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A MIXED FINITE ELEMENT DISCRETISATION OF THIN PLATE

SPLINES BASED ON BIORTHOGONAL SYSTEMS

BISHNU P. LAMICHHANE∗, STEPHEN G. ROBERTS† , AND LINDA STALS† †

Abstract. The thin plate spline method is a widely used data fitting technique as it has the ability to
smooth noisy data. Here we consider a mixed finite element discretisation of the thin plate spline. By using
mixed finite elements the formulation can be defined in-terms of relatively simple stencils, thus resulting in
a system that is sparse and whose size only depends linearly on the number of finite element nodes. The
mixed formulation is obtained by introducing the gradient of the corresponding function as an additional
unknown. The novel approach taken in this paper is to work with a pair of bases for the gradient and the
Lagrange multiplier forming a biorthogonal system thus ensuring that the scheme is numerically efficient,
and the formulation is stable. Some numerical results are presented to demonstrate the performance of our
approach. A preconditioned conjugate gradient method is an efficient solver for the arising linear system of
equations.

Key words: Thin plate splines, scattered data smoothing, mixed finite element method,
biorthogonal system
AMS subject classification: 65D15, 41A15

1. Introduction. Thin plate splines are popular tools used to interpolate and smooth
scattered data. Two influential references in this topic are by Duchon [11] and Wahba [28].
Let Ω ⊂ R

d with d ∈ {2, 3} be a polygonal or polyhedral domain. Given a set G = {pi}
N
i=0

of scattered points in Ω and a set of function values {zi = f(pi)}
N
i=0, the thin plate spline

is a smooth function u : Ω → R which minimises the functional

1

N

N
∑

i=0

(u(pi)− zi)
2 + α

∫

Ω

∑

|ν|=2

(

2

ν

)

(Dνu)2 dx (1.1)

over a space of function H2(Ω), where ν = (ν1, · · · , νd) ∈ N
d
0 is a d-dimensional vector used

for multi-index notation, and Dνu denotes the usual partial derivative

(

∂

∂x1

)ν1

· · ·

(

∂

∂xd

)νd

u.

Moreover, |ν| =
∑d

i=1 νi and α is a positive constant. Small values of α will result in
an interpolation that closely follows the data, but may be sensitive to errors in the data;
large values of α will result in a smooth fit that may not adequately represent the data.
Techniques such as generalized cross validation (GCV) may be used to find an appropriate
choice of α, see [15, 28].

Our main goal is to find an efficient discretisation technique for the minimisation of the
functional (1.1). The central idea is to replace the continuous space H2(Ω) by some discrete
finite element space over which we minimise the functional (1.1). The obvious approach is
to use a H2-conforming finite element space, but it is not only difficult to construct such a
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space, the resulting linear system is also difficult to solve as it is ill-conditioned and based
on large stencils. Therefore, we aim at replacing the second order derivative in the thin
plate spline formulation with a first order derivative to use a H1-conforming finite element
method. This idea has been exploited in [8–10,12,16,20,24] to solve a biharmonic equation.

Our new formulation is obtained by introducing an auxiliary variable σ = ∇u such that the
minimisation problem (1.1) is rewritten as [8, 16, 20]

min
(u,σ)∈V
σ=∇u

1

N

N
∑

i=0

(u(pi)− zi)
2 + α‖∇σ‖2L2(Ω), (1.2)

where V = H1(Ω) × [H1(Ω)]d. This is a constrained minimisation problem, where the σ
variable acts like the gradient of the smoother u. We introduce a variational equation for
the constraint σ = ∇u by means of a Lagrange multiplier space. This leads to a saddle
point problem which has three unknowns: the smoother u, the gradient of the smoother σ
and the Lagrange multiplier φ. We formulate a discrete formulation for this saddle point
problem where the auxiliary variables: the gradient of the smoother σ and the Lagrange
multiplier φ can easily be eliminated from the system. This is accomplished by using a pair
of bases for the gradient of the smoother and the Lagrange multiplier space that satisfy a
biorthogonality property in the discrete setting. Another relevant formulation based on a
penalty term is analysed by Cheng et. al. in [8], and Johnson and Pitkäranta in [16] for a
biharmonic problem.

This new formulation allows us to work with H1-conforming finite element spaces and leads
to a constrained minimisation problem. Using a similar idea as described by Arnold and
Brezzi [3] we add a consistent stabilising term to get a stable formulation in the discrete
setting. This formulation is utilised for the biharmonic equation by Lamichhane [20]. A very
simple finite element method for the biharmonic problem is presented [20], where an optimal
error estimate is proved utilising the fact that the problem has a homogeneous Dirichlet
boundary condition. Since we do not have the homogeneous Dirichlet boundary condition
in the present situation we cannot get an optimal error estimate using the finite element
method proposed by Lamichhane [20]. Therefore, we enrich the finite element space for the
smoother with element-wise bubble functions to obtain an optimal error estimate [21]. The
error estimate is based on a property of a locally defined quasi-projection operator. We adapt
the ideas developed for the biharmonic equation and Reissner-Mindlin plate equations to
the thin plate spline. In particular, we combine the stabilisation [3,20] and a locally defined
quasi-projection operator [21] to obtain an efficient and optimal numerical scheme for the
thin plate spline in this paper. We can then prove an optimal a priori error estimate using
the lowest order finite element method. Utilising the stabilisation parameter to construct
a pre-conditioner, the pre-conditioned conjugate gradient method is an efficient solver for
the linear system arising from the finite element discretisation. Thus the stabilisation has
played a very significant role in the numerical analysis of the approach.

The rest of the paper is organised as follows. The next section deals with the discrete setting
of the problem, and the algebraic formulation of the discrete problem is presented in Section
3. We also construct the discrete Lagrange multiplier space and present a positive definite
formulation in this section. The error estimate is obtained in Section 4. We demonstrate
the performance of our approach in a few numerical tests in Section 5, and a conclusion is
drawn in the last section.

Now we mention two relevant papers in the discretisation of the thin plate spline. The first
one [23] does not use the stabilisation but enriches the discrete space for the gradient with

2



element-wise defined bubble functions. Since the bubble functions are used in a wrong way,
no a priori error estimate is available for this scheme. The second one [22] is based exactly
on the same formulation as in this paper but uses quadratic finite elements for the smoother.
However, the energy error is only shown to convergence linearly and hence not optimal [22].
In this contribution, we show the linear convergence of the energy error for the smoother
using the linear finite element space enriched with element-wise defined bubble functions,
and therefore the finite element scheme is optimal.

2. Discrete setting. Let Th be a globally quasi-uniform and shape regular triangula-
tion of the domain Ω having the mesh-size h consisting of triangles or tetrahedra. Let

Sh = {uh ∈ C0(Ω)|uh|T ∈ P(T ), T ∈ Th} (2.1)

be the standard linear finite element space, and

Bh =

{

bh| bh|T = (d+ 1)d+1
d+1
∏

i=1

φT
i , T ∈ Th

}

,

be the space of bubble functions, where P(T ) is the space of linear functions on T , and
{φT

i }
d+1
i=1 is the set of standard linear basis functions associated with the d+1 vertices of T .

Let Lh = Sh⊕Bh. We have enriched the standard finite element space Sh with element-wise
defined bubble functions to obtain the space Lh. This is done in order to obtain an optimal
error estimate of the discrete solution.

In Section 3 we construct another finite element space Mh ⊂ L2(Ω) that satisfies the follow-
ing two assumptions in Section 3.

Assumption 1. dimMh = dimSh.

Assumption 2. There is a constant C > 0 independent of the triangulation Th such that

‖φh‖L2(Ω) ≤ C sup
µh∈Mh\{0}

∫

Ω
µhφh dx

‖µh‖L2(Ω)
, φh ∈ Sh. (2.2)

The first assumption ensures that the system matrix is square, and the second assumption
ensures the stability of the system matrix.

Denoting the discrete counterpart of the continuous space V by Vh = Lh × [Sh]
d, a discrete

problem is to find

min
(uh,σh)∈Vh

(

1

N

N
∑

i=0

(uh(pi)− zi)
2 + α‖∇σh‖

2
L2(Ω)

)

(2.3)

subject to the constraint

〈σh,ψh〉L2(Ω) = 〈∇uh,ψh〉L2(Ω), ψh ∈ [Mh]
d.

The space [Mh]
d plays the role of a Lagrange multiplier space. This constrained minimisation

problem gives rise to a saddle point problem.

An alternative constraint

〈∇uh,∇vh〉L2(Ω) = 〈σh,∇vh〉L2(Ω), vh ∈ Sh,
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is used to obtain the finite element thin plate spline in [2, 25]. However, the finite element
thin plate spline presented in [2, 25] does not provide a consistent discretisation of the thin
plate spline (1.1) and hence it does not necessarily converge to the continuous solution of
the thin plate spline.

Denoting function values of u at the measurement points {pi}
N
i=0 by

Pu = (u(p0), u(p1), · · · , u(pN ))T ,

the minimisation problem (2.3) is equivalent to the saddle point problem: find (uh,σh,φh) ∈
Lh × [Sh]

d × [Mh]
d so that

Ã((uh,σh), (vh, τh)) + B(φh, (vh, τh)) = f(vh), (vh, τh) ∈ Lh × [Sh]
d,

B(ψh, (uh,σh)) = 0, ψh ∈ [Mh]
d,

(2.4)
where the bilinear forms Ã(·, ·) and B(·, ·) and the linear form f(·) are given by

Ã((uh,σh), (vh, τh)) =
1

N
(Puh)

TPvh + α

∫

Ω

∇σh : ∇τh dx,

B(ψh, (vh, τh)) =

∫

Ω

τh ·ψh dx−

∫

Ω

∇vh ·ψh dx, and

f(vh) =
1

N
(Pvh)

T z.

Here z is a column vector having ith entry as zi for i = 0, · · · , N , and ‖ · ‖ is the standard
Euclidean norm. We recall that ∇σh : ∇τh denotes the dot product of two matrices ∇σh

and ∇τh. The existence and uniqueness of the solution of the saddle point problem (2.4)
is analysed by using the theory presented in [7]. We are also interested in eliminating the
degree of freedom corresponding to σh and φh and arriving at a formulation only depending
on uh. Therefore, we defer the analysis until we obtain the reduced problem.

We note that the saddle point problem (2.4) is not stable since the discretisation is similar
to P1 − P1 discretisation of Darcy or Stokes problem as explained in [14, 17] for example.
If we choose Mh = Sh, then there exists a vh ∈ Sh with ‖∇vh‖L2(Ω) > 0 but σh = 0. A
similar problem occurs when discretizing the Reissner-Mindlin plate equations, see [3].

The existence and uniqueness of the solution of the saddle point problem (2.4) is performed
by using the theory presented in [3, 7]. To obtain stability we need that the bilinear form
Ã(·, ·) is positive definite on the space KerBh defined as

KerBh :=

{

(vh, τ h) ∈ Vh :

∫

Ω

(τ h −∇vh) ·ψh dx = 0, ψh ∈ [Mh]
d

}

. (2.5)

For Sh as defined by (2.1) and Mh satisfying Assumptions 1–2, Ã(·, ·) is not positive definite
on KerBh. We now modify the bilinear form Ã(·, ·) consistently by adding a stabilisation
term so that the bilinear form Ã(·, ·) is positive definite on KerBh.

The modification of the bilinear form Ã(·, ·) is done as suggested by Arnold and Brezzi
[3] for the Mindlin–Reissner plate so that our discrete saddle point problem is to find
((uh,σh),φh) ∈ Vh × [Mh]

d such that

A((uh,σh), (vh, τh)) + B(φh, (vh, τh)) = f(vh), (vh, τh) ∈ Vh,
B(ψh, (uh,σh)) = 0, ψh ∈ [Mh]

d,
(2.6)
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where the bilinear form A(·, ·) is defined as

A((uh,σh), (vh, τh)) =
1

N
(Puh)

TPvh + α

∫

Ω

∇σh : ∇τh dx+ r

∫

Ω

(σh −∇uh) · (τh −∇vh) dx

with r > 0 being a parameter. Since the stabilisation term is consistent, the parameter
r > 0 can be arbitrary in principle. By choosing an appropriate parameter, the stabilisation
can, in addition, accelerate the solver as in an augmented Lagrangian formulation [4]. We
have utilised this in our numerical experiments to construct a pre-conditioner in Section 5.

3. Algebraic formulation and construction of Mh. Here our interest is to elim-
inate the degree of freedom corresponding to σh and φh and arrive at a formulation only
depending on uh. This will dramatically reduce the size of the system matrix, and which
after elimination of these variables will be positive definite. It is well-known that efficient
numerical techniques can be applied to solve a positive definite system.

We now turn our attention to the algebraic formulation of the problem. In the following,
we use the same notation uh, σh and φh for the vector representation of the solutions
and the solutions as elements in Lh, [Sh]

d and [Mh]
d. Let R, A, B, W, K, D and M be the

matrices associated with the bilinear forms 1
N
(Puh)

TPvh,
∫

Ω
∇σh : ∇τh dx,

∫

Ω
∇uh ·ψh dx,

∫

Ω
∇uh · τh dx,

∫

Ω
∇uh · ∇vh dx,

∫

Ω
σh ·ψh dx and

∫

Ω
σh · τh dx, respectively. The matrix

D associated with the bilinear form
∫

Ω
σh · ψh dx is often called a Gram matrix. In case of

the saddle point formulation, uh, σh and φh are three independent unknowns. Letting the
test functions τh and vh to be zero subsequently in the first equation of (2.6), we have

1
N
(Puh)

TPvh −
∫

Ω
∇vh · φh dx− r

∫

Ω
(σh −∇uh) · ∇vh dx = f(vh), vh ∈ Lh,

α
∫

Ω
∇σh : ∇τh dx+

∫

Ω
φh · τh dx+ r

∫

Ω
(σh −∇uh) · τh dx = 0, τh ∈ [Sh]

d.

Then the saddle point problem (2.6) can be written as the linear system





R+ rK −rWT −BT

−rW αA+ rM D
T

−B D 0









uh

σh

φh



 =





fh
0
0



 , (3.1)

where fh is the vector form of discretisation of the linear form f(·). Our goal here is
to develop a numerical scheme where the matrix D to be diagonal. This will allow us to
statically condense out the degree of freedom associated with σh and φh.

Let {ϕ1, · · · , ϕn} be the standard nodal finite element basis of Sh. We define a space
Mh spanned by the basis {µ1, · · · , µn}, where the basis functions of Sh and Mh satisfy a
condition of biorthogonality relation

∫

Ω

µi ϕj dx = cjδij , cj 6= 0, 1 ≤ i, j ≤ n, (3.2)

where n := dimMh = dimSh, δij is the Kronecker symbol, and cj a positive scaling factor.
This scaling factor cj is chosen to be proportional to the area | suppϕj |. In the following, we
give these basis functions for linear simplicial finite elements in two and three dimensions.
For the reference triangle T̂ := {(x, y) : 0 < x, 0 < y, x+ y < 1}, we have

µ̂1 := 3− 4x− 4y, µ̂2 := 4x− 1, and µ̂3 := 4y − 1,
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where the basis functions µ̂1, µ̂2 and µ̂3 are associated with three vertices (0, 0), (1, 0) and
(0, 1) of the reference triangle. For the reference tetrahedron T̂ := {(x, y, z) : 0 < x, 0 <
y, 0 < z, x+ y + z < 1}, we have

µ̂1 := 4− 5x− 5y − 5z, µ̂2 := 5x− 1, and µ̂3 := 5y − 1, µ̂4 := 5z − 1,

where the basis functions µ̂1, µ̂2, µ̂3 and µ̂4 associated with four vertices (0, 0, 0), (1, 0, 0),
(0, 1, 0) and (0, 0, 1) of the reference tetrahedron. The global basis functions for the test
space are constructed by glueing the local basis functions together and thus the assembling
process is exactly the same as in the standard finite element method. A similar saddle
point formulation is obtained for the biharmonic equation [20] using a biorthogonal system.
However, due to the homogeneous Dirichlet boundary condition for the gradient in [20],
the discrete Lagrange multiplier space Mh should be modified in the neighborhood of the
boundary of Ω. We do not need to modify the Lagrange multiplier space here as the gradient
does not have a Dirichlet boundary condition here. These biorthogonal basis functions
are introduced for the first time to impose the weak matching condition for mortar finite
elements [18, 19,29].

These global basis functions then satisfy the condition of biorthogonality (3.2) with global
finite element basis functions. They also satisfy Assumption 2 as in [19, 20]. As these
functions in Mh are defined exactly in the same way as the finite element basis functions in
Sh, they satisfy suppµi = suppϕi for i = 1, · · · , n.

3.1. Positive definite formulation. In order to obtain the positive definite formu-
lation, we introduce a quasi-projection operator: Qh : L2(Ω) → Sh, which is defined as

∫

Ω

Qhv µh dx =

∫

Ω

vµh dx, v ∈ L2(Ω), µh ∈ Mh. (3.3)

This type of operator is introduced by Scott and Zhang in [26] to obtain the finite element
interpolation of non-smooth functions satisfying boundary conditions, and is used in [18,
19, 29] in the context of mortar finite elements. The definition of Qh allows us to write the
weak gradient as

σh = Qh(∇uh),

where the operator Qh is applied to a vector component-wise. We see that Qh is well-defined
due to Assumptions 1 and 2. Furthermore, Qh is identity if restricted to Sh. Hence, Qh is
a projection onto the space Sh. We note that Qh is not the orthogonal projection onto Sh

but an oblique projection onto it. We refer to [13,27] for more details on oblique projectors.

The biorthogonality relation between the basis functions of Sh and Mh (3.2) allows us to
write the action of operator Qh on a function v ∈ L2(Ω) as

Qhv =

n
∑

i=1

∫

Ω
µi v dx

ci
ϕi, (3.4)

and consequently the operator Qh is local in the sense to be given below, see also [1]. Let
S(T ′) be the patch of an element T ′ ∈ Th which is the interior of the closed set

S̄(T ′) =
⋃

{T ∈ Th : ∂T ∩ ∂T ′ 6= ∅}. (3.5)
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Then Qh is local in the sense that for any v ∈ L2(Ω), the value of Qhv at any point in
T ∈ Th only depends on the values of v in S(T ) [1].

In the following, we will use a generic constant C, which will take different values at different
places but will always be independent of the mesh-size h. We list some main properties of
the quasi-projection operator Qh in the following lemma.

Lemma 3.1. Let Qh : L2(Ω) → Sh be defined as in (3.3). We have the following properties
of Qh.

1. Stability in L2-norm: Under Assumption 2, if v ∈ L2(Ω),

‖Qhv‖L2(Ω) ≤ C‖v‖L2(Ω). (3.6)

2. Stability in H1-norm: Under Assumption 2, if v ∈ H1(Ω),

|Qhv|H1(Ω) ≤ C|v|H1(Ω). (3.7)

3. Approximation property: If v ∈ Hs+1(Ω) and 0 < s ≤ 1,

‖v −Qhv‖L2(Ω) ≤ Ch1+s|v|Hs+1(Ω)

‖v −Qhv‖H1(Ω) ≤ Chs|v|Hs+1(Ω).
(3.8)

We refer to [18,19] for a proof of this lemma, where Qh is introduced as the mortar projection
operator.

Using the definition of the operator Qh, we can eliminate the degrees of freedom correspond-
ing to σh so that our problem is to find uh ∈ Lh such that

J(uh) = min
vh∈Lh

J(vh), (3.9)

where the functional J(uh) defined by

J(uh) =
1

N
‖Puh‖

2 + α‖∇(Qh∇uh)‖
2
L2(Ω) + r‖Qh∇uh −∇uh‖

2
L2(Ω) − 2 (Puh)

T z (3.10)

over the space Lh. The algebraic formulation of this minimisation problem is obtained by
statically condensing out variables σh and φh (block elimination) from (3.1)

(

(R+ rK)− r(WT D−1
B+ B

T
D
−1

W) + B
T
D
−1(αA+ rM)D−1

B

)

uh = fh. (3.11)

This algebraic formulation can also be written as
(

(R+ αBT D−1
AD

−1
B) + r

[

(K+ B
T
D
−1

MD
−1

B

)

− (WT D−1
B+ B

T
D
−1

W)
]

uh = fh.

We note that the matrix B
T
D
−1

AD
−1

B is associated with the bilinear form
∫

Ω

∇(Qh∇uh) : ∇(Qh∇uh) dx,

and hence corresponds to the fourth order derivative, whose condition number grows like
O(h−4). The matrix K+ B

T
D
−1

MD
−1

B is associated with the bilinear form
∫

Ω

(∇uh · ∇vh +Qh∇uh ·Qh∇vh) dx,

and hence corresponds to the second order derivative, whose condition number grows like
O(h−2). Hence if we choose r large enough relative to α, the condition number growth will
be dominated by O(h−2).
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4. Analysis and a priori error estimate. In the previous section, we have shown
how the degree of freedom for the gradient and Lagrange multipliers can be eliminated from
the linear system (3.1). Now we want to analyse the resulting positive definite formulation.
Let the bilinear form a(·, ·) be defined as

a(uh, vh) =
1

N
(Puh)

TPvh + α

∫

Ω

∇σh : ∇τh dx+ r

∫

Ω

(σh −∇uh) · (τh −∇vh) dx

with σh = Qh∇uh and τh = Qh∇vh. Since the bilinear form a(·, ·) is symmetric, the
minimisation problem (3.9) is equivalent to the variational problem of finding uh ∈ Lh such
that [5, 9]

a(uh, vh) = f(vh), vh ∈ Lh. (4.1)

We now show that the bilinear form a(·, ·) is positive definite on the space Lh. Although
the proof is very similar to the one given in [22], we present the proof here for completion.

Theorem 4.1. Let α > 0 and G ⊂ Ω̄ have at least three non-collinear points for d = 2 and
and four non-coplanar points for d = 3. Let r > 0 as well. Then the bilinear form a(·, ·) is
positive definite on space Lh.

Proof. We want to show that a(vh, vh) = 0 implies vh = 0. We have a(vh, vh) =
1
N
‖Pvh‖

2+
α‖∇τh‖

2
L2(Ω)+ r‖τh−∇vh‖L2(Ω) with τh = Qh∇vh. Let a(vh, vh) = 0. Then, ‖Pvh‖

2 = 0,

‖∇τh‖
2
L2(Ω) = 0 and ‖τh − ∇vh‖L2(Ω) = 0 separately as they are all positive. Since τh is

continuous, ‖∇τh‖L2(Ω) = 0 if and only if τh is a constant vector function in Ω. Similarly,
‖τh −∇vh‖L2(Ω) = 0 implies that ∇vh is also constant in Ω, and thus vh is a global linear
function in Ω. On the other hand, ‖Pvh‖ = 0 implies that vh is zero on G ⊂ Ω̄, which
contains at least three non-collinear points for d = 2 or four non-coplanar points for d = 3.
Hence vh is a global linear function which is zero at three non-collinear points for d = 2 or
four non-coplanar points for d = 3, and therefore, identically vanishes in Ω.

Now we define the standard energy norm for the bilinear form a(·, ·) for uh ∈ Lh as a-norm
‖uh‖

2
a = 1

N
‖Puh‖

2+α‖∇Qh∇uh‖
2
L2(Ω)+r‖Qh∇uh−∇uh‖

2
L2(Ω). Furthermore, the following

corollary holds.

Corollary 4.2. Under the assumptions of Theorem 4.1, the variational problem (4.1)
admits a unique solution which depends continuously on the data.

Proof. Let uh, vh ∈ Lh. It then follows that |a(uh, vh)| ≤ ‖uh‖a‖vh‖a and |f(vh)| ≤ C‖vh‖a.
Since a(·, ·) is positive definite with respect to the norm ‖ · ‖a, our variational problem (4.1)
has a unique solution by Lax-Milgram Lemma [6, 9]. Moreover, the solution uh satisfies,
‖uh‖

2
a = f(uh).

Remark 4.3. Using the unique solution uh of the variational problem (4.1), we have a
unique solution (uh,σh) of (2.6) with σh = Qh∇uh.

The error estimate is obtained in the energy norm ‖ · ‖A induced by the bilinear form A(·, ·)
defined as

‖(u,σ)‖A :=

√

1

N
‖Pu‖2 + α|σ|2

H1(Ω) + r‖σ −∇u‖2
L2(Ω), (u,σ) ∈ Ṽ × [H1(Ω)]d, (4.2)

where Ṽ = C0(Ω) ∩H1(Ω).
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Remark 4.4. We note that the exact Lagrange multiplier φ satisfies the variational equation

∫

Ω

φ · τ dx+ α

∫

Ω

∇σ : ∇τ dx = 0, τ ∈ [H1(Ω)]d. (4.3)

This is obtained by putting vh = 0 in the first equation of the saddle point problem (2.6)
and replacing φh, τh and σh by φ, τ and σ, respectively.

The following theorem is the starting point for the a priori error estimate. A similar theorem
is proved in [9, 20] in the context of the biharmonic equation. We provide a simple proof of
this theorem for completeness.

Theorem 4.5. Let u be the solution of problem (1.1) satisfying u ∈ H4(Ω), σ = ∇u, φ
defined by (4.3) and uh the solution of problem (4.1), and σh = Qh∇uh. Then there exists
a constant C > 0 independent of the mesh-size h so that

‖(u− uh,σ − σh)‖A ≤ C

(

inf
(wh,θh)∈KerBh

‖(u− wh,σ − θh)‖A + h|φ|H1(Ω)

)

.

Proof. Here u, σ and φ satisfy [7]

A((u,σ), (v, τ )) + B(φ, (v, τ )) = f(v), (v, τ ) ∈ V,
B(ψ, (u,σ)) = 0, ψ ∈ [L2(Ω)]d.

Let (wh,θh) ∈ KerBh so that (uh − wh,σh − θh) ∈ KerBh, and hence

‖(uh − wh,σh − θh)‖A ≤ sup
(vh,τ h)∈KerBh

A((uh − wh,σh − θh), (vh, τh))

‖(vh, τh)‖A
. (4.4)

Since A((u− uh,σ − σh), (vh, τh)) +B(φ, (vh, τh)) = 0 for all (vh, τh) ∈ KerBh, we have

A((uh − wh,σh − θh), (vh, τh))

= A((u− wh,σ − θh), (vh, τh)) +A((uh − u,σh − σ), (vh, τh))

= A((u− wh,σ − θh), (vh, τh)) +B(φ, (vh, τh)). (4.5)

The continuity of A(·, ·) yields

|A((u− wh,σ − θh), (vh, τh)| ≤ ‖(u− wh,σ − θh)‖A‖(vh, τh)‖A. (4.6)

Denoting the orthogonal projection of φ onto [Mh]
d with respect to L2-inner product by

φ̃h, we have

B(φ, (vh, τh)) =

∫

Ω

(τh −∇vh) · (φ− φ̃h) dx ≤ Ch‖τh −∇vh‖L2(Ω)|φ|H1(Ω). (4.7)

The result then follows by combining (4.4), (4.5), (4.6) and (4.7). We note that the constant
C depends on r.

Remark 4.6. From (4.3) we can infer that if we want φ ∈ [H1(Ω)]d, we need to guarantee
that σ ∈ [H3(Ω)]d. Thus we need u ∈ H4(Ω).
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We now prove an optimal convergence rate in the energy norm ‖ · ‖A for our finite element
method. In order to prove an a priori error estimate, we need to show the existence of a
bounded linear projector Rh : H1(Ω) → Lh satisfying

∫

Ω

∇Rhv ·ψh dx =

∫

Ω

∇v ·ψh dx, ψh ∈ [Mh]
d.

A projector satisfying this condition Rh : H1
0 (Ω) → Lh is shown in [21]. We note that this

projector can be extended to H1(Ω).

Lemma 4.7. There exists a bounded linear projector Rh : H1(Ω) → Lh such that

∫

Ω

∇Rhv ·ψh dx =

∫

Ω

∇v ·ψh dx, ψh ∈ [Mh]
d.

Theorem 4.8. Under the assumptions of Theorem 4.5, there exists (vh, τh) ∈ KerBh such
that

‖(u− vh,σ − τh)‖A ≤ Ch

√

(

1

N
+ r

)

‖u‖2
H2(Ω) + α‖u‖2

H3(Ω) (4.8)

Proof. Let vh = Rhu ∈ Lh, and τh = Qh∇vh. Then it is well-known that

‖u− vh‖Hk(Ω) ≤ Ch2−k|u|H2(Ω), k = 0, 1. (4.9)

Moreover,

‖P (u− vh)‖
2 ≤ Ch2|u|2H2(Ω). (4.10)

Let us recall the definition of the error in the energy norm

‖(u− vh,σ − τh)‖A =

√

1

N
‖P (u− vh)‖2 + α|σ − τh|2H1(Ω) + r‖σ − τh −∇u+∇vh‖2L2(Ω).

It is now sufficient to show that

‖σ − τh‖H1(Ω) ≤ Ch‖u‖H3(Ω).

We first prove

τh = Qhσ.

Using Assumption 2 there exists ψh ∈ [Mh]
d such that

‖Qhσ − τh‖L2(Ω) ≤ C

∫

Ω
(Qhσ − τh) ·ψh dx

‖ψh‖L2(Ω)
= C

∫

Ω
(∇u−∇Rhu) ·ψh dx

‖ψh‖L2(Ω)
= 0,

where we have used the definition of the projector Rh from Lemma 4.7. Hence using Lemma
3.1 we get

‖σ − τh‖H1(Ω) = ‖σ −Qhσ‖H1(Ω) ≤ Ch‖u‖H3(Ω).
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Remark 4.9. We could not predict the exact dependency of the constant C on r. From
Theorem 4.1 we can infer that C blows up if r → 0.

Using the results of Theorems 4.5 and 4.8, we get the following approximation result for the
discrete solution.

Corollary 4.10. Let u be the solution of continuous problem (1.1) with u ∈ H4(Ω),
σ = ∇u, φ defined by (4.3), and uh be that of discrete problem (4.1) with σh = Qh∇uh.
Then there exists a constant C > 0 independent of the mesh-size h so that

‖(u− uh,σ − σh)‖A ≤ Ch

√

(

1

N
+ r

)

‖u‖2
H2(Ω) + α‖u‖2

H3(Ω) + |φ|2
H1(Ω).

Remark 4.11 (Error in the Lagrange multiplier). Let φh be the Lagrange multiplier solution
of the saddle point system (2.6) and ψh ∈ [Mh]

d. In order to obtain the error estimate for
the Lagrange multiplier we start with the following inf-sup estimate:

‖φh −ψh‖L2(Ω) ≤ C sup
(vh,τ h)∈Vh

B((φh −ψh), (vh, τh))

‖(vh, τh)‖A

≤ C sup
(vh,τ h)∈Vh

B((φh − φ), (vh, τh)) +B((φ−ψh), (vh, τh))

‖(vh, τh)‖A

≤ C

[

sup
(vh,τ h)∈Vh

B((φh − φ), (vh, τh))

‖(vh, τh)‖A
+ ‖φ−ψh‖L2(Ω)

]

,

where C is a positive constant independent of the mesh-size [21]. From the first equation of
the saddle point problem (2.6) we have

B((φh − φ), (vh, τh)) = A((u− uh), (σ − σh), (vh, τh)).

Since A(·, ·) is continuous we have the estimate

‖φh −ψh‖L2(Ω) ≤ C
(

‖(u− uh), (σ − σh)‖A + ‖φ−ψh‖L2(Ω)

)

.

Now we combine the above estimate with the triangle inequality

‖φ− φh‖L2(Ω) ≤ ‖φ−ψh‖L2(Ω) + ‖ψh − φh‖L2(Ω)

to write

‖φ− φh‖L2(Ω) ≤ C
(

‖(u− uh), (σ − σh)‖A + ‖φ−ψh‖L2(Ω)

)

.

Hence an optimal error estimate for the Lagrange multiplier solution follows from Corollary
4.10 and Lemma 3.1 by choosing ψh = Qhφ.

5. Numerical examples. To better understand, and verify, the theoretical results
presented in the previous sections the method was implemented in a C++ code developed
by Stals.

In all of the examples the domain is the unit square and the finite element grid is a uniform
grid. This approach was taken for ease of implementation, the theory does not require the
use of a uniform finite element grid.
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5.1. Projection of data points. Recall that the data matrix R is defined as R =
PTP . So Rij = 1

N

∑

a PaiPaj , where ni and nj are two nodes in the finite element grid
and pa are measurement points. Consider wi and wj that are two basis functions of Lh

with non-zero support on ni and nj . Then Rij = R(wi, wj) is evaluated element wise with
R(wi, wj) =

∑

T∈Th
RT (wi, wj) and RT (wi, wj) = 1

N

∑

pa(T ) wi(pa(T ))wj(pa(T )). The

term pa(T ) represents all of the measurement points that sit in the element T . Similarly
fi = f(wi) =

∑

T∈Th
fT (wi) where fT (wi) =

1
N

∑

pa(T ) zawi(pa(T )). That is, fT (wi) is a
weighted average of the data values that sit in the element T .

The most expensive, and difficult, part when evaluating R or f is finding all of the data
points that sit in a given element. Before reading the data measurements from a file the
code divides the domain into a collection of boxes (or cubes). When reading the data the
code then uses the data location to assign each point to a particular box. The data points
are stored in and accessed through the collection of boxes. That way, to find all of the data
points that sit in a given element the code only needs to search through the boxes that
overlap with that element. Once it has been determined that a given data point sits in a
particular element a flag is set to say an element has been found for that data point. This
avoids the problem that may occur if a point sits, say, on a vertex. Each data point can
only be assigned to one element.
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Fig. 5.1: Surface plot of finite element approximation of the exponential data set using a
finite element grid with 1089 vertices and α = 10−10. The figure on the left shows the spline
when r = 1 and the figure on the right shows the spline when r = 10−5.
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Fig. 5.2: Surface plot of finite element approximation of the exponential data set using a
finite element grid with 4225 vertices and α = 10−10. The figure on the left shows the spline
when r = 1 and the figure on the right shows the spline when r = 10−5.
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5.2. Role of the stabilisation term. The stabilisation term
∫

Ω
(σh − ∇uh) · (τh −

∇vh) dx introduced in Section 2 acts like an additional smoothing term for a given finite
element grid size h. For example, Figure 5.1 shows the result of fitting a spline to a data set
using two different values of r. Clearly the result for the larger value of r is much smoother.
The data set contains 641601 data points uniformly distributed over the domain 0.1 ≤ x, y ≤

0.9. The value of each data point is given by the function û = e−50((0.5−x)2+(0.5−y)2). The
theory in Section 4 suggests that the influence of the stabilisation term will be reduced as
h is reduced and that behaviour is seen in the results shown in Figure 5.2. Nevertheless,
in practical applications we would like to use the smallest mesh possible that captures the
behaviour of interest, which would suggest that it is appropriate to choose small values of
r. On the other hand, it is argued in Section 2 that the stabilisation term is required to
obtain a consistent system, so r cannot be made arbitrarily small. Furthermore, we show in
Section 5.5 that the matrix in equation (3.11) is better conditioned when r > α. For this
reason we set r = 104α.

5.3. Initial guess. The solution of (3.11) is problematic when either α is large or the
domain only contains a small number of data points. The case of large α is considered in
Section 5.5, here we talk about the case of a small number of data points. If the finite
element grid is large but the domain only contains a small number of data points, R ≈ 0 and
the matrix in (3.11) is approximated by rK − r(WT D−1

B + B
T
D
−1

W) + B
T
D
−1(αA + rM)D−1

B

which is a positive-semidefinite matrix. The situation is made more difficult if the data
points sit on some polynomial of degree 1, as that means we are looking for a solution that
sits in the null space of the positive-semidefinite matrix. To avoid such situations we firstly
use the least square method to fit the linear polynomial p1(x) = c0+cTx to the original data
points. We then use this polynomial to find an initial guess to uh and solve the resulting
residual equation using the techniques described in Section 5.5. Note that as p1 is a linear
polynomial it can be represented exactly in Lh.

5.4. Test Problems. In this paper we focus on three different test problems. In all

cases the value of each data point is given by the function û = e−30((0.65−x)2+(0.65−y)2) +

e−30((0.35−x)2+(0.35−y)2) and the data points are uniformly distributed over the domain 0.1 ≤
x, y ≤ 0.9. That is, we construct a square mesh with 0.1 ≤ x, y ≤ 0.9 and spacing 1/m. The
difference between the three test problems is the number of data points. In Test Problem 1
there are 641601 (m = 1000) data points, in Test Problem 2 there are 9801 (m = 100) data
points and in Test Problem 3 there are only 81 (m = 10) data points.

In Test Problem 1, the size of the finite element grid is considerably smaller than that of
the data set. So the process of projecting the data onto the finite element grid will act like
a smoother. In Test Problem 3, there are regions of the domain that do not contain any
data points. We need to ensure that our technique can fill in regions with missing data. In
Test Problem 2, the situation changes between that considered in Test Problem 1 and that
considered in Test Problem 3 depending on the grid size h.

5.5. Preconditioned conjugate gradient. The definitions given in Section 3 show
that the matrix in (3.11) is symmetric, while the theory in Section 4 shows that it is positive
definite (if the domain contains at least three non-collinear points for d = 2 and and four
non-coplanar points for d = 3). Hence we use the preconditioned conjugate gradient (PCG)
method to solve Equation (3.11).
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Table 5.1
The number of PCG iterations required to solve Test Problem 1. The grid size is h = 2−n. The top

row listed for a given n shows the number of outer iterations required to solve equation (3.11). The middle

row shows the average number of iterations required to apply the pre-conditioner M1. The bottom row shows

the average number of iterations required to apply the pre-conditioner M2.

α
n 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

2
14 14 14 14 14 13 10 6 4 3 2
2.9 2.8 2.9 2.9 3.6 5.0 8.0 12.8 16.3 20.3 19.5
1.7 1.8 1.8 2.9 3.9 7.0 6.5 3.8 2.2 1.9 1.0

3
27 27 27 27 26 21 17 12 8 4 3
2.6 2.8 3.0 3.0 3.6 5.0 7.0 10.0 15.0 20.8 25.7
1.7 1.7 1.8 2.6 3.8 18.4 13.4 7.3 5.6 3.8 2.5

4
52 52 51 51 47 35 26 19 12 9 4
2.8 2.7 3.0 3.0 3.8 5.0 7.0 9.8 12.8 20.1 25.3
1.7 1.7 2.0 2.5 3.8 5.4 28.0 16.0 11.2 7.5 4.9

5
97 86 85 82 64 51 38 26 18 12 6
2.8 2.8 3.0 3.0 3.7 4.7 6.6 8.7 11.4 16.8 23.7
1.7 1.7 2.0 2.6 3.8 5.4 57.7 32.6 22.8 17.5 14.0

6
155 140 139 133 104 81 63 39 29 14 6
2.4 2.5 2.8 2.7 3.3 4.2 6.1 8.0 9.3 13.9 20.5
1.7 1.7 2.0 2.9 4.0 5.5 121.9 68.6 49.7 39.4 30.1

7
317 269 287 242 192 150 116 73 54 32 9
2.4 2.4 2.8 2.8 3.0 4.0 5.8 7.2 8.0 10.4 14.9
1.7 1.6 1.9 2.8 3.9 5.7 13.0 143.7 103.6 81.4 67.4

8
617 794 498 474 373 296 225 144 107 66 20
2.1 2.4 2.6 2.9 2.8 3.5 5.3 6.9 7.5 8.7 12.8
1.6 1.7 1.8 2.6 3.6 5.5 13.1 296 218 172.2 138.4

If the finite element grid is well conditioned we expect the R matrix to be well conditioned.
Hence for small values of α and r the matrix in (3.11) should be well conditioned. If α is
large and r is small, the matrix in (3.11) is approximated by αBT D−1

AD
−1

B. This matrix
behaves like the biharmonic operator and is thus expected to have a condition number that
grows O(h−4). The convergence rate in our numerical experiments reflect such a growth
in the condition number. If r is large and α is small, the matrix in (3.11) is approximated
by r(K − (WT D−1

B + B
T
D
−1

W) + B
T
D
−1

MD
−1

B). The various components in this matrix are
similar to the Laplace operator, so it is expected to have a condition number that grows
O(h−2). Once again, our numerical experiments show such a growth in the condition number.
Hence we choose r > α so that the better conditioned Laplace like operators dominate the
biharmonic like operator. We currently use r = 104α. Our numerical experiments have
shown that choice to work well for a wide range of data distributions and grid sizes.

When comparing Table 5.3 with Table 5.2 and Table 5.1 we see that the number of iterations
for smaller values of α is relatively large, especially for smaller values of h. This is because
in Test Problem 3 there are a small number of data points so R ≈ 0 when the finite element
grid is large. Such situation could be handled by the use of an adaptive finite element grid.
The regions between the data points will be smooth and are thus well represented by a
coarse grid. We are interested in further exploring the use of adaptive finite element grids
for these types of applications.

14



Table 5.2
The number of PCG iterations required to solve Test Problem 2. The grid size is h = 2−n. The top

row listed for a given n shows the number of outer iterations required to solve equation (3.11). The middle

row shows the average number of iterations required to apply the pre-conditioner M1. The bottom row shows

the average number of iterations required to apply the pre-conditioner M2.

α
n 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

2
14 14 14 14 13 12 8 5 4 2 2
2.9 2.9 3.0 3.0 3.7 5.0 8.0 10.2 14.8 17.0 16.5
1.7 1.7 1.9 2.7 3.8 7.0 5.8 3.0 2.0 1.5 1

3
27 27 27 27 25 18 12 6 4 2 2
2.7 2.8 3.0 3.0 3.8 5.0 7.5 10.5 14.0 18.0 19.0
1.7 1.7 2.0 2.6 3.8 18.1 12.2 5.0 3.0 2.0 1.4

4
50 50 50 49 41 27 15 7 4 3 2
2.7 2.7 3.0 3.0 4.0 5.0 7.3 9.3 12.0 18.3 22.0
1.6 1.7 2.1 2.5 3.8 5.4 24.8 9.5 4.0 2.2 2.0

5
84 84 84 78 56 36 18 9 4 3 2
2.6 2.5 3.0 3.0 3.9 5.0 7.2 8.8 11.0 16.3 28.0
1.7 1.8 2.1 2.6 3.9 5.5 51.5 18.8 7.0 3.2 2.0

6
153 139 138 128 89 53 25 12 6 4 3
2.5 2.5 2.9 2.8 3.8 4.8 6.8 8.3 9.8 16.3 39.0
1.7 1.7 2.1 3.1 4.0 5.9 108.6 38.9 14.1 6.2 3.4

7
272 239 235 223 158 91 45 22 11 8 4
2.1 2.6 2.8 2.9 3.4 4.7 6.8 8.1 9.5 17.0 47.3
1.7 1.7 2.1 3.0 4.0 6.0 14.2 78.5 28.0 11.5 6.8

8
610 570 557 450 309 177 90 43 21 15 8
2.4 26 2.7 2.9 3.1 4.4 6.5 7.9 9.2 15.7 42.5
1.7 1.7 1.9 2.8 3.9 6.3 15.0 160.4 58.3 26.8 15.0

As a pre-conditioner for the conjugate gradient method we use M1 := R+ rK. This matrix is
symmetric and positive definite (SPD), and considerably cheaper to apply than the matrix
given in (3.11). The results in tables 5.1, 5.2 and 5.3 show that this is an effective pre-
conditioner. Note that for practical applications, the larger values of α given in tables 5.1,
5.2 and 5.3 are probably too large as the fitted spline is very smooth. We did however want
to check that the solver is robust for a wide choice of α.

The test problems used to find the iteration counts shown in tables 5.1, 5.2 and 5.3 are
the same as those listed in Section 5.4. The, outer, PCG iterations were applied until the
l2-norm of the residual was less than 10−7. The initial guess was found using the technique
described in Section 5.3.

For large values of r the condition number of M1 grows O(h−2), so when using the PCG
method to solve systems involving M1 we use an additional pre-conditioner. Namely M2 :=
diag(R) + rK. This matrix is once again SPD and while it still has condition number similar
to that of M1 its simpler structure allows us to use a trick to help speed up the solution
process. Let us assume that the entries in the vector uh are ordered such that those entries
corresponding to the nodes that sit on the vertices of the grid are listed first. The remaining
entries correspond to the nodes that sit in the centre of the triangles or tetrahedrons. This
means that the degrees of freedom corresponding to the standard finite element space Sh are
listed before those corresponding to the space of bubble functions Bh. If the ith entry of uh
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Table 5.3
The number of PCG iterations required to solve Test Problem 3. The grid size is h = 2−n. The top

row listed for a given n shows the number of outer iterations required to solve equation (3.11). The middle

row shows the average number of iterations required to apply the pre-conditioner M1. The bottom row shows

the average number of iterations required to apply the pre-conditioner M2.

α
n 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

2
14 14 14 13 13 12 9 6 5 4 3
2.8 2.8 2.9 3.0 3.6 5.0 7.9 12.3 17.6 20.3 20.3
1.7 1.7 1.7 2.7 3.9 7.0 6.4 3.2 2.0 1.8 1.0

3
27 27 27 27 26 20 15 11 9 6 5
2.7 2.9 3.0 3.0 3.8 5.0 7.9 14.0 27.2 46.7 69.6
1.7 1.7 1.8 2.7 3.8 18.3 12.9 6.7 4.0 2.9 1.9

4
59 51 51 50 44 31 24 20 14 10 5
2.8 3.0 3.0 3.0 4.0 5.0 8.0 14.5 27.6 39.2 45.4
1.7 1.7 2.0 2.6 3.8 5.3 26.3 12.9 8.2 6.3 5.3

5
87 86 86 82 63 48 36 30 21 14 4
2.9 2.9 3.0 3.0 3.9 5.0 8.0 14.4 28.1 42.9 53.8
1.7 1.7 2.0 2.9 3.8 5.5 51.5 27.4 20.4 16.9 13.6

6
160 143 142 135 102 73 59 43 33 22 6
2.7 2.9 3.0 3.0 3.9 5.0 7.9 13.4 24.6 38.1 53.2
1.7 1.7 2.1 3.0 3.9 5.6 102.8 55.2 40.8 32.9 24.1

7
317 247 255 244 184 136 108 78 61 39 11
2.5 2.8 2.9 3.0 3.7 5.0 7.5 13.0 24.0 37.6 61.7
1.7 1.7 2.1 2.9 3.9 5.6 12.5 112.2 80.2 64.3 48.9

8
559 509 502 474 358 269 210 154 120 79 23
2.0 2.5 2.9 3.0 3.5 5.0 7.2 12.7 23.7 39.1 72.3
1.6 1.7 2.0 2.9 3.8 5.6 12.4 216.1 158.2 126.9 93.7

corresponds to a node sitting in the centre of an element, then the i, j entry of K is zero unless
i = j. So M2 can be written as a block diagonal matrix where the first block is A1 := E1+rL1
and the second block is A2 := E2 + rL2. E1 and E2 are both submatrices of diag(R). L1 is
the Laplace matrix defined in terms of the standard finite element basis functions. And due
to the structure of K, L2 is also a diagonal matrix. As A2 is a diagonal matrix its inverse
can be easily found. When using the PCG method to solve systems involving A1 we use
another, final, pre-conditioner M3. If r is small, where r is considered to be small if r < h,
M3 = diag(A1). If r > h then we use several iterations of the multigrid method to find an
approximation to L1.

The results in tables 5.1, 5.2 and 5.3 suggest that M2 works well as a pre-conditioner for
larger values of r. However we can see, especially in Table 5.3, that M2 is not so effective for
smaller values of r. The conditioning clearly depends on the data distribution.

The Monte Carlo method tell us that if points are sampled from a distribution with prob-
ability distribution p(x) then 1

N

∑N
i=0 g(xi) ≈

∫

Ω
g(x)p(x)dx for a function g(x). Hence, if

we have enough data points, RT (wi, wj) ≈
NT

N

∫

T
wi(x)wj(x)p(x)dx. We take NT to be the

number of data points in element T . Therefore, if we have uniformly distributed data, where
p(x) = 1, we would expect to see convergence results similar to those given above. Different
data distributions will result in different conditionings of the R matrix. If the distribution
results in poor conditioning of the R matrix it may be possible to use adaptive refinement to
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control the values of RT (wi, wj) and thus improve the conditioning. Determining the best
choice of error indicator etc for this type of problem will be the focus of future research.

The average number of iterations required to apply the pre-conditioner M2 are also shown
in tables 5.1, 5.2 and 5.3. Observe that when reading across a row there may be a sudden
change in the number of iterations. This is because the pre-conditioner M3 changes depending
on the relationship between r and h. When r > h, a few iterations of the multigrid method
is applied as a pre-conditioner. As is shown in the tables, this works well for larger values
of r, but the number of iterations starts to increase as r is decreased, as expected. When
r ≤ h the code switches to the use of a diagonal matrix as a pre-conditioner. The diagonal
pre-conditioner is, naturally, a lot cheaper than the multigrid pre-conditioner and works
best for smaller values of r.

5.6. Theoretical Properties. We now look at the properties of our discrete thin
plate spline. We were not able to find an example where we know the exact solution, simply
finding a function in the kernel of the biharmonic equation is not enough as we have to
also take the boundary conditions into account. Consequently we have compared a fine grid
solution to the coarse grid solutions to check the convergence rate, and we measured certain
properties of our solution to confirm that it behaves as expected.

In this section we take the value of each data point as given by the function û(x, y) = x2+y2

and the data points are uniformly distributed on the square mesh with 0.1 ≤ x, y ≤ 0.9 and
spacing 1/1000. Once again our finite element grid is a uniform grid with spacing h. We set
r = α× 104.

The first property that we measure is call Interp Norm and that is defined to be
√

√

√

√

1

N

N
∑

i=0

(uh(pi)− zi)
2
.

For small values of α we would expect that norm to decrease towards zero at a rate of
O(h2), as this is essentially a piecewise linear interpolant. Figure 5.3 shows the expected
O(h2) convergence. For large values of α we get a smoother fit and do not expect the spline
to pass through the data points.
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Fig. 5.3: A study of the spline properties for α = 10−10.

The next set of properties that we measure are motivated by Equation (3.11). We call these
properties the Data Norm, which is the l2 norm of (Ruh − fh); the Stable Norm, which is
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Fig. 5.4: A study of the spline properties for α = 10−6.
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Fig. 5.5: A study of the spline properties for α = 10−2.

the l2 norm of
(

K− (WT D−1
B+ B

T
D
−1

W) + B
T
D
−1

MD
−1

B

)

uh; and the Smooth Norm, which

is the l2 norm of
(

B
T
D
−1

AD
−1

B

)

uh. For smaller values of α the spline should closely fit the
data points, so we would expect the Data Norm to be small. As α is increased, the Data
Norm should increase. For larger values of α, the spline should be smooth so the Smooth
Norm should be small. As α is decreased, and the spline more closely follows the data
points, the value of Smooth Norm should increase. Finally, we require that the Stable Norm
decreases as h is decreased to agree with the theory developed above. Figures 5.3, 5.4 and
5.5 show that these norms do behave as expected for α = 10−10, 10−6 and 10−2. This is
not a convergence proof, but rather a check of the properties of the splines.

To check the convergence rate we calculated the solution on a grid with spacing h = 2−8 and
compared the result on that grid to coarser grids. Since the grids are all nested, we looked
at the difference between the value obtained on the coarse grid nodes with those obtained
on the corresponding nodes on the grid with spacing h = 2−8. We then evaluated the l2
norm of that difference. The results are shown in Figures 5.3, 5.4 and 5.5 under the label
Converg. These results indicate that the method is converging at a rate of O(h2). According
to Theorem 4.8 the convergence rate should be O(h) as measured in the energy norm ‖ · ‖A.
Given that the energy norm also takes into account the error in the derivatives, which the
Converg results do not, the O(h2) is consistent with the theory.

The PCG algorithm described above was used to solve the system of equations. In all cases
the PCG algorithm was terminated when the l2 norm of the residual was less than 10−8,
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except when finding the convergence rate for α = 10−10. In that case we needed to reduce
the residual down to 10−9 to see the expected convergence rate.

5.7. Example Splines. We finish our discussion with some example plots of splines
found using the test problems described in Section 5.4.

The first example in Figure 5.6 shows an example plot with a larger value of α. Observe
that the resulting spline is very smooth, too smooth to see the shape of the underlying data
sets. Hence the range of α values reported in Section 5.5 is probably larger than what would
need to be used in practise.
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Fig. 5.6: Surface plot of finite element approximation of Test Problem 1 using a finite element
grid with 4225 vertices and α = 10−2.

The plots shown in figures 5.7 and 5.8 compare the results for different sized finite element
grids. Recall that for Test Problem 3 the original data set only contained 81 points. The
technique presented in this paper can readily fill in any regions with missing data.
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Fig. 5.7: Surface plot of finite element approximation of Test Problem 1 with α = 10−9.
The plot on the left used a finite element grid with 81 nodes, the plot of the right used a
finite element grid with 1089 nodes.

The three example data sets used in test problems 1, 2 and 3 are clean. That is, the function
values are evaluated exactly. In the final set of test runs we take the data sets from test
problems 1, 2 and 3 and add some noise (5% uniformly distributed). The plots on the left of
figures 5.9, 5.10 and 5.11 show the data sets with the added noise. If the data set contains
a lot of points, then projecting the data onto the finite element grid will tend to smooth the
data, as is seen in Figure 5.9.
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Fig. 5.8: Surface plot of finite element approximation of Test Problem 3 with α = 10−9.
The plot on the left used a finite element grid with 81 nodes, the plot of the right used a
finite element grid with 1089 nodes.
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Fig. 5.9: Surface plot of finite element approximation of Test Problem 1 with noise added.
α = 10−7. The plot on the left shows the original data set the plot of the right used a finite
element grid with 4225 nodes.

6. Conclusion. A mixed finite element method for approximating thin plate splines
in two and three dimensions is presented introducing two additional vector unknowns –
gradient of the smoother and Lagrange multiplier. We propose to use a pair of finite element
bases for discretizing the gradient and the Lagrange multiplier satisfying a biorthogonality
property. The biorthogonality property allows an easy static condensation of the gradient
and the Lagrange multiplier from the system. The finite element approximation is shown
to converge to the true solution of thin plate splines by using a superconvergence property
of the operator Qh. The pre-conditioned conjugate gradient method yields a very efficient
solver for the linear system arising from the finite element discretisation.
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