 4. The shaded area marks the period designated as

the true seizure state. While the binary feature alone (orange

dots) has high accuracy, the continuous feature (blue curve)

provides additional information about the seizure probability.

duration of seizure to non-seizure data in the training and

validation sets. The same LDA is then used to binarize

the selected binary feature on the test set. Performing the

binarization after finding the best features was done to reduce

the computational costs as well as increasing the accuracy

of the binarization because we can use both the training and

validation sets for the training of the binarization LDAs. If

binarization occurred prior to feature selection, using both

the training and validation set would bias the LDAs used to

test the performance to the binary features.

To compare the level of accuracy each feature has, F1

scores are compared rather than absolute accuracy. Using

accuracy alone, a feature could have high accuracy because

it is biased toward specificity. Instead, the F1 score is

employed due to its emphasis on the effect of precision and

recall, which is given in the following equation,

F1 = 2×
(precision× recall)

precision+ recall
(1)

An example of this process presented in Figure 2, which

shows the pair of features that best predict the seizure state.

The binary feature (orange dots) detects only the true seizure

state (purple shaded region), while the continuous feature

(blue curve) has higher activity around the seizure state. This

indicates that both the binary and continuous features are

effective in estimating the seizure state and its severity.

D. Seizure State Modeling

The model of the seizure state relies on the assumption

that a continuous seizure state xk,n at k time step, can be

represented as the following first-order auto-regressive state-

space process [39], [53], [58]–[61],

xk,n = ρnxk−1,n + ηk,n (2)

where n = 1, 2, ..., N = 5 is the number of estimations,

0 < ρn < 1 is the forgetting rate parameter for estimation n,

and ηk,n ∼ N(0, σ2
η,n) is the independent Gaussian random

variable that represents the process noise for estimation n,

where σ2
η,n is its variance.

E. Seizure State Estimation

The observation model for the continuous feature is the

power of a frequency band, rk,n (amplitude squared). As

the filter requires rk,n to be unbounded, the continuous

feature is converted from amplitude squared to dB by taking

10log(rk,n) to form vk,n such that

vk,n = log(rk,n) = αn + βnxk,n + ǫk,n (3)

where αn governs the baseline value of the continuous

feature when the subject is not experiencing any seizure state

at estimation n, βn is the level of the continuous feature as a

function of the seizure state, and the continuous measurement

noise parameter ǫk,n is an independent Gaussian random

variable, i.e. ǫk,n ∼ N(0, σ2
ǫ,n), with the unknown variance

σ2
ǫ,n.

Besides the continuous feature, the binary feature is as-

sumed to follow a Bernoulli distribution such that,

Pr(λk,n|xk,n) = (pk,n)
λk,n(1− pk,n)

1−λk,n (4)

where λk,n is derived from the raw amplitude squared data

at estimation n and is selected using the process described

in section II-C. The observation model is defined as:

pk,n =
eµn+xk,n

1 + eµn+xk,n
(5)

The logistic function is chosen for this specific filter design

because the probability function, pk,n, must be bounded

between zero and one. Additionally, the seizure probability

pk,n can be inferred by its relationship with the seizure state

xk,n. The parameter µn is estimated individually for each

subject from chance probability, pchance, where pchance is

the probability of a seizure occurring [39], [62]. The chance

probability used in the model is selected as the duration of

seizure activity in both the training and validation set, divided

by the total duration of the combined sets [39], [62].

The mixed filter treats the seizure status as a hidden

biophysical state and results in a continuous seizure state

estimation. In addition to making an estimation about the

occurrence of a seizure, continuous estimation also provides

information about the severity of the seizure. This filter was

selected because it incorporates both continuous and binary

features, which better estimates the hidden state [55], [63].

F. Expectation Maximization Algorithm

To estimate the hidden continuous seizure state, the EM

algorithm is used on the combined data from the training

and validation sets to estimate the unknown state-space

parameters:

θn = (ρ,α,β,σ2
η,σ

2
ǫ ,xk) (6)

where ρ, α, β, σ2
η , σ2

ǫ , and xk stand for the N × 1 column

vectors including the values of ρn, αn, βn, σ2
η,n, σ2

ǫ,n, and

xk,n for all n estimations.

The EM process is an iterative method to find the maxi-

mum likelihood of (θn) by alternating between the expecta-

tion and maximization steps [64], [65]. During the expecta-

tion step, the algorithm creates a log-likelihood function from
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the initial values of the parameters. Then the maximization

step finds the values for these parameters that maximize the

log-likelihood function [37], [66]. These resulting parameters

are then used in the log-likelihood function and the process

is repeated until convergence [67], [68]. Next, the parameters

and features found with the training and validation sets were

applied to the model to track the continuous seizure state in

the test set. For this portion of testing, the forward filter was

used exclusively as the backward smoother is not real-time

applicable because it requires knowledge of future measure-

ments to improve the estimation of the present measurements

[69]–[71]. The formulation for the EM algorithm is presented

in the supplementary information.

G. Kalman Filter

As the mixed filter employs a single continuous feature

and a single binary feature to return a single estimation,

the resulting matrix is now composed of n rows. When

n > 1, the Kalman filter takes the multiple estimations and

produces a combined estimated seizure state. The combined

seizure estimation model is defined with a linear state-space

framework such that zk is a hidden combined seizure state

at time k = 1, 2, ...,K:

zk = Azk−1 + ωk (7)

xk = B + Czk + νk (8)

where A is the unknown state transition scalar. B is the

unknown bias vector of N length, where N is the total

number of estimations and B(n) is the n−th value of vector

B. C is the unknown measurement transition vector, which

estimates the variance for each input. ωk ∼ N(0, Σ2
ω) and

νk ∼ N(0,Σ2

ν) are independent unknown noise variance

matrices with Σω and Σν unknown noise covariances associ-

ated with the process and measurements noises, respectively.

The formulation for the Kalman filter algorithm is presented

in the supplementary information.

H. Square-root Kalman filter

The formulation of the Kalman filter does not provide the

numerical stability needed for this application [72], [73]. For

this reason, an implementation of a square-root covariance

filter algorithm was required [73] to ensure that the error

covariance matrix of the state estimate of zk, Σk, will

always yield a symmetric non-negative matrix that is well

conditioned. The formulation for the square-root Kalman

filter can be found in the supplementary information.

The unknown state-space parameters are calculated using

the EM algorithm outlined in section II-F without the added

binary feature modification:

θφ = (A,B,C, Σ2
ω,Σ

2
ν). (9)

Taking all n separate estimations as an input matrix, the

square-root Kalman filter algorithm returns a single vector

representing the combined state estimation as shown using

pseudo-code in Fig. 1. After each time and measurement

update pair, the process is repeated with the a posteriori

estimates to update the model and predict the new a priori

estimates.

I. Binary Seizure Estimation

Using the continuous seizure state estimation from the

training and validation sets, a final LDA was trained to

binarize our data. Taken together, the selected features, the

trained binarization LDA, and the state-space parameters are

then applied to the test set. The output is a binarized form

of the seizure state estimation. This provides performance

statistics with which to compare the above algorithm with

past attempts as all past attempts to classify this data did so

with binary classes. The sensitivity, accuracy, and specificity

of our approach are then compared to the performance

of other approaches. The formulation for binary seizure

estimation is presented in the supplementary information.

III. RESULTS

To reduce the inter-feature correlation, improve F1 score,

or both, we modified the feature selection method from the

previous work [1]. Table I presents the change in correlation

coefficient and F1 score of the two best features, one con-

tinuous and one binary, using the previous feature selection

method, where the best features were found individually for

each subject and the proposed method. The proposed method

instead attempts to find the best combination of features

for each subject. By reducing correlation, the chance of

multicollinearity is reduced, which can increase the variance

of the coefficient estimates and makes the estimates very

sensitive to minor changes in the model [74]–[76]. As

expected, the correlation between the selected features using

the proposed method decreased in all the subjects with the

exception of subjects 1 and 7, which saw no change in feature

correlation. The F1 score increased for all the subjects with

the exception of subject 8, which saw no change.

TABLE I: Correlation and F1 score of the best pair of new

features using our new feature selection method and the best

pair of features selected using the previous method [1].

Correlation F1 Score

Subject * [1] * [1]

1 64.0 64.0 82.5 63.6
2 41.3 53.8 9.0 6.5
3 37.9 61.1 82.7 54.6
4 71.0 75.0 21.8 17.0
5 77.5 88.5 96.4 88.5
6 49.0 57.0 34.4 21.8
7 54.0 54.0 91.8 84.5
8 3.0 64.0 56.8 56.8
9 64.6 70.0 98.3 96.4

10 49.0 57.0 95.3 64.3

Average 51.1 64.4 66.9 55.4
S.D. 20.1 10.3 10.2 29.6

* indicates results obtained through the current study.

An example of the continuous seizure state estimation

using five estimations is depicted in Figure 3. The purple

highlighted area marks the occurrence of the actual seizure

state as labeled from the original data set. The blue line

is the continuous sample-by-sample estimation from the
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combination of the five estimations, the first estimation is

plotted in yellow, and creates a pronounced seizure state that

matches well with the true seizure state. Next, the seizure

state binarization LDA was trained using the test set from the

EM algorithm to produce a binary seizure state estimation.

Table II presents the results of the proposed method

compared to previous studies. The proposed method obtains

an average accuracy of 92.7%, average sensitivity of 92.8%,

and average specificity of 93.4%. This is an increase in

average accuracy of 6.9%, an increase in average sensitivity

of 1.3% ,and an increase in average specificity of 7.7% when

compared to the previous work [1].

Table III highlights the effects of increasing the number of

estimations to create the combined seizure estimate has on

the performance metrics for all ten subjects. On average, as

we increase the number of estimations, we see an increase

in performance. Additionally, after three estimations, the

returned increase in performance starts to diminish.

Figure 4 shows the selected bipolar sensors for Subject 1

where the start of the arrow represents the positive sensor and

the arrowhead represents the negative sensor. The selected

continuous features are represented using blue arrows and the

binary features are represented with with yellow arrows. In

some instances, multiple bands for a feature type, continuous

Fig. 3: Estimated Seizure State for Subject 8, Session 4. Combined seizure state estimation and the first individual

estimation from this process. The shaded area marks the period designated as the true seizure state.

TABLE II: A comparison between studies that analyzed the same data set. Here we compare accuracy, specificity, and

sensitivity values of our proposed method to other studies.

Performance Statistics

Accuracy Sensitivity Specificity

Subject * [1] [77] [78] * [1] [49] [77] * [1] [77]

1 98.3 94 99 94 96.1 92.7 100 99 100 94.1 99
2 98.1 75.1 100 80 92.2 100 100 100 98.1 75.1 100
3 86.6 82 98 95 94.5 91.4 100 97 86.4 81.8 98
4 99.0 89.9 97 77 99.6 93.3 100 96 99.7 89.9 98
5 98.4 96.8 98 76 98.8 98.2 74 98 98.5 96.8 98
6 63.1 61.1 96 74 79.9 78 86 96 63.5 61.1 96
7 99.4 86.6 97 84 88.2 84.9 100 97 100 86.6 97
8 96.5 75.8 96 81 99.9 95.3 100 96 99.9 74.7 96
9 99.8 96.6 96 88 99.1 95.9 100 95 99.9 96.6 96

10 87.9 99.6 98 73 79.9 85.7 100 98 88.0 99.8 96

Average 92.7 85.8 97.5 82.2 92.8 91.5 96 97.2 93.4 85.7 97.4
S.D. 10.9 11.6 1.3 7.5 7.35 6.4 2.7 1.5 11.1 11.8 1.4

* indicates results obtained through the current study.

TABLE III: The change in performance measures for all subjects as a function of the number of estimates used.

Number of Estimates

One Two Three Four Five

Subject Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe

1 94.4 94.1 96.0 96.4 93.2 98.1 98.1 94.3 98.9 98.3 96.1 100 98.3 96.1 100
2 75.1 75.1 100 94.6 80.4 94.7 94.4 82.2 94.5 97.8 91.1 97.8 98.1 92.2 98.1
3 82.9 91.2 82.9 83.1 91.2 83.0 84.1 91.8 84.1 85.6 94.9 85.4 86.6 94.5 86.4
4 89.9 92.3 88.9 89.7 94.0 89.6 90.3 93.8 90.3 99.0 97.6 99.7 99.0 99.6 99.7
5 96.9 96.8 96.7 97.5 97.6 97.6 98.1 98.4 98.2 98.2 98.6 98.4 98.4 98.8 98.5
6 61.4 78.4 61.6 61.4 79.1 62.8 62.2 78.7 62.2 62.7 79.1 62.7 63.1 79.9 63.5
7 86.6 84.9 86.8 98.4 84.1 100 98.4 84.1 100 99.2 87.4 100 99.4 88.2 100
8 88.7 93.7 88.4 96.1 99.8 99.8 96.1 99.5 99.5 96.3 99.4 99.4 96.5 99.9 99.9
9 96.9 95.9 96.9 99.6 96.1 99.6 99.8 96.3 99.8 99.8 98.4 99.9 99.8 99.1 99.9
10 99.5 76.4 99.8 80.5 78.1 80.8 84.8 82.6 84.8 83.0 84.2 83.0 87.9 79.9 88.0

Average 87.2 87.9 89.8 89.7 89.4 90.6 91.6 90.2 91.2 92.0 92.7 92.6 92.7 92.8 93.4
S.D. 11.1 8.0 10.9 11.3 7.8 11.4 10.9 7.2 11.3 11.3 6.6 11.7 10.9 7.4 11.1
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Fig. 4: Subject 1 scalp map Sensor pairs selected for the

continuous features are shown in blue, while binary features

are shown in yellow.

or binary, were selected using the same electrode pair. In

these cases, only a single arrow was used. Scalp maps for

subjects 2 through 10 can be found in the supplementary

information along with a table of sensor pairs used and

frequency bands selected for all features and subjects.

IV. DISCUSSION

By combining seizure state estimations, the accuracy, sen-

sitivity, and specificity of the total estimation are increased as

compared to a single estimation. In [49] and [77], the authors

used feature vectors as inputs for an SVM classifier, whereas,

[78] used an LDA for estimation. The feature vectors used

by all three are also more computationally demanding than

the proposed method. For example, [49] uses temporal and

spectral statistics, [77] uses fuzzy entropy, and [78] calculates

wavelet coefficients. All three of these studies classify in

segments of time instead of estimating on a point-by-point

basis which limits response speed, the resolution, and the

real-time applicability of their methods. Lastly, all three of

these studies perform binary estimation exclusively. This

means that any information regarding state transition during

seizure evolution and seizure probability is lost.

The method proposed here demonstrates the feasibility of

real-time continuous estimation for the detection of seizure

events with a minimum amount of training data. Further stud-

ies utilizing multiple electrode pairs should be investigated

to evaluate the suitability of our method for patients with for

multifocal seizures. As it derives a continuous estimation, the

method also provides information on the seizure probability,

which can potentially be used as a quantitative way to

measure efficacy of the chosen intervention. Furthermore,

by understanding the severity of a seizure, treatment can be

adapted for real-time seizure mitigation applications, such

as VNS and DBS, where the frequency and amplitude can

be adjusted depending on the severity of the seizure. While

the results of the proposed method achieve comparable

performance to other studies [49], [77], [78], this method

uses a more computationally efficient method that can be

applied in a real-time manner and provides information on

seizure probability.

When compared to the previous work [1], we find an

improvement for accuracy, sensitivity and specificity across

subjects with the exception of subject 10. One probable

explanation for this is measurement noise either in the

training or validation set. The presence of noise in either

of data sets not only can cause feature selection to select

non-consistent and noisy features, but also is problematic

for finding unknown parameters of mixed filters and Kalman

filter. One way to avoid this is using more data for training

and validation, however, this requires more recordings from

each subject. Alternatively, by using adaptive filtering such

as H-infinity and dedicated sensors to measure ocular and

EMG artifacts, the measurement noise could be reduced

while still maintaining real-time applicability [79], [80]. As

shown in Table III, using only a single estimation resulted

to best performance for subject 10. Features for the training,

validation, and the first seizure of the test set of subject 10

can be found in the supplementary information.

Because this research was performed using an existing

data set, future work should aim at verifying the methods

using real-time detection of a seizure state in a clinical

setting. Further testing could be done using alternative ar-

tifact removal methods to improve the quality of the EEG

recordings, which should improve the performance of this

method. Additional work should determine the relationship

of the likelihood of a seizure occurring, which we have

defined here as seizure probability, with the clinical measures

of seizure intensity to determine if there is a correlation.

However, since this measure tracks seizure probability it is

more likely to track with the occurrence of clinically reported

seizures.

Further research should also focus on determining the

optimal number of estimations for a subject and seizure

type. This could be done by determining the accuracy

of each estimation prior to the application of the mixed-

filter. It would be beneficial to determine the relationship

between individual estimation accuracy and its impact on

the combined estimation of the seizure state. This would

provide a threshold to the accuracy of an estimation and

quantitatively determine the optimum number of estimations

for the combined estimation.

The mixed filter uses a single continuous and a single

binary estimation. Due to this limitation, it was necessary to

apply a Kalman filter algorithm to determine the combined

estimation. A more computationally efficient method may

modify this base filter to accept more than a single continu-

ous and binary input. This would eliminate the need for the

Kalman filter and could increase the speed of estimations,
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which is one of the main limiting factors in real-time seizure

estimation [27], [28]. The proposed method indicates that

it is possible to perform real-time seizure detection using

EEG and that by removing the channel limitation from the

previous work [1] we can make multiple estimations from

pairs of features across several channels that can improve the

overall performance of the estimation. This continuous esti-

mation can be used in a closed-loop system with frequency

or amplitude modulation to reduce the severity of the seizure.

V. CONCLUSION

In this study, we presented a method for using multiple

features that best describe a seizure. From the entire sensor

space, we determined one continuous and one binary feature

to produce a single seizure state estimation. We repeated

this process to produce multiple estimations and by apply-

ing a Kalman filter, we obtained a combined seizure state

estimation which is made up of the multiple estimations.

The resulting combined seizure state estimation has higher

accuracy, sensitivity, and specificity than we could obtain

using a single estimation.
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